Research Article


DOI :10.26650/ASE2020773014   IUP :10.26650/ASE2020773014    Full Text (PDF)

The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens

Puja PatiKausik MondalMadhusudan Mandal

Indiscriminate uses of antibiotics have resulted in the development of antibiotic-resistance among pathogens which possess a potential risk to the ecosystem, aquaculture and human health. In this study, biogenic zinc oxide nanoparticles (ZnO-NPs) were synthesized using aqueous extract of Aloe vera gel (AVGE) and tested against putative pathogenic bacterial strains in-vitro. Ultraviolet-Visible (UV-VIS) spectroscopic analysis confirmed the synthesis of AVGE-ZnO-NPs while X-ray diffraction (XRD) and Scanning Electron microscope (SEM) analysis revealed that the average size of synthesized ZnO-NPs is within the nano range. The elemental and chemical compositions of synthesized ZnO-NPs were studied using Energy-dispersive X-ray spectroscopy (EDX) and Fourier-transform infrared (FTIR) spectrometer, respectively. Two widespread bacterial strains, Aeromonas veronii strain ONKP1 (MN602971) and Stenotrophomonas maltophilia strain ONKP2 (MN602972) that are known as emerging opportunistic pathogens in various marine and freshwater fishes as well as humans and other animals, were used as test organisms. AVGE-ZnO-NPs showed strong antibacterial activity, against the tested Gram-negative multi-drug resistant bacteria in the disc diffusion assay. The results of the present investigation could be useful for the development of new disease management strategies in the fisheries industry. 


PDF View

References

  • Abraham, T. J., Paul, P., Adikesavalu, H., Patra, A. & Banerjee, S. (2016). Stenotrophomonas maltophilia as an opportunistic pathogen in cultured African catfish, Clarias gariepinus (Burchell, 1822). Aquaculture, 450, 168-172. [CrossRef] google scholar
  • Ali, K., Dwivedi, S., Azam, A., Saquib, Q., Al-Said, M. S., Alkhedhairy, A. A. & Musarrat, J. (2016). Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. Journal of Colloid and Interface Science, 472(2016), 145-156. [CrossRef] google scholar
  • Agarwal, H., Kumar, S. V. & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles-An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406-413. [CrossRef] google scholar
  • Anjugam, M., Vaseeharan, B., Iswarya, A., Gobi, N., Divya, M., Thangaraj, M. P. & Elumalai, P. (2018). Effect of /3-1, 3 glucan binding protein based zinc oxide nanoparticles supplemented diet on immune response and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila. Fish and Shellfish Immunology, 76, 247-259. [CrossRef] google scholar
  • Austin, B. & Austin, D. A. (2016) Aeromonadaceae Representatives (Motile Aeromonads). In: Bacterial Fish Pathogens. Springer, Cham. [CrossRef] google scholar
  • Awad, A., Zaglool, A. W., Ahmed, S. A. & Khalil, S. R. (2019). Transcriptomic profile change, immunological response and disease resistance of Oreochromis niloticus fed with conventional and Nano-Zinc oxide dietary supplements. Fish and Shellfish Immunology, 93, 336-343. [CrossRef] google scholar
  • Azizi, S., Mohamad, R. & Mahdavi Shahri, M. (2017). Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with Citrullus colocynthis (L.) Schrad: characterization and biomedical applications. Molecules, 22(2), 301. [CrossRef] google scholar
  • Bharti, S. K. & Singh, S. K. (2009). Metal based drugs: Current use and future potential. Der Pharmacia Lettre, 1(2), 39-51. google scholar
  • Bisht, G. & Rayamajhi, S. (2016). ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine, 3(Godiste 2016), 3-9. [CrossRef] google scholar
  • Budiati, T., Rusul, G., Wan-Abdullah, W. N., Arip, Y. M., Ahmad, R. & Thong, K. L. (2013). Prevalence, antibiotic resistance and plasmid profiling of Salmonella in catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from wet markets and ponds in Malaysia. Aquaculture, 372, 127-132. [CrossRef] google scholar
  • Chandran, S., Sunny, J. C., Chandran, S. & Bellan, C. (2018). Enhanced Antimicrobial activity of Aloe vera blended Zinc Oxide Nanoparticles in PVA matrix. Materials Today: Proceedings, 5(8), 16190-16198. [CrossRef] google scholar
  • Chupani, L., Niksirat, H., Velisek, J., Stara, A., Hradilovâ, S., Kolarık, J., Panâcek, A. & Zuskovâ, E. (2018). Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): tissue accumulation and physiological responses. Ecotoxicology and Environmental Safety, 147, 110-116. [CrossRef] google scholar
  • Connolly, M., Fernandez, M., Conde, E., Torrent, F., Navas, J. M. & Fernandez-Cruz, M. L. (2016). Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Science of The Total Environment, 551, 334-343. [CrossRef] google scholar
  • Das, S., Mitra, S., Khurana, S. P. & Debnath, N. (2013). Nanomaterials for biomedical applications. Frontiers in life science, 7(3-4), 90-98. [CrossRef] google scholar
  • Deb, S., Kalita, P. K. & Datta, P. (2013). Optical properties of green synthesized ZnO nanocomposites. Indian Journal of Physics, 87(12), 1177-1182. [CrossRef] google scholar
  • De Villiers, M. M., Aramwit, P. & Kwon, G. S. (2008). Nanotechnology in drug delivery. Springer: Science & Business Media. ISBN 9780387776675 [CrossRef] google scholar
  • Dimapilis, E. A. S., Hsu, C. S., Mendoza, R. M. O. & Lu, M. C. (2018). Zinc oxide nanoparticles for water disinfection. Sustainable Environment Research, 28(2), 47-56. [CrossRef] google scholar
  • Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V. & Raj, G. A. (2015). Bio-approach: Plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Advanced Powder Technology, 26(6), 1639-1651. [CrossRef] google scholar
  • Elshama, S. S., Abdallah, M. E. & Abdel-Karim, R. I. (2018). Zinc oxide nanoparticles: therapeutic benefits and toxicological hazards. The Open Nanomedicine Journal, 5(1), 16-22. [CrossRef] google scholar
  • Faiz, H., Zuberi, A., Nazir, S., Rauf, M. & Younus, N. (2015). Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). International Journal of Agriculture and Biology, 17(3), 568-574. [CrossRef] google scholar
  • Furushita, M., Okamoto, A., Maeda, T., Ohta, M. & Shiba, T., 2005. Isolation of multidrug-resistant Stenotrophomonas maltophilia from cultured yellowtail (Seriola quinqueradiata) from a marine fish farm. Applied and environmental microbiology, 71(9), 5598-5600. [CrossRef] google scholar
  • Gopalakrishnan, R., Hawley, H. B., Czachor, J. S., Markert, R. J. & Bernstein, J. M. (1999). Stenotrophomonas maltophilia infection and colonization in the intensive care units of two community hospitals: a study of 143 patients. Heart and lung, 28(2), 134-141. [CrossRef] google scholar
  • Geng, Y., Wang, K., Chen, D., Huang, X., He, M. & Yin, Z. (2010). Stenotrophomonas maltophilia, an emerging opportunist pathogen for cultured channel catfish, Ictalurus punctatus, in China. Aquaculture, 308(3-4), 132-135. [CrossRef] google scholar
  • Ghosh, K., Banerjee, S., Moon, U. M., Khan, H. A. & Dutta, D. (2017). Evaluation of gut associated extracellular enzyme-producing and pathogen inhibitory microbial community as potential probiotics in Nile tilapia, Oreochromis niloticus. International Journal of Aquaculture, 7(23), 143-158. [CrossRef] google scholar
  • Gunalan, S., Sivaraj, R. & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22(6), 693-700. [CrossRef] google scholar
  • Gupta, M., Tomar, R. S., Kaushik, S., Mishra, R. K. & Sharma, D. (2018). Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Frontiers in Microbiology, 9, 2030. [CrossRef] google scholar
  • Hassan, M. A., Noureldin, E. A., Mahmoud, M. A. & Fita, N. A., 2017. Molecular identification and epizootiology of Aeromonas veronii infection among farmed Oreochromis niloticus in Eastern Province, KSA. The Egyptian Journal of Aquatic Research, 43(2), 161-167. [CrossRef] google scholar
  • Hoai, T. D., Trang, T. T., Van Tuyen, N., Giang, N. T. H. & Van Van, K. (2019). Aeromonas veronii caused disease and mortality in channel catfish in Vietnam. Aquaculture, 513, 734425. [CrossRef] google scholar
  • Janda, J. M. & Abbott, S. L. (2010). The genus Aeromonas: taxonomy, pathogenicity, and infection. Clinical microbiology reviews, 23(1), 3573. [CrossRef] google scholar
  • Jin, S. E. & Jin, H. E. (2019). Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics, 11(11), 575. [CrossRef] google scholar
  • Kaya, H., Aydın, F., Gürkan, M., Yılmaz, S., Ates, M., Demir, V. and Arslan, Z. (2016). A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere, 144, 571-582. [CrossRef] google scholar
  • Khosravi-Katuli, K., Prato, E., Lofrano, G., Guida, M., Vale, G. & Libralato, G. (2017). Effects of nanoparticles in species of aquaculture interest. Environmental Science and Pollution Research, 24(21), 17326-17346. [CrossRef] google scholar
  • Looney, W. J., Narita, M. & Mühlemann, K. (2009). Stenotrophomonas maltophilia: an emerging opportunist human pathogen. The Lancet infectious diseases, 9(5), 312-323. [CrossRef] google scholar
  • Luis, A. I. S., Campos, E. V. R., de Oliveira, J. L. & Fraceto, L. F. (2019). Trends in aquaculture sciences: from now to use of nanotechnology for disease control. Reviews in Aquaculture, 11(1), 119-132. [CrossRef] google scholar
  • Mahendiran, D., Subash, G., Selvan, D. A., Rehana, D., Kumar, R. S. & Rahiman, A. K. (2017). Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, antibacterial, antioxidant and anti-proliferative studies. BioNanoScience, 7(3), 530-545. [CrossRef] google scholar
  • Marathe, N. P., Gaikwad, S. S., Vaishampayan, A. A., Rasane, M. H., Shouche, Y. S. & Gade, W. N. (2016). Mossambicus tilapia (Oreochromis mossambicus) collected from water bodies impacted by urban waste carries extended-spectrum beta-lactamases and integron-bearing gut bacteria. Journal of biosciences, 41(3), 341-346. [CrossRef] google scholar
  • Martınez-Carmona, M., Gun’ko, Y & Vallet-Regı, M. (2018). ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials, 8(4), 268. [CrossRef] google scholar
  • Mirzaei, H. & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1), 907-914. [CrossRef] google scholar
  • Musa, N., Wei, L. S., Shaharom, F. & Wee, W. (2008). Surveillance of Bacteria Species in Diseased Freshwater Ornamental Fish from Aquarium Shop. World Applied Sciences Journal, 3(6): 903-905. google scholar
  • Nath, M. R., Ahmed, A. N., Gafur, M. A., Miah, M. Y. & Bhattacharjee, S. (2018). ZnO nanoparticles preparation from spent zinc-carbon dry cell batteries: studies on structural, morphological and optical properties. Journal of Asian Ceramic Societies, 6(3), 262-270. [CrossRef] google scholar
  • Nawaz, M., Sung, K., Khan, S. A., Khan, A. A. & Steele, R. (2006). Biochemical and molecular characterization of tetracycline-resistant Aeromonas veronii isolates from catfish. Applied and environmental microbiology, 72(10), 6461-6466. [CrossRef] google scholar
  • Onuegbu, C. U., Aggarwal, A. & Singh, N. B. (2018). ZnO nanoparticles as feed supplement on growth performance of cultured African catfish fingerlings. Journal of Scientific and Industrial Research, 77, 213-218. google scholar
  • Parthasarathy, G., Saroja, M. & Venkatachalam, M. (2017). Bio-synthesized nano-formulation of zinc oxide-Aloe vera and to study their characterization and antibacterial activities against multiple pathogens. International Journal of Pharmaceutical Sciences and Research, 8(2), 900-907. google scholar
  • Patel, V. K., Sundriyal, P. & Bhattacharya, S. (2017). Aloe vera vs. poly (ethylene) glycol-based synthesis and relative catalytic activity investigations of ZnO nanorods in thermal decomposition of potassium perchlorate. Particulate Science and Technology, 35(3), 361-368. [CrossRef] google scholar
  • Pati, P. & Mondal, K. (2019). A review on the dietary requirements of trace minerals in freshwater fish. Journal of Environment and Sociobiology, 16(2), 171-206. google scholar
  • Qian, Y., Yao, J., Russel, M., Chen, K. & Wang, X. (2015). Characterization of green synthesized nano-formulation (ZnO-A. vera) and their antibacterial activity against pathogens. Environmental Toxicology and Pharmacology, 39(2), 736-746. [CrossRef] google scholar
  • Raje, K., Ojha, S., Mishra, A., Munde, V. K., Rawat, C. & Chaudhary, S. K. (2018). Impact of supplementation of mineral nano particles on growth performance and health status of animals: a review. Journal of Entomology and Zoology Studies, 6(3), 1690-1694. google scholar
  • Sangeetha, G., Rajeshwari, S. & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560-2566. [CrossRef] google scholar
  • Shaalan, M., Saleh, M., El-Mahdy, M. & El-Matbouli, M. (2016). Recent progress in applications of nanoparticles in fish medicine: a review. Nanomedicine: Nanotechnology, Biology and Medicine, 12(3), 701-710. [CrossRef] google scholar
  • Shaalan, M. I., El-Mahdy, M. M., Theiner, S., El-Matbouli, M. & Saleh, M. (2017). In-vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Veterinaria Scandinavica, 59(1), 49. [CrossRef] google scholar
  • Shah, B. R. & Mraz, J. (2020). Advances in nanotechnology for sustainable aquaculture and fisheries. Reviews in Aquaculture, 12(2), 925-942. [CrossRef] google scholar
  • Singh, A., Singh, N. B., Afzal, S., Singh, T. & Hussain, I. (2018). Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science, 53(1), 185-201. [CrossRef] google scholar
  • Skjolding, L. M., S0rensen, S. N., Hartmann, N. B., Hjorth, R., Hansen, S. F., & Baun, A. (2016) A critical review of aquatic ecotoxicity testing of nanoparticles - the quest for disclosing nanoparticle effects. Angewandte Chemie, 55, 15224-15239. [CrossRef] google scholar
  • Sreedharan, K., Philip, R. & Singh, I. B. (2011). Isolation and characterization of virulent Aeromonas veronii from ascitic fluid of oscar Astronotus ocellatus showing signs of infectious dropsy. Diseases of aquatic organisms, 94(1), 29-39. [CrossRef] google scholar
  • Sundrarajan, M., Ambika, S. & Bharathi, K. (2015). Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Advanced Powder Technology, 26(5), 1294-1299. [CrossRef] google scholar
  • Sun, J., Zhang, X., Gao, X., Jiang, Q., Wen, Y. & Lin, L. (2016). Characterization of virulence properties of Aeromonas veronii isolated from diseased Gibel Carp (Carassius gibelio). International journal of molecular sciences, 17(4), 496. [CrossRef] google scholar
  • Swain, P., Nayak, S. K., Sasmal, A., Behera, T., Barik, S. K., Swain, S. K., Mishra, S. S., Sen, A. K., Das, J. K. & Jayasankar, P. (2014). Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World Journal of Microbiology and Biotechnology, 30(9), 2491-2502. [CrossRef] google scholar
  • Swain, P. S., Rao, S. B., Rajendran, D., Dominic, G. & Selvaraju, S. (2016). Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition, 2(3), 134-141. [CrossRef] google scholar
  • Tekedar, H. C., Kumru, S., Blom, J., Perkins, A. D., Griffin, M. J., Abdelhamed, H., Karsi, A. & Lawrence, M. L. (2019). Comparative genomics of Aeromonas veronii: Identification of a pathotype impacting aquaculture globally. PloS one, 14(8), e0221018. [CrossRef] google scholar
  • Thongkao, K. & Sudjaroen, Y. (2019). Beta-lactamase and integron-associated antibiotic resistance genes of Klebsiella pneumoniae isolated from Tilapia fishes (Oreochromis niloticus). Journal of Applied Pharmaceutical Science, 9(1), 125-30. google scholar
  • Varghese, E. & George, M. (2015). Green synthesis of zinc oxide nanoparticles. International Journal of Advance Research in Science and Engineering, 4(1), 307-314. google scholar
  • Vimala, K., Sundarraj, S., Paulpandi, M., Vengatesan, S. & Kannan, S. (2014). Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process biochemistry, 49(1), 160-172. [CrossRef] google scholar
  • Xiong, H. M. (2013). ZnO nanoparticles applied to bio-imaging and drug delivery. Advanced Materials, 25(37), 5329-5335. [CrossRef] google scholar
  • Zhou, Q., Lv, J., Cai, L., Ren, Y., Chen, J., Gao, D., Lu, Z. & Wang, C. (2017). Preparation and characterization of ZnO/AGE MNPs with aloe gel extract and its application on linen fabric. The Journal of The Textile Institute, 108(8), 1371-1378. [CrossRef] google scholar
  • Zhu, P., Weng, Z., Li, X., Liu, X., Wu, S., Yeung, K. W. K., Wang, X., Cui, Z., Yang, X. & Chu, P. K. (2016). Biomedical applications of functionalized ZnO nanomaterials: from biosensors to bioimaging. Advanced Materials Interfaces, 3(1), 1500494. [CrossRef] google scholar
  • Wang, J., Wang, A. & Wang, W. X. (2017). Evaluation of nano-ZnOs as a novel Zn source for marine fish: importance of digestive physiology. Nanotoxicology, 11(8), 1026-1039. [CrossRef] google scholar
  • Watanabe, T., Kiron, V. & Satoh, S. (1997). Trace minerals in fish nutrition. Aquaculture, 151(1-4), 185-207. [CrossRef] google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Pati, P., Mondal, K., & Mandal, M. (2019). The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens. Aquatic Sciences and Engineering, 0(0), 101-108. https://doi.org/10.26650/ASE2020773014


AMA

Pati P, Mondal K, Mandal M. The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens. Aquatic Sciences and Engineering. 2019;0(0):101-108. https://doi.org/10.26650/ASE2020773014


ABNT

Pati, P.; Mondal, K.; Mandal, M. The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens. Aquatic Sciences and Engineering, [Publisher Location], v. 0, n. 0, p. 101-108, 2019.


Chicago: Author-Date Style

Pati, Puja, and Kausik Mondal and Madhusudan Mandal. 2019. “The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens.” Aquatic Sciences and Engineering 0, no. 0: 101-108. https://doi.org/10.26650/ASE2020773014


Chicago: Humanities Style

Pati, Puja, and Kausik Mondal and Madhusudan Mandal. The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens.” Aquatic Sciences and Engineering 0, no. 0 (Apr. 2021): 101-108. https://doi.org/10.26650/ASE2020773014


Harvard: Australian Style

Pati, P & Mondal, K & Mandal, M 2019, 'The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens', Aquatic Sciences and Engineering, vol. 0, no. 0, pp. 101-108, viewed 19 Apr. 2021, https://doi.org/10.26650/ASE2020773014


Harvard: Author-Date Style

Pati, P. and Mondal, K. and Mandal, M. (2019) ‘The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens’, Aquatic Sciences and Engineering, 0(0), pp. 101-108. https://doi.org/10.26650/ASE2020773014 (19 Apr. 2021).


MLA

Pati, Puja, and Kausik Mondal and Madhusudan Mandal. The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens.” Aquatic Sciences and Engineering, vol. 0, no. 0, 2019, pp. 101-108. [Database Container], https://doi.org/10.26650/ASE2020773014


Vancouver

Pati P, Mondal K, Mandal M. The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens. Aquatic Sciences and Engineering [Internet]. 19 Apr. 2021 [cited 19 Apr. 2021];0(0):101-108. Available from: https://doi.org/10.26650/ASE2020773014 doi: 10.26650/ASE2020773014


ISNAD

Pati, Puja - Mondal, Kausik - Mandal, Madhusudan. The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens”. Aquatic Sciences and Engineering 0/0 (Apr. 2021): 101-108. https://doi.org/10.26650/ASE2020773014



TIMELINE


Submitted24.07.2020
Accepted04.10.2020
Published Online08.04.2021

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.