CHAPTER


DOI :10.26650/BB/CH22.2020.008.26   IUP :10.26650/BB/CH22.2020.008.26    Full Text (PDF)

Immune Response in (COVID-19) New Coronavirus Disease

Nilgün AkdenizGünnur Deniz

The severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV; currently named as SARS-CoV-1) was first identified in November 2002 was taken under control just before it caused a global pandemics. SARS-CoV-2 was described after sequence analysis of clinical samples in patients experiencing lung infection in Wuhan, China, in December 2019. The disease is named after the virus as coronavirus disease 2019 and abbreviated as COVID-19. World Health Organization (WHO) declared COVID-19 as a pandemic in 2020. Till now, COVID-19 has infected more than 20 million people worldwide. The major source of the disease consists of wild animals and infected individuals, and the virus is primarily spread through contact and respiratory droplets. The SARS-CoV-2 is a member of the beta-coronaviruses family. It has single-stranded positive polarity RNA with structural proteins such as nucleocapsid, envelope, membrane, spike proteins, and non-structural proteins responsible for viral infection. The immune response to SARS-CoV-2 includes all parts of the immune system fighting against viral infections for viral eradication and recovery from infection. However, such an elevated immune response may lead to the progression of the disease to a more severe and fatal level. In this review, we have summarized the emergence of COVID-19 and the innate and adaptive immune responses evoked by SARS-CoV-2 infection as well as the immunological pathways, the severity of the disease, and antibody responses. 


DOI :10.26650/BB/CH22.2020.008.26   IUP :10.26650/BB/CH22.2020.008.26    Full Text (PDF)

Yeni Coronavirus (COVID-19) Hastalığında İmmün Yanıt

Nilgün AkdenizGünnur Deniz

SARS-CoV-1 olarak adlandırılan şiddetli akut solunum yolu sendromu (SARS) koronavirüsü (CoV) ilk olarak Kasım 2002’de tespit edilmiş ve küresel salgına neden olmadan hemen önce kontrol altına alınmıştır. SARS-CoV-2, Aralık 2019’da Çin’in Wuhan kentinde akciğer enfeksiyonu teşhisi konan bir hasta grubundan alınan klinik örneklerde dizileme yapıldıktan sonra tanımlanmıştır. SARS-CoV-2 virüsünün neden olduğu bu hastalık COVID-19 olarak adlandırmış ve Dünya Sağlık Örgütü (DSÖ) tarafından küresel salgın ilan edilmiştir. Hastalığın ana kaynağı vahşi hayvanlar ile enfekte bireyler olup, virüs esas olarak temas ve damlacık yolu ile yayılmaktadır. Beta-koronavirüs ailesinin bir üyesi olan SARS-CoV-2, zarf, membran, nükleokapsid ve başak (S-Spike) gibi tipik yapısal proteinler ile viral enfeksiyondan sorumlu yapısal olmayan proteinleri içeren tek zincire sahip, pozitif polariteli bir RNA virüsüdür. SARS-CoV-2’ye karşı gelişen bağışıklık yanıtı, viral enfeksiyonlara karşı savaşan doğal ve edinsel yanıtların tüm bölümlerini içermektedir. Bu şekilde enfekte kişinin bağışıklık sistemi eldeki tüm silahlarıyla viral enfeksiyonların yok edilmesi ve enfeksiyondan kurtulmak için savaşmaktadır. Bununla birlikte, bu kadar yüksek bir bağışıklık yanıtı, hastalığın daha şiddetli ve ölümcül bir düzeye ilerlemesine de yol açabilmektedir. Bu derlemede, COVID-19 hastalığının ortaya çıkışı ve yapısı, SARS-CoV-2 enfeksiyonunun neden olduğu doğuştan gelen ve edinsel bağışıklık yanıtları ve immünolojik yolakları, hastalığın şiddeti ile olan ilişkisi, antikor yanıtları özetlenmiştir.



References

  • 1. Zhang Y, Geng X, Tan Y, Li Q, Xu C, Xu J, et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed Pharmacother. 2020; 127: 110195. doi: 10.1016/j.biopha.2020.110195 google scholar
  • 2. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003; 77(16): 8801-11. 260 Yeni Coronavirus (COVID-19) Hastalığında İmmün Yanıt google scholar
  • 3. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020; 525(1): 135-40. google scholar
  • 4. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020; 14(2): 185-92. google scholar
  • 5. Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, et al. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol. 2005; 86(5): 1423-34. google scholar
  • 6. Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014; 10(5): e1004077. doi: 10.1371/journal.ppat.1004077 google scholar
  • 7. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020; 92(4): 418-23. google scholar
  • 8. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2): 631-7. google scholar
  • 9. Fung TS, Liu DX. The ER stress sensor IRE1 and MAP kinase ERK modulate autophagy induction in cells infected with coronavirus infectious bronchitis virus. Virology. 2019; 533: 34-44. google scholar
  • 10. Shi C-S, Qi H-Y, Boularan C, Huang N-N, Abu-Asab M, Shelhamer JH, et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J Immunol. 2014; 193(6): 3080-9. google scholar
  • 11. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181(2): 281-92. google scholar
  • 12. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005; 436(7047): 112-6. google scholar
  • 13. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020; 92(4): 424-32. google scholar
  • 14. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020; 181(5): 1036-45. google scholar
  • 15. Mckechnie JL, Blish CA. The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19? Cell Host Microbe. 2020; 27(6): 863-9. google scholar
  • 16. Fung TS, Liu DX. Human Coronavirus: Host-Pathogen Interaction. Annu Rev Microbiol. 2019; 73: 529-57. google scholar
  • 17. Hur S. Double-Stranded RNA Sensors and Modulators in Innate Immunity. Annu Rev Immunol. 2019; 37: 349-75. google scholar
  • 18. Chen J, Subbarao K. The Immunobiology of SARS*. Annu Rev Immunol. 2007; 25: 443-72. google scholar
  • 19. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016; 19(2): 181-93. google scholar
  • 20. Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest. 2019; 129(9): 3625-39. google scholar
  • 21. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020; 10(2): 102-8. google scholar
  • 22. Ratajczak MZ, Kucia M. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia. 2020; 34(7): 1726-9. google scholar
  • 23. Mcgonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020; 19(6): 102537. google scholar
  • 24. Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J, Deng Y, Wei S. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020; 43(0): E005. doi: 10.3760/ cma.j.issn.1001-0939.2020.0005 google scholar
  • 25. Wang W, Liu X, Wu S, Chen S, Li Y, Nong L, Lie P, Huang L, Cheng L, Lin Y, He J. Definition and Risks of Cytokine Release Syndrome in 11 Critically ill COVID-19 Patients With Pneumonia: Analysis of Disease Characteristics. J Infect Dis. 2020; 222(9): 1444-51. google scholar
  • 26. Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 2012; 30: 647-75. Akdeniz, Deniz 261 google scholar
  • 27. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020; 55: 102763. doi: 10.1016/j.ebiom.2020.102763 google scholar
  • 28. Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis. 2020; 221(11): 1762-9. google scholar
  • 29. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2(-) Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis. 2020; 11(2): 216-28. google scholar
  • 30. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020; 27(6): 992-1000. google scholar
  • 31. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020; 17(5): 533-5. google scholar
  • 32. van Montfoort N, Borst L, Korrer MJ, Sluijter M, Marijt KA, Santegoets SJ, et al. NKG2A Blockade Potentiates CD8 T Cell Immunity Induced by Cancer Vaccines. Cell. 2018; 175(7): 1744-55. google scholar
  • 33. Azkur AK, Akdis M, Azkur D, Sokolowska M, Veen W, Brüggen M, et al. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy. 2020; 75(7): 1564-81. google scholar
  • 34. Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020; 9(1): 601-4. google scholar
  • 35. Huang I-C, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, et al. Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus. PLoS Pathog. 2011; 7(1): e1001258. doi: 10.1371/journal.ppat.1001258 google scholar
  • 36. Ulrich H, Pillat MM. CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell Rev Reports. 2020; 16(3): 434-40. google scholar
  • 37. Retamal-Díaz, Covián, Pacheco, Castiglione-Matamala, Bueno, González, et al. Contribution of Resident Memory CD8+ T Cells to Protective Immunity Against Respiratory Syncytial Virus and Their Impact on Vaccine Design. Pathogens. 2019; 8(3): 147. doi: 10.3390/pathogens8030147 google scholar
  • 38. Palomares O, Akdis M, Martín-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev. 2017; 278(1): 219-36. google scholar
  • 39. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020; 71(15): 762-8. google scholar
  • 40. Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick L, Rattigan SM, et al. A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nat Commun. 2020; 11: 4704. https://doi.org/10.1038/s41467-020-18450-4 google scholar
  • 41. Breedveld A, Van Egmond M. IgA and FcαRI: Pathological Roles and Therapeutic Opportunities. Front Immunol. 2019; 10: 553. doi:10.3389/fimmu.2019.00553 google scholar
  • 42. Temperton NJ, Chan PK, Simmons G, Zambon MC, Tedder RS, Takeuchi Y, et al. Longitudinally profiling neutralizing antibody response to SARS coronavirus with pseudotypes. Emerg Infect Dis. 2005; 11(3): 411-6. google scholar
  • 43. Tang F, Quan Y, Xin ZT, Wrammert J, Ma MJ, Lv H, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol. 2011; 186(12): 7264-8. google scholar
  • 44. Zhang B, Liu S, Tan T, Huang W, Dong Y, Chen L, et al. Treatment With Convalescent Plasma for Critically Ill Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Chest. 2020; 158(1): 9-13. google scholar
  • 45. Ahn JY, Sohn Y, Lee SH, Cho Y, Hyun JH, Baek YJ, et al. Use of Convalescent Plasma Therapy in Two COVID-19 Patients with Acute Respiratory Distress Syndrome in Korea. J Korean Med Sci. 2020; 35. doi:10.3346/ jkms.2020.35.e149 google scholar
  • 46. Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol. 2020; 20(6): 339-41. google scholar
  • 47. Corcoran LM, Tarlinton DM. Regulation of germinal center responses, memory B cells and plasma cell formation an update. Curr Opin Immunol. 2016; 39: 59-67. google scholar
  • 48. Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis. 2020; 20(4): 411-2. 49. Tay MZ, Poh CM, Rénia L, Macary PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020; 20(6): 363-74. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.