River Ecosystems, Between Change and Conservation
Sergi SabaterRivers cover a small part of the planetary surface and contain the smallest water fraction of all aquatic compartment, but regardless of their size and magnitude host a large fraction of biodiversity and sustain some of the most essential global biogeochemical cycles. The human appropriation of the global water cycle is a reality in many parts of the World, and particularly in the arid or semi-arid regions. This has caused that the potential of freshwaters as providers of ecosystem services has pushed rivers towards their resilience limits, with relevant impacts on river biodiversity and functions. Because of their hierarchical organization, river ecosystems are resilient to disturbances, though continued pressures, or multiple occurrences of stressors, can cause a loss of their resilience. Then river systems can become vulnerable to further changes and register losses of diversity and impacts on ecosystem services. It is therefore imperative to enhance our predictive capacity on the effects caused by human disturbances, as a necessary step towards promoting the adaptive resilience of river ecosystems.
References
- Aristi, I., Arroita, M., Larranaga, A., Ponsatf, L., Sabater, S., & Schiller, D., et al. (2014). Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers. Freshwater Biology, 59(9), 1816-1829. google scholar
- Beketov, M. A., Kefford, B. J., Schafer, R. B., & Liess, M. (2013). Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences, 110(27), 11039-11043. google scholar
- Belletti, B., de Leaniz, C. G., Jones, J., Bizzi, S., Börger, L., & Segura, G., et al. (2020). More than one million barriers fragment Europe’s rivers. Nature, 588(7838), 436-441. google scholar
- Benejam, L., Angermeier, P. L., Munne, A., & Garcia-Berthou, E. (2010). Assessing effects of water abstraction on fish assemblages in Mediterranean streams. Freshwater Biology, 55(3), 628-642. google scholar
- Boltz, F., LeRoy Poff, N., Folke, C., Kete, N., Brown, C. M., & St. George Freeman, S., et al. (2019). Water is a master variable: Solving for resilience in the modern era. Water Security, 8, 100048. google scholar
- Bunn, S. E., Davies, P. M., & Winning, M. (2003). Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology, 48(4), 619-635. google scholar
- Carpenter, S. R., Mooney, H. A., Agard, J., Capistrano, D., DeFries, R. S. & D^az, S., et al. (2009). Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences, 106(5), 1305-1312. google scholar
- Casas-Ruiz, J. P., Catalan, N., Gomez-Gener, L., von Schiller, D., Obrador, B., & Kothawala, D. N., et al. (2017). A tale of pipes and reactors: Controls on the in-stream dynamics of dissolved organic matter in rivers. Limnology and Oceanography. google scholar
- Clavero, M., Blanco-Garrido, F., & Prenda, J. (2004). Fish fauna in Iberian Mediterranean river basins: biodiver-sity, introduced species and damming impacts. Aquatic Conservation-Marine and Freshwater Ecosystems, 14, 575-585. google scholar
- Cross, W. F., Benstead, J. P., Frost, P. C., & Thomas, S. A. (2005). Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biology, 50(11), 1895-1912. google scholar
- Dittmar, T., & Kattner, G. (2003). The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Marine Chemistry, 83(3-4), 103-120. google scholar
- Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., & Gunderson, L., et al. (2004). Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annual Review of Ecology, Evolution, and Syste-matics, 35(1), 557-581. google scholar
- GEOBON & FWBON. (2022). Inland Waters in the Post-2020 Global Biodiversity Framework. https://geobon. org/science-briefs/. google scholar
- Ginebreda, A., Kuzmanovic, M., Guasch, H., de Alda, M. L. p., Lopez-Doval, J. C., & Munoz, I., et al. (2014). Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors. Science of the Total Environment, 468-469, 715-723. google scholar
- Gleick, P. H. (2003). Global freshwater resources: soft-path solutions for the 21st Century. Science, 302, 15241528. google scholar
- Greathouse, E. A., Pringle, C. M., McDowell, W. H., & Holmquist, J. G. (2006). Indirect upstream effects of dams: Consequences of migratory consumer extirpation in Puerto Rico. Ecological Applications, 16(1), 339-352. google scholar
- Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., & Hanasaki, N., et al. (2014). Global water resour-ces affected by human interventions and climate change. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3251-3256. google scholar
- Hynes, H. B. N. (1975). The stream and its valley. Verhandlungen des Internationalen Verein Limnologie, 19, 1-15. google scholar
- Leopold, L. B. (1994). A View of the River: Harvard University Press. google scholar
- Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73(6), 1943-1967. google scholar
- Lorenzo-Lacruz, J., Vicente-Serrano, S. M., Lopez-Moreno, J. I., Begueria, S., Garria-Ruiz, J. M., & Cuadrat, J. M. (2010). The impact of droughts and water management on various hydrological systems in the hea-dwaters of the Tagus River (central Spain). Journal of Hydrology, 386(1), 13-26. google scholar
- Malaj, E., von der Ohe, P. C., Groted, M., Kühne, R., Mondy, C. P., & Usseglio-Polatera, P., et al. (2014). Orga-nic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9549-9554. google scholar
- Margalef, R. (1997). Our biosphere. Oldendorf: Ecology Institute. google scholar
- Mazzucato, M., Okonjo-Iewala, N., Rockström, J., & Shanmugaratnam, T. (2023). Turning the Tide: A call to collective action. google scholar
- Mor, J. R., Munoz, I., Sabater, S., Zamora, L., & Ruhi, A. (2021). Energy limitation or sensitive predators? Trophic and non-trophic impacts of wastewater pollution on stream food webs. Ecology, e03587. google scholar
- Mor, J. R., RuH, A., Tornes, E., Valcarcel, H., Munoz, I., & Sabater, S. (2018). Dam regulation and riverine food-web structure in a Mediterranean river. Science of The Total Environment, 625, 301-310. google scholar
- Moss, B. (1998). Ecology of freshwaters. Man and medium, past to future (Vol. 3rd. ed.): Blackwell, London. google scholar
- Mota, M., Rochard, E., & Antunes, C. (2016). Status of the diadromous fish of the Iberian Peninsula: past, present and trends. Limnetica, 35(1), 1-18. google scholar
- Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science, 308(5720), 405-408. google scholar
- Ovidio, M., Capra, H., & Philippart, J. C. (2008). Regulated discharge produces substantial demographic changes on four typical fish species of a small salmonid stream. Hydrobiologia, 609, 59-70. google scholar
- Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., & Karabinakis, E., et al. (2004). Water resources: agricultural and environmental issues. Bioscience, 54(10), 909-918. google scholar
- Posthuma, L., Bj0rn, A., Zijp, M. C., Birkved, M., Diamond, M. L., & Hauschild, M. Z., et al. (2014). Beyond Safe Operating Space: Finding Chemical Footprinting Feasible. Environmental Science & Technology, 48 6057-6059. google scholar
- Ramankutty, N., & Foley, J. (1999). Estimating historical changes in global land cover croplands from 1700 to 1992. Global Biogeochemistry Cycles, 13, 997-1027. google scholar
- Ruhi, A., Acuna, V., Barcelo, D., Huerta, B., Mor, J. R., & Rodriguez-Mozaz, S., et al. (2016). Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Science of the Total Environment, 540, 250-259. google scholar
- Sabater, S. (2023). Doing Science in Ecology. Does river flow show a path? Limnetica, DOI: 10.23818/ limn.42.20. google scholar
- Sabater, S., Bregoli, F., Acuna, V., Barcelo, D., Elosegi, A., & Ginebreda, A., et al. (2018). Effects of human-dri-ven water stress on river ecosystems: a meta-analysis. Scientific Reports, 8(1), 1-11. google scholar
- Sabater, S., Freixa, A., Jimenez, L., Lopez-Doval, J., Pace, G., & Pascoal, C., et al. (2022). Extreme weather events threaten biodiversity and functions of river ecosystems: evidence from a meta-analysis. Biological Reviews, 98, 2, 450-461 google scholar
- Sedlak, D. (2014). Water 4.0: the past, present, and future of the world’s most vital resource: Yale University Press. google scholar
- Segner, H., Schmitt-Jansen, M., & Sabater, S. (2014). Assesing the impact of multiple stressors on aquatic biota: the receptor’s side matters. Environmental Science & Technology, 48, 7690-7696. google scholar
- Shiklomanov, I. (1993). World freshwater resources In: Gleick PH, editor. Water in crisis: a guide to the world’s freshwater resources: Oxford: Oxford University Press google scholar
- Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137. google scholar
- Wohl, E. (2012). Identifying and mitigating dam-induced declines in river health: Three case studies from the western United States. International Journal of Sediment Research, 27(3), 271-287. google scholar
- Zhang, L., Dawes, W., & Walker, G. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research 37, 701-708. google scholar