Antimicrobial Resistance in the Aquatic Environments
Emine Gözde Özbayram, Dilek ÖzyurtThere is a continuous release of antimicrobials/antibiotics into the aquatic environment due to the overuse of these products on a global scale. The existence and spread of antimicrobials, antimicrobial resistance genes, and antimicrobial-resistant bacteria in aquatic environments have received considerable critical attention due to the possibility of changing bacterial diversity as well as bacterial functions and the development of antibiotic-resistance pathogens in the water source which threatens ecosystem and human health. Since freshwaters include dense active bacterial communities, they are considered hotspots for antimicrobial/antibiotic resistance. In this chapter, the emergence, spread, and impacts of antimicrobial/antibiotic resistance in freshwater sources will be evaluated.
References
- Amarasiri, M., Sano, D. & Suzuki, S. (2020). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and qu-estions to be answered. Crit. Rev. Environ. Sci. Technol., 50, 2016-2059. https://doi.org/10.1080/106433 89.2019.1692611. google scholar
- Aydin, E. & Talinli, I. (2013). Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey. Chemosphere, 90, 2004-2012. http://dx.doi.org/10.1016/j.che-mosphere.2012.10.074. google scholar
- Baquero, F., Martmez, J. L., & Canton, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260-265. https://doi.org/10.1016/j.copbio.2008.05.006 google scholar
- Bruyndonckx, R., Adriaenssens, N., Versporten, A Hens, N. Monnet, D.L., Molenberghs, G., Goossens, H., Weist, K. & Coenen, S. (2021). Consumption of antibiotics in the community, European Union/European Economic Area, 1997-2017. Journal of Antimicrobial Chemotherapy, 76(2), 7-13. https://doi.org/10.1093/jac/dkab172. google scholar
- Czekalski, N., Sigdel, R., Birtel, J., Matthews, B., & Bürgmann, H. (2015). Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Envi-ronment International, 81, 45-55. https://doi.org/10.1016Zj.envint.2015.04.005 google scholar
- Danner, M. C., Robertson, A., Behrends, V., & Reiss, J. (2019). Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of the Total Environment, 664, 793-804. https://doi.org/10.1016/j.scito-tenv.2019.01.406 google scholar
- Duarte, A.C., Rodrigues, S., Afonso, A., Nogueira, A. & Coutinho, P. (2022). Antibiotic Resistance in the Drin-king Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Pharmaceuticals, 15, 393. https://doi.org/10.3390/ph15040393. google scholar
- Duong, H.A., Phung, T.V., Nguyen, T.N., Thi, L.P., & Pham, H.V. (2021). Occurrence, Distribution, and Eco-logical Risk Assessment of Antibiotics in Selected Urban Lakes of Hanoi, Vietnam, Journal of Analytical Methods in Chemistry, 2021, 1-13. https://doi.org/10.1155/2021/6631797. google scholar
- Franklin, A. M., Brinkman, N. E., Jahne, M. A., & Keely, S. P. (2021). Twenty-first century molecular methods for analyzing antimicrobial resistance in surface waters to support One Health assessments. Journal of Mic-robiological Methods, 184(March), 106174. https://doi.org/10.1016/j.mimet.2021.106174 google scholar
- Guo, X., Song, R., Lu, S., Liu, X., Chen, J., Wan, Z. & Bi, B. (2022). Multi-Media Occurrence of Antibiotics and Antibiotic Resistance Genes in East Dongting Lake. Front. Environ. Sci. http://10.3389/fenvs.2022.866332. google scholar
- Hendriksen, R. S., Munk, P., Njage, P., van Bunnik, B., McNally, L., Lukjancenko, O., Röder, T., Nieuwenhuijse, D., Pedersen, S. K., Kjeldgaard, J., Kaas, R. S., Clausen, P. T. L. C., Vogt, J. K., Leekitcharoenphon, P., van de Schans, M. G. M., Zuidema, T., de Roda Husman, A. M., Rasmussen, S., Petersen, B., ... Aarestrup, F. M. (2019). Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08853-3 google scholar
- Hutchings, M., Truman, A. & Wilkinson, B. (2019). Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72-80. https://doi.org/10.1016/j.mib.2019.10.008. google scholar
- Ikizoglu B., Ilter Turkdogan, F., Kanat, G. & Aydiner, C. (2023). Seasonal analysis of commonly prescribed antibiotics in Istanbul city, Environ Monit Assess 195, 566. https://doi.org/10.1007/s10661-023-11203-y. google scholar
- Jia, S., Shi, P., Hu, Q., Li, B., Zhang, T., & Zhang, X. X. (2015). Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination. Environmental Science and Technology, 49(20), 12271-12279. https://doi.org/10.1021/acs.est.5b03521 google scholar
- Keenum, I., Liguori, K., Calarco, J., Davis, B. C., Milligan, E., Harwood, V. J., & Pruden, A. (2022). A fra-mework for standardized qPCR-targets and protocols for quantifying antibiotic resistance in surface wa-ter, recycled water and wastewater. Critical Reviews in Environmental Science and Technology, 52(24), 4395-4419. https://doi.org/10.1080/10643389.2021.2024739 google scholar
- Khanzada, N. K., Farid, M. U., Kharraz, J. A., Choi, J., Tang, C. Y., Nghiem, L. D., Jang, A., & An, A. K. (2020). Removal of organic micropollutants using advanced membranebased water and wastewater treatment a review. Journal of Membrane Science, 598, 117672. https://doi.org/10.1016/j.memsci. 2019. 117672. google scholar
- Kim C., Ryu, H.D., Chung, E. G., Kim, Y. & Lee, J.K. (2018). A review of analytical procedures for the si-multaneous determination of medically important veterinary antibiotics in environmental water: Sample preparation, liquid chromatography, and mass spectrometry, Journal of Environmental Management, 217 (2018) 629-645. https://doi.org/10.1016/j.jenvman.2018.04.006. google scholar
- Kim, J., Hong, Y., Ryu, S., Kwon, O., Lee, Y., & Kim, S. C. (2023). Development of analytical method for veterinary antibiotics and monitoring of residuals in agricultural environment. Applied Biological Che-mistry, 66(1), 1-11. https://doi.org/10.1186/s13765-023-00777-3. google scholar
- Klein, E.Y., Van Boeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A., Goossens, H. &Laxminarayan, R. (2018). Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463-E3470. https://doi.org/10.1073/pnas.1717295115. google scholar
- Kovalakova, P., Cizmas, L., McDonald, T.J., Marsalek, B., Feng, M.& Sharma, V.K. (2020). Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere, 251, 126351. https://doi.or-g/10.1016/j.chemosphere.2020.126351. google scholar
- Kortesmaki, E., Östman, J. R., Meierjohann, A., Brozinski, J. M., Eklund, P., & Kronberg, L. (2020). Occurrence of antibiotics in influent and effluent from 3 major wastewater treatment plants in Finland. Environmental Toxicology and Chemistry, 39(9),1774-1789. https://doi.org/10.1002/etc.4805. google scholar
- Kristiansson, E., Fick, J., Janzon, A., Grabic, R., Rutgersson, C., Weijdegârd, B., Söderström, H., & Joakim Larsson, D. G. (2011). Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE, 6(2). https://doi.org/10.1371/journal.pone.0017038 google scholar
- Kumar, A., & Pal, D. (2018). Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. Journal of Environmental Chemical Engineering, 6(1), 52-58. https://doi.org/10.1016Zj. jece.2017.11.059 google scholar
- Li, Jiang, Yixiang, Li, Chen, Y., Yao, B., Chen, X., Yu, Y., Yang, J. & Zhou, Y. (2023). Pharmaceuticals and personal care products (PPCPs) in the aquatic environment: Biotoxicity, determination and electrochemical treatment, Journal of Cleaner Production 388, 135923. https://doi.org/10.1016/j.jclepro.2023.135923. google scholar
- Liguori, K., Keenum, I., Davis, B. C., Calarco, J., Milligan, E., Harwood, V. J., & Pruden, A. (2022). Antimic-robial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality Control. Environmental Science & Technology, 56(13), 9149-9160. https://doi.org/10.1021/acs.est.1c08918 google scholar
- Liu, C., Chen, J., Yang, Y., Teng, Y., & Chen, H. (2023). Biogeography and diversity patterns of antibiotic resis-tome in the sediments of global lakes. Journal of Environmental Sciences (China), 127, 421-430. https:// doi.org/10.1016/j.jes.2022.06.024 google scholar
- Martmez, J. L., Coque, T. M., & Baquero, F. (2015). What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology, 13(2), 116-123. https://doi.org/10.1038/nrmicro3399 google scholar
- Nnadozie, C. F., & Odume, O. N. (2019). Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environmental Pollution, 254, 113067. https://doi.org/10.1016/j.envpol.2019.113067 google scholar
- O’Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations, The Review on Antimicrobial Resistance (London, UK). https://amr-review.org/sites/default/files/160518_Final%20 paper_with%20cover.pdf. google scholar
- Pauter K, Szultka-Mfynska M, Buszewski B. (2020). Determination and Identification of Antibiotic Drugs and Bacterial Strains in Biological Samples. Molecules, 25(11), 2556. https://doi.org/10.3390/molecu-les25112556. google scholar
- Pârnânen, K., Karkman, A., Tamminen, M., Lyra, C., Hultman, J., Paulin, L., & Virta, M. (2016). Evaluating the mobility potential of antibiotic resistance genes in environmental resistomes without metagenomics. Scientific Reports, 6(July), 1-9. https://doi.org/10.1038/srep35790 google scholar
- Petrovich, M.L., Zilberman, A., Kaplan, A. Eliraz, G.R., Wang, Y., Langenfeld, K., Duhaime, M., Wigginton, K., Poretsky, R., Avisar, D. (2020). Microbial and Viral Communities and Their Antibiotic Resistance Ge-nes Throughout a Hospital Wastewater Treatment System. Frontiers in Microbiology, 11, 1-13. https://doi. org/10.3389/fmicb.2020.00153. google scholar
- Raphenya, A. R., Robertson, J., Jamin, C., de Oliveira Martins, L., Maguire, F., McArthur, A. G., & Hays, J. P. (2022). Datasets for benchmarking antimicrobial resistance genes in bacterial metagenomic and whole genome sequencing. Scientific Data, 9(1), 5-10. https://doi.org/10.1038/s41597-022-01463-7 google scholar
- Rocha, J., Fernandes, T., Riquelme, M. V., Zhu, N., Pruden, A., & Manaia, C. M. (2019). Comparison of cul-ture-and quantitative PCR-based indicators of antibiotic resistance in wastewater, recycled water, and tap water. International Journal of Environmental Research and Public Health, 16(21). https://doi.org/10.3390/ ijerph16214217 google scholar
- Ruppe, E., Bengtsson-Palme, J., Charretier, Y., & Schrenzel, J. (2019). How next-generation sequencing can address the antimicrobial resistance challenge. AMR Control, , 20, 60-65. google scholar
- Sanderson, H., Ortega-Polo, R., Zaheer, R., Goji, N., Amoako, K. K., Brown, R. S., Majury, A., Liss, S. N., & McAllister, T. A. (2020). Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants. BMC Microbiology, 20(1), 1-17. https://doi.org/10.1186/s12866-019-1683-4 google scholar
- Sanganyado, E. & Gwenzi, W. (2019). Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks, Science of the Total Environment 669, 785-797. https://doi.org/10.1016/j.scito-tenv.2019.03.162. google scholar
- Su, H. C., Liu, Y. S., Pan, C. G., Chen, J., He, L. Y., & Ying, G. G. (2018). Persistence of antibiotic resistance ge-nes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. Science of the Total Environment, 616-617, 453-461. https://doi.org/10.1016/j.scitotenv.2017.10.318 google scholar
- Szymanska, U., Wiergowski, M., Soltyszewski, I., Kuzemko, J., Wiergowska, G., & Wozniak, M. K. (2019). Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring recent trends and perspectives a review. Microchemical Journal, 147, 729-740. https://doi.org/10.1016/j. microc. 2019. 04. 00. google scholar
- Sönmez, V.Z., & Sivri N., (2020). The Toxic Effects of Commonly Used Antibiotics in Turkey on Aquatic Orga-nisms, Journal of Anatolian Environmental and Animal Sciences, 5(2), 154-160. https://doi.org/10.35229/ jaes.687327. google scholar
- United Nations Environment Programme. (2023). Bracing for Superbugs: Strengthening environ-mental action in the One Health response to antimicrobial resistance. United Nations. https://doi. org/10.18356/9789210025799 google scholar
- Xiong, W., Sun, Y., Zhang, T., Ding, X., Li, Y., Wang, M., & Zeng, Z.L. (2015). Antibiotics, antibiotic resistance genes, and bacterial community composition in freshwater aquaculture environment in China. Microb. Ecol. 2015, 70, 425-432. https://doi.org/10.1007/s00248-015-0583-x. google scholar
- TrACSS, (2022). Tracking AMR Country Self-Assessment Survey (TrACSS) 2022 Turkey Country Report, 1-10. https://www.who.int/publications/m/item/Antimicrobial-resistance-tracss-tur-2022-country-profile. google scholar
- Waddington, C., Carey, M. E., Boinett, C. J., Higginson, E., Veeraraghavan, B., & Baker, S. (2022). Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Medicine, 14(1), 1-14. https://doi.org/10.1186/s13073-022-01020-2 google scholar
- Watts, J.E.M., Schreier, H.J., Lanska, L.& Hale, M.S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs, 15, 158. https://doi.org/10.3390/md15060158. google scholar
- World Health Organization (WHO). (2023), Antimicrobial Resistance: Briefing to WHO Member State, 22 March 2023. https://apps.who.int/gb/MSPI/pdf_files/2023/03/Item1_22-03.pdf. google scholar
- World Economic Forum, (2021). Antimicrobial Resistance and Water: The risks and costs for economies and societies, Briefing Paper, In collaboration with the Swiss Agency for Development and Cooperation. https:// www3.weforum.org/docs/WEF_Antimicrobial_Resistance_and_Water_2021.pdf. google scholar
- Wright, G. D. (2010). Antibiotic resistance in the environment: A link to the clinic? Current Opinion in Micro-biology, 13(5), 589-594. https://doi.org/10.1016/j.mib.2010.08.005 google scholar
- Van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P., Teillant, A.& Laxmina-rayan, R. (2015). Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649-5654. https://doi.org/10.1073/pnas.1503141112. google scholar
- Yang, Y., Song, W., Lin, H., Wang, W., Du, L., & Xing, W. (2018). Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environment International, 116(November 2017), 60-73. https:// doi.org/10.1016/j.envint.2018.04.011 google scholar
- Yuan, X., Lv, Z., Zhang, Z., Han, Y., Liu, Z., Zhang, H. A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. Toxics 2023, 11, 420. https://doi.org/10.3390/toxics11050420. google scholar
- Zhang, G., Liu, X., Lu, S., Zhang, J. & Wang, W. (2020). Occurrence of typical antibiotics in Nansi Lake’s inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analy-sis-multiple linear regression model, Chemosphere, 242, 125269. https://doi.org/10.1016/j.chemosphe-re.2019.125269. google scholar
- Zhang, T., Lv, K., Lu, Q., Wang, L. & Liu, X. (2021). Removal of antibiotic-resistant genes during drinking water treatment: A review. Journal of Environmental Science, 104, 415-429. https://doi.Org/10.1016/j. jes.2020.12.023. google scholar