The Key Element of Evaluation of Inland Waters Quality: Zooplankton
Evangelia Michaloudi, Zeynep Dorak, Georgia StamouThe aim of this chapter is to briefly review the main characteristics (e.g. taxonomy, life history traits) of the main zooplankton members, namely the Phylum Rotifera, the Superorder Cladocera and the Subclass Copepoda, and their importance in inland waters in general as well as in the Mediterranean climate zone. Zooplankton is the first protein source along the food chain (from phytoplankton to fish) in aquatic ecosystems and contributes to the energy flow towards the higher trophic levels (e.g. macroinvertebrates, fishes etc.). It also improves water clarity by grazing down the available phytoplankton biomass and for this reason it is described as a key component of the food web. Zooplankton has high diversity, large density, short life span, drifting nature, and variable tolerance to environmental (biologic, chemical, physical, food availability, prey-predator) conditions. Zooplankton is affected by environmental alterations, and responds by changing its abundance, composition, size and distribution in the habitat, immediately. Therefore, it is an important indicator of ecological conditions. Despite its value zooplankton was excluded as a biological quality element (BGE) in the Water Framework Directive. However, several zooplankton metrics have been identified to successfully follow and characterize water quality. So, water quality indices have been developed including zooplankton as a biological community element combined with other BGEs, mainly phytoplankton. Lately, zooplanktonic indices of water quality have been developed based on optimal/tolerant values or by using multiple metrics to identify multiple pressures. Overall, it has been proven that zooplankton is a biological element that can be effectively used for the assessment and monitoring of freshwater ecosystems tracking eutrophication as well as ecological water quality around the globe, including the Mediterranean region.
References
- Adamczuk, M., Mieczan, T., Tarkowska-Kukuryk, M., & Demetraki-Paleolog, A. (2015). Rotatoria-Cladocera-Copepoda relations in the long-term monitoring of water quality in lakes with trophic variation (E. Poland). Environmental Earth Sciences, 73(12), 8189-8196. https://doi.org/10.1007/s12665-014-3977-z google scholar
- Alexiou, R., Stamou, G., Minoudi, S., Tourli, F., Tsartsianidou, V., Triantafyllidis, A., & Michaloudi, E. (2021). The genus Diaphanosoma (Diplostraca: Sididae) in Greece: Morphological and molecular assessment. Zo-otaxa, 5082(6), 572-582. https://doi.org/10.11646/zootaxa.5082.6.4 google scholar
- Allan, J. D. (1976). Life History Patterns in Zooplankton. The American Naturalist, 110(971), 165-180. google scholar
- Alvarez Cobelas, M., Rojo, C., & Angeler, D. G. (2005). Mediterranean limnology: Current status, gaps and the future. Journal of Limnology, 64(1), 13. https://doi.org/10.4081/jlimnol.2005.13 google scholar
- Apaydın-Yağcı, M., & Ustaoğlu, M. (2012). Zooplankton fauna of Lake İznik (Bursa, Turkey). Turkish Journal of Zoology, 36(3), 341-350. https://doi.org/10.3906/zoo-1001-36 google scholar
- Apaydın-Yağcı, M., Yılmaz, S., Yazıcıoğlu, O., & Polat, N. (2015). The zooplankton composition of Lake Ladik (Samsun, Turkey). Turkish Journal of Zoology, 39(4), 652-659. https://doi.org/10.3906/zoo-1312-54 google scholar
- Apaydın-Yağcı, M. (2016). Variations in the zooplankton species structure of eutrophic lakes in Turkey. Lake Sciences and Climate Change, 24, 81-102. https://doi.org/10.5772/63749 google scholar
- Ardura, A., Zaiko, A., Martinez, J. L., Samulioviene, A., Semenova, A., & Garcia-Vazquez, E. (2015). eDNA and specific primers for early detection of invasive species - A case study on the bivalve Rangia cuneata, currently spreading in Europe. Marine Environmental Research, 112, 48-55. https://doi.org/10.1016/j.ma-renvres.2015.09.013 google scholar
- Arp, W., & Deneke, R. (2007). Untersuchungen des Phyto- und Zooplanktons schleswig-holsteinischer Seen 2006. Berlin, Germany: State office for Agriculture, Environment and Rural Areas of Schleswig-Holstein. google scholar
- Arp, W., Kasten, J., & Maier, G. (2010). Untersuchungen des Phyto- und Zooplanktons schleswig-holsteinischer Seen 2009. Berlin, Germany: Landesamt für Natur und Umwelt. google scholar
- Baird, D. J., Rubach, M. N., & Brinkt, P. J. V. den. (2008). Trait-based ecological risk assessment (TERA): The new frontier? Integrated Environmental Assessment and Management, 4(1), 2-3. https://doi.org/10.1897/ IEAM_2007-063.1 google scholar
- Bandara, K., Varpe, 0, Wijewardene, L., Tverberg, V., & Eiane, K. (2021). Two hundred years of zooplankton vertical migration research. Biological Reviews, 96, 1547-1589. https://doi.org/10.1111/brv.12715 google scholar
- Barinova, S. (2017). On the classification of water quality from an ecological point of view. International Journal of Environmental Sciences & Natural Resources, 2(2), 555581. https://doi.org./10.19080/IJES-NR.2017.02.555581 google scholar
- Barnett, A. J., Finlay, K., & Beisner, B. E. (2007). Functional diversity of crustacean zooplankton communities: Towards a trait-based classification. Freshwater Biology, 52(5), 796-813. https://doi.org/10.1111/j.1365-2427.2007.01733.x google scholar
- Brandl, Z. (1998). Feeding strategies of planktonic cyclopoids in lacustrine ecosystems. Journal of Marine Systems, 15(1-4), 87-95. https://doi.org/10.1016/S0924-7963(97)00042-0 google scholar
- Bekleyen, A., & Taş, B. (2008). Çernek Gölü’nün (Samsun) Zooplankton Faunası. Ekoloji 17(67), 24-30. google scholar
- Beklioglu, M., Meerfhoff, M., S0ndergaard, M., & Jeppesen, E. (2011). Eutrophication and restoration of shal-low lakes from a old temperate to a warm mediterranean and a (sub)tropical climate. In: A. A. Ansari, G. S. Singh, G.R. Lanza, & W. Rast (Eds.), Eutrophication: Causes, Consequences and Control, (pp.91-129). Dordrecht,1st edn. Springer. ISBN 978-94-007-7813-9 google scholar
- Benndorf, J. (1990). Conditions for effective biomanipulation; conclusions derived from whole-lake experiments in Europe. Hydrobiologia, 200(1), 187-203. https://doi.org/10.1007/BF02530339 google scholar
- Benndorf, J., & Miersch, U. (1991). Phosphorus loading and efficiency of biomanipulation. SIL Proceedings, 1922-2010, 24(4), 2482-2488. https://doi.org/10.1080/03680770.1989.11899994 google scholar
- Benndorf, Jü., Böing, W., Koop, J., & Neubauer, I. (2002). Top-down control of phytoplankton: The role of time scale, lake depth and trophic state. Freshwater Biology, 47(12), 2282-2295. https://doi.org/10.1046/j.1365-2427.2002.00989.x google scholar
- Berry, T. E., Saunders, B. J., Coghlan, M. L., Stat, M., Jarman, S., Richardson, A. J., Davies, C. H., Berry, O., Harvey, E. S., & Bunce, M. (2019). Marine environmental DNA biomonitoring reveals seasonal patter-ns in biodiversity and identifies ecosystem responses to anomalous climatic events. PLOS Genetics, 15, e1007943. https://doi.org/10.5061/dryad.sc673ds google scholar
- Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., & Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22(3), 148155. google scholar
- Blackman, R. C., Machler, E., Altermatt, F., Arnold, A., Beja, P., Boets, P., Egeter, B., Elbrecht, V., Filipe, A. F., Jones, J. I., Macher, J., Majaneva, M., Martins, F. M. S., Muma, C., Meissner, K., Pawlowski, J., Schmidt google scholar
- Yanez, P. L., Zizka, V. M. A., Leese, F., Price, B., & Deiner, K. (2019). Advancing the use of molecular methods for routine freshwater macroinvertebrate biomonitoring-the need for calibration experiments. Me-tabarcoding andMetagenomics 3, 49-57. https://doi.org/10.3897/mbmg.3.34735 google scholar
- Bledzki, L. A., & Rybak, J. I. (2016). Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida) Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. Springer. google scholar
- Boix, D., Gascon, S., Sala, J., Martinoy, M., Gifre, J., & Quintana, X. D. (2005). A new index of water quality assessment in Mediterranean wetlands based on crustacean and insect assemblages: The case of Catalunya (NE Iberian Peninsula). Aquatic Conservation: Marine andFreshwater Ecosystems, 15(6), 635-651. https:// doi.org/10.1002/aqc.750 google scholar
- Bottrell, H. H., Duncan, A., Gliwicz, Z. M., Grygierek, E., Herzig, A., Hillbricht Ilkowska, A., ... & Weglenska, T. (1976). A review of some problems in zooplankton production studies. Norwegian Journal of Zoology, 24(4), 419-453. google scholar
- Boxshall, G. A., & Defaye, D. (2008). Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hyd-robiologia, 595(1), 195-207. https://doi.org/10.1007/s10750-007-9014-4 google scholar
- Bozkurt, A., & Akın, Ş. (2012). Zooplankton fauna of Yeşilırmak (between Tokat and Blacksea), Hasan Uğurlu and Suat Uğurlu Dam Lakes. Turkish Journal of Fisheries and Aquatic Sciences, 12, 777-786. https://doi. org/10.4194/1303-2712-v12_4_06 google scholar
- Brett, M. T., & Goldman, C. R. (1996). A meta-analysis of the freshwater trophic cascade. Proceedings of the National Academy of Sciences, 93(15), 7723-7726. https://doi.org/10.1073/pnas.93.15.7723 google scholar
- Briski, E., Cristescu, M. E., Bailey, S. A., & MacIsaac, H. J. (2011). Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs. Biological Invasions, 13(6), 1325-1340. https://doi.org/10.1007/ s10530-010-9892-7 google scholar
- Brooks, J. L., & Dodson, S. I. (1965). Predation, body size, and composition of plankton. Science, 150(3692), 28-35. google scholar
- Bucklin, A., Lindeque, P. K., Rodriguez-Ezpeleta, N., Albaina, A., & Lehtiniemi, M. (2016). Metabarcoding of marine zooplankton: Prospects, progress and pitfalls. Journal of Plankton Reserach, 38, 393-400. https:// doi.org/10.1093/plankt/fbw023 google scholar
- Bucklin, A., Peijnenburg, K. T. C. A., Kosobokova, K. N., O’Brien, T. D., Blanco-Bercial, L., Cornils, A., .& Weydmann-Zwolicka, A. (2021). Toward a global reference database of COI barcodes for marine zooplank-ton. Marine Biology, 168(6), 78. https://doi.org/10.1007/s00227-021-03887-y google scholar
- Burks, R., Lodge, D., Jeppesen, E., & Lauridsen, T. (2002). Diel Horizontal migration of zooplankton: Costs and benefits of inhabiting the littoral. Freshater Biology, 47, 343-365. https://doi.org/10.1046/j.1365-2427.2002.00824.x google scholar
- Byers, J. E., Cuddington, K., Jones, C. G., Talley, T. S., Hastings, A., Lambrinos, J. G., Crooks, J. A., & Wilson, W. G. (2006). Using ecosystem engineers to restore ecological systems. Trends in Ecology and Evolution, 21, 493-500. https://doi.org/10.1016/j.tree.2006.06.002 google scholar
- Cai, W., Xia, J., Yang, M., Wang, W., Dou, C., Zeng, Z., . Sheng, L. (2020). Cross-basin analysis of freshwater ecosystem health based on a zooplankton-based Index of Biotic Integrity: Models and application. Ecologi-cal Indicators, 114, 106333. https://doi.org/10.1016/j.ecolind.2020.106333 google scholar
- Carlson, R. E. (1977). A trophic state index for lakes1: Trophic state index. Limnology and Oceanography, 22(2), 361-369. https://doi.org/10.4319/lo.1977.22.2.0361 google scholar
- Caroni, R., & Irvine, K. (2010). The potential of zooplankton communities for ecological assessment of lakes: Redundant concept or political oversight? Biology and Environment: Proceedings of the Royal Irish Aca-demy, 110B(1), 35-53. google scholar
- Carpenter, S. R., Kitchell, J. F., & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. BioScience, 35(10), 634-639. google scholar
- Carpenter, S. R., & Lodge, D. M. (1986). Effects of submersed macrophytes on ecosystem processes. Aquatic Botany, 26, 341-370. https://doi.org/10.1016/0304-3770(86)90031-8 google scholar
- Castro, B. B., Marques, S. M., & Gonçalves, F. (2007). Habitat selection and diel distribution of the crustacean zooplankton from a shallow Mediterranean lake during the turbid and clear water phases. Freshwater Bio-logy, 52, 421-433. https://doi.Org/10.1111/j.1365-2427.2006.01717.x google scholar
- Clarke, K. R., & Warwick, R. M. (2001). A further biodiversity index applicable to species lists: Variation in taxo-nomic distinctness. Marine Ecology Progress Series, 216, 265-278. https://doi.org/10.3354/meps216265 google scholar
- Clarke, L. J., Beard, J. M., Swadling, K. M., & Deagle, B. E. (2017). Effect of marker choice and thermal cyc-ling protocol on zooplankton DNA metabarcoding studies. Ecology and Evolution, 7, 873- 883. https://doi. org/10.1002/ece3.2667 google scholar
- Compte, J., Montenegro, M., RuH, A., Gascon, S., Sala, J., & Boix, D. (2015). Microhabitat selection and diel patterns of zooplankton in a Mediterranean temporary pond. Hydrobiologia, 766, 201-213. https://doi. org/10.1007/s10750-015-2455-2 google scholar
- Creer, S., Deiner, K., Frey, S., Porazinska, D., Taberlet, P., Thomas, W. K., Potter, C., & Bik, H. M. (2016). The ecologist’s field guide to sequence-based identification of biodiversity. Methods in Ecology and Evolution, 7, 1008-1018. https://doi.org/10.1111/2041-210X.12574 google scholar
- Cristescu, M. E., Constantin, A., Bock, D. G., Caceres, C. E., & Crease, T. J. (2012). Speciation with gene flow and the genetics of habitat transitions. Molecular Ecology, 21(6), 1411-1422. https://doi.org/10.1111/j.1365-294X.2011.05465.x google scholar
- Davy, C. M., Kidd, A. G., & Wilson, V. (2015). Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PLoS One, 10, e0130965. https://doi.org/10.1371/journal. pone.0130965 google scholar
- de Bernardi, R., & Giussani, G. (1990). Are blue-green algae a suitable food for zooplankton? An overview. Hydrobiologia, 200(1), 29-41. https://doi.org/10.1007/BF02530326 google scholar
- De-Carli, B. P., Bressane, A., Longo, R. M., Manzi-Decarli, A., Moschini-Carlos, V., & Martins Pompeo, M. L. (2019). Development of a zooplankton biotic index for trophic state prediction in tropical reservoirs. Limnetica, 38(1), 303-316. https://doi.org/10.23818/limn.38.21 google scholar
- Declerck, S., & de Semepont Domis, L. N. (2023). Contribution of freshwater metazooplankton to aquatic ecosystem services: an overview. Hydrobiologia, 850, 2795-2810. https://doi.org/10.1007/s10750-022-05001-9 google scholar
- De Pauw, N., & Hawkes, H. A. (1993). Biological monitoring of river water quality. In W. J. Walley & S. Judd (Eds), River water quality monitoring and control (pp 87-111). Birmingham, Aston University Press google scholar
- De Senerpont Domis, L. N., Elser, J. J., Gsell, A. S., Huszar, V. L. M., Ibelings, B. W., Jeppesen, E., ... Lürling, M. (2013). Plankton dynamics under different climatic conditions in space and time: Plankton dynamics under different climatic conditions. Freshwater Biology, 58(3), 463-482. https://doi.org/10.1111/fwb.12053 google scholar
- Djurhuus, A., Pitz, K., Sawaya, N. A., Rojas-Marquez, J., Michaud, B., Montes, E., Muller-Karger, F., & Mya-Breitbart, M. (2018). Evaluation of marine zooplankton community structure through environmen-tal DNA metabarcoding. Limnology and Oceanography Methods, 16(4), 209-221. https://doi.org/10.1002/ lom3.10237 google scholar
- Dorak, Z. (2019). A preliminary study on using rotifera fauna to determine the trophic level of the Büyükçekmece Reservoir (İstanbul, Turkey). Aquatic Sciences and Engineering, 34(4), 103-111. https://doi.org/10.26650/ ASE2019586048 google scholar
- Dorak, Z., Köker, L., Gaygusuz, Ö., Gürevin, C., Akçaalan, R., & Albay, M. (2019). Zooplankton biodiver-sity in reservoirs of different geographical regions of Turkey: composition and distribution related with some environmental conditions. Aquatic Sciences and Engineering, 34(1), 29-38. https://doi.org/10.26650/ ASE2019522326 google scholar
- Duchovnay, A., Reid, J. W., & McIntosh, A. (1992). Thermocyclops crassus (Crustacea: Copepoda) present in North America: a new record from Lake Champlain. International Association for Great Lakes Research, 18, 415-419. google scholar
- Dumont, H. J. F., & Negrea, S. V. (2002). Introduction to the class Branchiopoda. In: Dumont, H. J. F., Guides to the Identification of the Microinvertebrates of the continental waters of the world. google scholar
- Dussart, B. H., & Defaye, D. (2001). Introduction to the Copepoda. Backhuys. google scholar
- Ejsmont-Karabin, J. (2012). The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Polish Journal of Ecology, 60(2), 339-350. google scholar
- Ejsmont-Karabin, J., & Karabin, A. (2013). The suitability of zooplankton as lake ecosystem indicators: Crus-tacean trophic state index. Polish Journal of Ecology, 61(2), 561-573. google scholar
- EHas-Gutierrez, M., Martmez-Jeronimo, F., Ivanova, N. V, & Valdez-Moreno, M. (2008). DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries. Zootaxa, 1849, 1-42. https://doi.org/10.11646/zootaxa.1839.1.1 google scholar
- Elias-Gutierrez, M., Juracka, P. J., Montoliu-Elena, L., Miracle, M. R., Petrusek, A., & Konnek, V. (2019). Who is Moina micrura? Redescription of one of the most confusing cladocerans from terra typica, based on integrative taxonomy. Limnetica, 38(1), 227-252. google scholar
- Elser, J. J., & Goldman, C. R. (1991). Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnology and Oceanography, 36(1), 64-90. https://doi.org/10.4319/lo.1991.36.L0064 google scholar
- Ergönül, M. B., Erdoğan, S., Altındağ, A., & Atasağun, S. (2016). Rotifera and Cladocera fauna of several lakes from the Central Anatolia, Marmara, and Western Black Sea regions of Turkey. Turkish Journal of Zoology, 40(2), 141-146. https://doi.org/10.3906/ zoo-1503-22 google scholar
- European Commission. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities, L37, 1-72. google scholar
- European Commission. (2003). Monitoring under the water framework directive No 7. No 7. Luxembourg: OPOCE. Retrieved from http://bookshop.europa.eu/uri?target=EUB:NOTICE:KH5103213:EN:HTML google scholar
- European Commission. (2009). Guidance document on eutrophication assessment in the context of European water policies No 23. No 23. Luxembourg: Publications Office. Retrieved from http://bookshop.europa.eu/ uri?target=EUB:NOTICE:KH8009749:EN:HTML google scholar
- EEA (European Environment Agency) (1996) EEA Topic Report 2: Inland Waters: Surface Water Quality Mo-nitoring. google scholar
- EEA (European Environment Agency) (2019) Biogeographical regions, EEA [available online at https://www. eea.europa.eu/data-and-maps/data/], accessed March 2023. google scholar
- Flynn, J. M., Brown, E. A., Chain, F. J. J., MacIsaac, H. J., & Cristescu, M. E. (2015). Toward accurate molecular identification of species in complex environmental samples: Testing the performance of sequence filtering and clustering methods. Ecology and Evolution, 5, 2252-2266. https://doi.org/10.1002/ece3.1497 google scholar
- Fontaneto, D., Kaya, M., Herniou, E. A., & Barraclough, T. G. (2009). Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution, 53(1), 182-189. https://doi.org/10.1016/j.ympev.2009.04.011 google scholar
- Forro, L., Korovchinsky, N. M., Kotov, A. A., & Petrusek, A. (2008). Global diversity of cladocerans (Cladoce-ra; Crustacea) in freshwater. Hydrobiologia, 595(1), 177-184. https://doi.org/10.1007/s10750-007-9013-5 google scholar
- Gannon, J. E., & Stemberger, R. S. (1978). Zooplankton (Especially Crustaceans and Rotifers) as Indica-tors of Water Quality. Transactions of the American Microscopical Society, 97(1), 16-35. https://doi. org/10.2307/3225681 google scholar
- Garda-Chicote, J., Armengol, X., & Rojo, C. (2018). Zooplankton abundance: A neglected key element in the evaluation of reservoir water quality. Limnologica, 69, 46-54. https://doi.org/10.1016/j.limno.2017.11.004 google scholar
- Gartia-Chicote, J., Armengol, X., & Rojo, C. (2019). Zooplankton species as indicators of trophic state in reservoirs from Mediterranean river basins. Inland Waters, 1-11. https://doi.org/10.1080/20442041.2018 .1519352 google scholar
- Garda-Morales, A. E., & EEas-Gutierrez, M. (2013). DNA barcoding of freshwater rotifera in Mexico: evi-dence of cryptic speciation in common rotifers. Molecular Ecology Resources, 13, 1097-1107. https://doi. org/10.1111/ 1755-0998.12080 google scholar
- Gascon, S., Llopart, X., Ruiz-Navarro, A., Compte, J., Verdiell-Cubedo, D., Boix, D., Oliva-Paterna, F. J., Qu-intana, X. D., & Torralva, M. (2013). The effects of Aphanius iberus predation on an aquatic community: diel changes and the role of vegetation. Fundamental and Applied Limnology, 182, 75-87. https://doi. org/10.1127/1863-9135/2013/0401 google scholar
- Geller, W., & Müller, H. (1981). The Filtration Apparatus of Cladocera: Filter Mesh-Sizes and Their Implications on Food Selectivity. Oecologia, 49(3), 316-321. google scholar
- Ger, K. A., Urrutia-Cordero, P., Frost, P. C., Hansson, L.-A., Sarnelle, O., Wilson, A. E., & Lürling, M. (2016). The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae, 54, 128-144. https://doi.org/10.1016/j.hal.2015.12.005 google scholar
- Gibson, J., Shokralla, S., Porter, T. M., King, I., van Konynenburg, S., Janzen, D. H., Hallwachs, W., & Hajiba-baei, M. (2014). Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proceedings of the National Academy of Sciences of the United States of America, 111, 8007-8012. https://doi.org/10.1073/pnas.1406468111 google scholar
- Gilbert, J. J., & Hampton, S. E. (2001). Diel vertical migrations of zooplankton in a shallow, fishless pond: a possible avoidance-response cascade induced by notonectids. Freshwater Biology, 46(5), 611-621. https:// doi.org/10.1046/j.1365-2427.2001.00697.x google scholar
- Gilbert, J. J., & Williamson, C. E. (1983). Sexual Dimorphism in Zooplankton (Copepoda, Cladocera, and Rotifera). Annual Review of Ecology and Systematics, 14(1), 1-33. https://doi.org/10.1146/annurev. es.14.110183.000245 google scholar
- Girgin, S., Kazancı, N., & Dügel, M. (2004). On the limnology of deep and saline Lake Burdur in Turkey. Acta Hydrochimica et Hydrobiologica, 32(3),189-200. https://doi.org/10.1002/aheh.200400529 google scholar
- Gonzalez-Sagrario, G., de los Angeles, M., Balseiro, E., Ituarte, R., & Spivak, E. (2009). Macrophytes as refuge or risky area for zooplankton: a balance set by littoral predacious macroinvertebrates. Freshwater Biology, 54, 1042-1053. https://doi.org/10.1111/j.1365-2427.2008.02152.x google scholar
- Gonzalez-Sagrario, M. A., & Balseiro, E. (2010). The role of macroinvertebrates and fish in regulating the pro-vision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshwater Biology, 55, 2153-2166. google scholar
- Govender, A., Singh, S., Groeneveld, J., Pillay, S., & Willows-Munro, S. (2022). Metabarcoding analysis of marine zooplankton confirms the ecological role of a sheltered bight along an exposed continental shelf. Molecular Ecology, 00, 1- 13. https://doi.org/10.1111/mec.16567 google scholar
- Gulati, R. D. (1983). Zooplankton and its grazing as indicators of trophic status in Dutch lakes. Environmental Monitoring and Assessment, 3, 343-354. google scholar
- Güher, H. (2022). Structure and spatial distribution of the rotifera assemblages in Kırklareli reservoir (Kırklareli/ Turkey). Acta Aquatica Turcica, 18(3), 332-344. https://doi.org/10.22392/actaquatr.1060099 google scholar
- Gündüz, E., Saygı, Y., Demirkalp, F. Y., Çağlar, S. S., Atasağun, S., & Kılınç, S. (2013). Seasonal composition and population density of zooplankton in Lake Karaboğaz from the Kızılırmak Delta (Samsun, Turkey). Turkish Journal of Zoology, 37(5), 544-553. https://doi.org/10.3906/zoo-1301-14 google scholar
- Gutierrez-Aguirre, M., & Suarez-Morales, E. (2000). The Eurasian Thermocyclops crassus (Fischer, 1853) (Copepoda, Cyclopoida) found in Southeastern Mexico. Crustaceana, 73, 705-713. google scholar
- Haberman, J., & Haldna, M. (2014). Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: Long term study of Lake Vörtsjârv. Journal of Limnology, 73(2), 263-273. https://doi.org/10.4081/jlimnol.2014.828 google scholar
- Haberman, J., & Laugaste, R. (2003). On characteristics reflecting the trophic state of large and shallow Es-tonian lakes (L. Peipsi, L. Vörtsjarv). Hydrobiologia, 506(1), 737-744. https://doi.Org/10.1023/B:HYD— R.0000008572.77431.1b google scholar
- Hairston Jr., N. G. (1996). Zooplankton egg banks as biotic reservoirs in changing environments. Limnology and Oceanography, 41(5), 1087-1092. https://doi.org/10.4319/lo.1996.41.5.1087 google scholar
- Hall, D. J., Threlkeld, S. T., Burns, C. W., & Crowley, P. H. (1976). The Size-Efficiency Hypothesis and the Size Structure of Zooplankton Communities. Annual Review of Ecology and Systematics, 7(1), 177-208. https:// doi.org/10.1146/annurev.es.07.110176.001141 google scholar
- Hansson, L.-A., Gustafsson, S., Rengefors, K., & Bomark, L. (2007). Cyanobacterial chemical warfare affe-cts zooplankton community composition. Freshwater Biology, 52(7), 1290-1301. https://doi.org/10.1111/ j.1365-2427.2007.01765.x google scholar
- Harvey, J. B. J., Johnson, S. B., Fisher, J. L., Peterson, W. T., & Vrijenhoek, R. C. (2017). Comparison of morp-hological and next generation DNA sequencing methods for assessing zooplankton assemblages. Journal of Experimental Marine Biology and Ecology, 487, 113-126. https://doi.org/10.1016/j.jembe.2016.12.002 google scholar
- Havel, J. E., & Shurin, J. B. (2004). Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnology and Oceanography, 49(4part2), 1229-1238. google scholar
- Hebert, M.-P., Beisner, B. E., & Maranger, R. (2017). Linking zooplankton communities to ecosystem functio-ning: Toward an effect-trait framework. Journal of Plankton Research, 39(1), 3-12. https://doi.org/10.1093/ plankt/fbw068 google scholar
- Hessen, D. O. (1992). Nutrient Element Limitation of Zooplankton Production. The American Naturalist, 140(5), 799-814. google scholar
- Houssou, A., Adjahouinou, D., Bonou, C., & Montchowui, E. (2020). Plankton Index of Biotic Integrity (P-IBI) for assessing ecosystem health within the Oueme River basin, Republic of Benin. African Journal of Aquatic Science, 45(4), 452-465. https://doi.org/10.2989/16085914.2020.1736980 google scholar
- Jeffery, N. W., EHas-Gutierrez, M., & Adamowicz, S. J. (2011). Species diversity and phylogeographical affi-nities of the Branchiopoda (Crustacea) of Churchill, Manitoba, Canada. PLoS ONE, 6, e18364. https://doi. org/10.1371/journal.pone.0018364 google scholar
- Jeppesen, E., Nöges, P., Davidson, T. A., Haberman, J., Nöges, T., Blank, K., ... Amsinck, S. L. (2011). Zoop-lankton as indicators in lakes: A scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 676(1), 279-297. https://doi.org/10.1007/s10750-011-0831-0 google scholar
- Jeppesen, E., Peder Jensen, J., S0ndergaard, M., Lauridsen, T., Junge Pedersen, L., & Jensen, L. (1997). Top-down control in freshwater lakes: The role of nutrient state, submerged macrophytes and water depth. Hydrobiologia, 342/343, 151-164. https://doi.org/10.1007/978-94-011-5648-6_17 google scholar
- Jersabek, C. D., & Leitner, M. F. (2013). The Rotifer World Catalog. World Wide Web electronic publication. Retrieved 29 December 2022, from http://www.rotifera.hausdernatur.at/ google scholar
- Jersabek, C. D., De Smet, W. H., Hinz, C., Fontaneto, D., Hussey, C. G., Michaloudi, E., Wallace, R. L., Segers, H. List of Available Names in Zoology, Candidate Part Phylum Rotifera, genus-group names established before 1 January 2000. 2018a. Available online: https://archive.org/details/LANCandidatePartGeneraRoti-fera (accessed on 30 January 2022). google scholar
- Jersabek, C. D., De Smet, W. H., Hinz, C., Fontaneto, D., Hussey, C. G., Michaloudi, E., Wallace, R. L., Segers, H. List of Available Names in Zoology, Candidate Part Phylum Rotifera, species-group names established before 1 January 2000. 2018b. Available online: https://archive.org/details/LANCandidatePartSpeciesRo-tifera (accessed on 30 January 2022). google scholar
- Ji, C. W., Oh, H. J., Chang, K. H., Park, Y. S., & Kwak, I. S. (2022). A Comparative Analyzing of Zooplankton Community Diversity in Surface Layer Water of Reservoir Via eDNA Metabarcoding and Microscopy. Diversity, 14, 797. https://doi.org/10.3390/d14100797 google scholar
- Katsiapi, M., Moustaka-Gouni, M., & Sommer, U. (2016). Assessing ecological water quality of freshwaters: Ph-yCoI—a new phytoplankton community Index. Ecological Informatics, 31, 22-29. https://doi.Org/10.1016/j. ecoinf.2015.11.004 google scholar
- Kane, D. D., Gordon, S. I., Munawar, M., Charlton, M. N., & Culver, D. A. (2009). The Planktonic Index of Biotic Integrity (P-IBI): An approach for assessing lake ecosystem health. Ecological Indicators, 9(6), 1234-1247. https://doi.org/10.1016/j.ecolind.2009.03.014 google scholar
- Karabin, A. (1985). Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. I. Structural and quantitative features, Ekologia Polska, 33, 567-616. google scholar
- Kotov, A. A., Garibian, P. G., Bekker, E. I., Taylor, D. J., & Karabanov, D. P. (2021). A new species group from the Daphnia curvirostris species complex (Cladocera: Anomopoda) from the eastern Palaearctic: taxonomy, phylogeny and phylogeography. Zoological Journal of the Linnean Society, 191(3), 772-822. https://doi. org/10.1093/zoolinnean/zlaa046 google scholar
- Kramer, A. M., Sarnelle, O., & Knapp, R. A. (2008). Allee effect limits colonization success of sexually repro-ducing zooplankton. Ecology, 89(10), 2760-2769. google scholar
- Kuczynska-Kippen, N., (2003). The distribution of rotifers (Rotifera) within a single Myriophyllum bed. Hyd-robiologia, 506, 327-331.https://doi.org/10.1023/B:HYDR.0000008543.58859.f7 google scholar
- Lampert, W. (1987). Laboratory studies on zooplankton-cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research, 21(3), 483-490. https://doi.org/10.1080/00288330.1987.9516244 google scholar
- Lampert, W., Fleckner, W., Rai, H., & Taylor, B. E. (1986). Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnology and Oceanography, 31(3), 478-490. https://doi. org/10.4319/lo.1986.31.3.0478 google scholar
- Lampert W., & Schober U. (1978) Das regelmâbige Auftreten von Frühjahrs-Algenmaximum und “Klarwassers-tadium” im Bodensee als Folge von klimatischen Bedingungen und Wechselwirkungen zwischen Phyto- und Zooplankton. Archiv für Hydrobiologie, 82, 364-386. google scholar
- Lathrop, R. C., Carpenter, S. R., & Robertson, D. M. (1999). Summer water clarity responses to phosphorus, Daphnia grazing, and internal mixing in Lake Mendota. Limnology and Oceanography, 44(1), 137-146. google scholar
- Lauridsen, T. L., & Buenk, I. (1996). Diel changes in the horizontal distribution of zooplankton in the littoral zones of two shallow eutrophic lakes. Archiv für Hydrobiologie, 137, 161-176. google scholar
- Li, Y., & Li, L. (2023). Development and validation of the planktonic index of biotic integrity (P-IBI) for Qin River, a main tributary of the Yellow River in China. Environmental Science and Pollution Research, 30(2), 2622-2636. https://doi.org/10.1007/s11356-022-22348-7 google scholar
- Liu, P., Xu, L., Xu, S. L., Martmez, A., Chen, H., Cheng, D., ... Fontaneto, D. (2018). Species and hybrids in the genus Diaphanosoma Fischer, 1850 (Crustacea: Branchiopoda: Cladocera). Molecular Phylogenetics and Evolution, 118, 369-378. https://doi.org/10.1016/j.ympev.2017.10.016 google scholar
- Loose, C. J., & Dawidowicz, P. (1994). Trade-offs in diel vertical migration by zooplankton: The costs of pre-dator avoidance. Ecology, 75(8), 2255-2263. google scholar
- Lougheed, V. L., & Chow-Fraser, P. (2002). development and use of a zooplankton index of wetland quality in the Laurentian Great Lakes basin. Ecological Applications, 12(2), 474-486. google scholar
- Magurran, A. E. (2004). Measuring Biological Diversity. Blackwell Publishing, UK. google scholar
- Majaneva, M., Diserud, O. H., Eagle, S. H. C., Bostrom, E., Hajibabaei, M., & Ekrem, T. (2018). Environmental DNA filtration techniques affect recovered biodiversity. Scientific Reports, 8, 4682. https://doi.org/10.1038/ s41598-018-23052-8 google scholar
- Makino, W., & Tanabe, A. S. (2009). Extreme population genetic differentiation and secondary contact in the freshwater copepod Acanthodiaptomus pacificus in the Japanese Archipelago. Molecular Ecology, 18, 3699-3713. https://doi.org/10.1111/j.1365-294X.2009.04307.x google scholar
- Makino, W., Ohtsuki, H., & Urabe, J. (2013). Finding copepod footprints: a protocol for molecular identification google scholar
- of diapausing eggs in lake sediments. Limnology, 14, 269-282. https://doi.org/10.1007/s10201-013-0404-1 google scholar
- Makino, W., Maruoka, N., Nakagawa, M., & Takamura, N. (2017). DNA barcoding of freshwater zooplankton in Lake Kasumigaura, Japan. Ecological Research, 32, 481-493. https://doi.org/10.1007/s11284-017-1458-z google scholar
- Malekzadeh-Viayeh, R., & Spoljar, M. (2012). Structure of rotifer assemblages in shallow waterbodies of se-mi-arid northwest Iran differing in salinity and vegetation cover. Hydrobiologia, 686, 73-89. https://doi. org/10.1007/s10750-011-0992-x google scholar
- Mancinelli, G., Mali, S., & Belmonte, G. (2019). Species Richness and Taxonomic Distinctness of Zooplankton in Ponds and Small Lakes from Albania and North Macedonia: The Role of Bioclimatic Factors. Water, 11(11), 2384. https://doi.org/10.3390/w11112384 google scholar
- Marrone, F., Lo Brutto, S., Hundsdoerfer, A. K., & Arculeo, M. (2013). Overlooked cryptic endemism in cope-pods: systematics and natural history of the calanoid subgenus Occidodiaptomus Borutzky 1991 (Copepoda, Calanoda, Diaptomidae). Molecular Phylogenetics and Evolution, 66, 190-202. https://doi.org/10.1016/j. ympev.2012.09.016 google scholar
- McQueen, D. J., Post, J. R., & Mills, E. L. (1986). Trophic Relationships in Freshwater Pelagic Ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 43(8), 1571-1581. https://doi.org/10.1139/f86-195 google scholar
- McManus, G. B., & Katz, L. A. (2009). Molecular and morphological methods for identifying plankton: what makes a successful marriage? Journal of Plankton Research, 31(10), 1119-1129. https://doi.org/10.1093/ plankt/fbp061 google scholar
- Meerhoff, M., Iglesias, C., De Mello, F.T., Clemente, J. M., Jensen, E., Lauridsen, T. L., & Jeppesen, E. (2007a). Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zoop-lankton in temperate versus subtropical shallow lakes. Freshwater Biology, 52, 1009-1021. https://doi. org/10.1111/j.1365-2427.2007.01748.x google scholar
- Meerhoff, M., Clemente, J. M., Teixeira de Mello, F., Iglesias, C., Pedersen, A. R., & Jeppesen E. (2007b). Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology, 13, 1888-1897. https://doi.org/10.1111/j.1365-2486.2007.01408.x google scholar
- Michaloudi, E. (2005). Dry Weights of the Zooplankton of Lake Mikri Prespa (Macedonia, Greece). Belgian Journal of 'Zoology, 135(2), 223-227. google scholar
- Michaloudi, E., Mills, S., Papakostas, S., Stelzer, C. P., Triantafyllidis, A., Kappas, I., Vasileiadou, K., Proios, K., & Abatzopoulos, T. J. (2017). Morphological and taxonomic demarcation of Brachionus asplanchnoidis Charin within the Brachionus plicatilis cryptic species complex (Rotifera, Monogononta). Hydrobiologia, 796,19-37. https://doi.org/10.1007/s10750-016-2924-2 google scholar
- Michaloudi, E., Papakostas, S., Stamou, G., Nedela, V., Tihlankovâ, E., Zhang, W., & Declerck, S. A. J. (2018). Reverse taxonomy applied to the Brachionus calyciflorus cryptic species complex: Morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re)description of four species. PLoS ONE, 13(9), e0203168. https://doi. org/10.1371/journal.pone.0203168 google scholar
- Mills, S., Alcântara-Rodriguez, J. A., Ciros-Perez, J., Gomez, A., Hagiwara, A., Galindo, K. H., Jersabek, C. D., Malekzadeh-Viayeh, R., Leasi, F., Lee, J. S., Welch, D. B. M., Papakostas, S., Riss, S., Segres, H., Serra, M., Shiel, R., Smolak, R., Snell, T. W., Stelzer, C. P., Tang, C. Q., Wallace, R. L., Fontaneto, D., & Walsh, E. J. (2016). Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Mo-nogononta) trough DNA taxonomy. Hydrobiologia, 796, 39-58. https://doi.org/10.1007/s10750-016-2725-7 google scholar
- Montagud, D., Soria, J. M., Soria-Perpinya, X., Alfonso, T., & Vicente, E. (2019). A comparative study of four indexes based on zooplankton as trophic state indicators in reservoirs. Limnetica, (1), 291-302. https://doi. org/10.23818/limn.38.06 google scholar
- Moustaka-Gouni, M., Michaloudi, E., & Sommer, U. (2014). Modifying the PEG model for Mediterranean lakes - no biological winter and strong fish predation. Freshwater Biology, 59(6), 1136-1144. https://doi. org/10.1111/fwb.12335 google scholar
- Moss, B., Madgwick, J., & Phillips, G. (1996). A Guide to the Restoration of Nutrient-enriched Lakes. Broads Authority, Norwich, UK. google scholar
- Moss, B., Kornij6w, R., & Measy, G. (1998). The effects of nymphaeid (Nuphar lutea) density and predation by perch (Perca fluviatilis) on the zooplankton communities in a shallow lake. Freshwater Biology, 39, 689-697. google scholar
- Moss, B. (2007). Shallow lakes, the water framework directive and life. What should it all be about? Hydrobi-ologia, 584(1), 381-394. https://doi.org/10.1007/s10750-007-0601-1 google scholar
- Moss, B., Stephen, D., Alvarez, C., Becares, E., Bund, W. V. D., Collings, S. E., ... Wilson, D. (2003). The determination of ecological status in shallow lakes - a tested system (ECOFRAME) for implementation of the European Water Framework Directive: The determination of ecological status in shallow lakes. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(6), 507-549. https://doi.org/10.1002/aqc.592 google scholar
- Ochocka, A. (2021). ZIPLAS: Zooplankton Index for Polish Lakes’ Assessment: a new method to assess the ecological status of stratified lakes. Environmental Monitoring and Assessment, 193(10), 664. https://doi. org/10.1007/s10661-021-09390-7 google scholar
- Özdemir-Mis, D., & Ustaoğlu, M. R. (2009). Gölcük Gölü’nün (Ödemiş, İzmir) Zooplanktonu Üzerine Araştırmalar. E.U. Journal of Fisheries and Aquatic Sciences, 26(1), 19-27. google scholar
- Pantle, R., & Buck, H. (1955). Die biologische Überwachung der Gewasser und die Darstellung der Ergebnisse. GWF-Wasser/Abwasser, 96, 604-620. google scholar
- Pace, M. L., & Orcutt, J. D. (1981). The relative importance of protozoans, rotifers, and crustaceans in a fres-hwater zooplankton community. Limnology and Oceanography, 26(5), 822-830. https://doi.org/10.4319/ lo.1981.26.5.0822 google scholar
- Papakostas, S., Michaloudi, E., Proios, K., Brehm, M., Verhage, L., Rota, J., Pena, C., Stamou, G., Pritchard, V. L., Fontaneto, D., & Declerck, S. A. J. (2016). Integrative Taxonomy Recognizes Evolutionary Units Des-pite Widespread Mitonuclear Discordance: Evidence from a Rotifer Cryptic Species Complex. Systematic Biology, 65(3), 508-524. https://doi.org/10.1093/sysbio/syw016 google scholar
- Patalas, K. (1972). Crustacean Plankton and the Eutrophication of St. Lawrence Great Lakes. Journal of the Fisheries Research Board of Canada, 29(10), 1451-1462. https://doi.org/10.1139/f72-224 google scholar
- Pejler, B. (1983). Zooplanktic indicators of trophy and their food. Hydrobiologia, 101(1), 111-114. https://doi. org/10.1007/BF00008662 google scholar
- Poikane, S., Birk, S., Böhmer, J., Carvalho, L., de Hoyos, C., Gassner, H., . van de Bund, W. (2015). A hitchhi-ker’s guide to European lake ecological assessment and intercalibration. Ecological Indicators, 52, 533-544. https://doi.org/10.1016/j.ecolind.2015.01.005 google scholar
- Proios, K., Michaloudi, E., Papakostas, S., Kappas, I., Vasileiadou, K., & Abatzopoulos, T. J. (2014). Updating the description and taxonomic status of Brachionus sessilis Varga, 1951 (Rotifera: Brachionidae) based on detailed morphological analysis and molecular data. Zootaxa, 3873(4), 345-370. google scholar
- Prosser, S., Martmez-Arce, A., & Ehas-Gutıerrez, M. (2013). A new set of primers for COI amplification from freshwater microcrustaceans. Molecular Ecology Resources, 13, 1151-1155. https://doi.org/10.1111/1755-0998.12132 google scholar
- Reynolds, C. S. (1994). The ecological basis for the successful biomanipulation of aquatic communities. Archiv Für Hydrobiologie, 1-33. https://doi.org/10.1127/archiv-hydrobiol/130/1994/1 google scholar
- Ringelberg, J., & Van Gool, E. (2003). On the combined analysis of proximate and ultimate aspects in diel vertical migration (DVM) research. Hydrobiologia, 491, 85-90. https://doi.org/10.1023/A:1024407021957 google scholar
- Rourke, M. L., Fowler, A. M., Hughes, J. M., Broadhurst, M. K., DiBattista, J. D., Fielder, S., Walburn, J. W., & Furlan, E. M. (2022). Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA 4, 9-33. https://doi. org/10.1002/edn3.185 google scholar
- Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, e00547. https://doi.org/10.1016/j.gecco.2019.e00547 google scholar
- Saler, S. (2017). Diversity and abundance of zooplankton in Medik Reservoir of Turkey. Maejo International Journal of Science and Technology, 11(02), 126-132. google scholar
- Scheffer, M. (2001). Alternative Attractors of Shallow Lakes. The Scientific World Journal, 1, 254-263. https:// doi.org/10.1100/tsw.2001.62 google scholar
- Scheffer, M., & van Nes, E. H. (2007). Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 584, 455-466. https://doi.org/10.1007/s10750-007-0616-7 google scholar
- Schlick-Steiner, B. C., Seifert B., Stauffer C., Christian E., Crozier R. H., & Steiner, F. M. 2007. Without morp-hology, cryptic species stay in taxonomic crypsis following discovery. Trends in Ecology and Evolution, 22, 391-392. https://doi.org/10.1016/j.tree.2007.05.004 google scholar
- Schriver, P., B0gestrand, J., Jeppesen, E., & S0ndergaard, M. (1995). Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale experiments in a shallow eutrophic lake. Freshwater Biology, 33, 255-270. https://doi.org/10.1111/j.1365-2427.1995.tb01166.x google scholar
- Segers, H. (2002). The nomenclature of the Rotifera: Annotated checklist of valid family and genus-group names. Journal ofNatural History, 36(6), 631-640. https://doi.org/10.1080/002229302317339707 google scholar
- Segers, H. (2008). Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia, 595(1), 49-59. https:// doi.org/10.1007/s10750-007-9003-7 google scholar
- Segers, H., De Smet, W. H., Fischer, C., Fontaneto, D., Michaloudi, E., Wallace, R. L., & Jersabek, C. D. (2012). Towards a list of available names in zoology, partim Phylum Rotifera. Zootaxa, 3179(1), 61-68. google scholar
- Slâdecek, V. (1965). The future of the saprobity system. Hydrobiologia, 25, 518-537. https://doi.org/10.1007/ BF00838511 google scholar
- Slâdecek, V. (1973). System of water quality from the biological point of view. Archiv für Hydrobiologie, 7, 1-218. google scholar
- Slâdecek, V. (1983). Rotifers as indicators of water quality. Hydrobiologia, 100, 169-201. https://doi.org/10.1007/ BF00027429 google scholar
- Sommer, U., Gliwicz, Z. M., Lampert, W., & Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie, 106, 433-471. google scholar
- Sommer, U., & Sommer, F. (2006). Cladocerans versus copepods: The cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia, 147(2), 183-194. https://doi.org/10.1007/s00442-005-0320-0 google scholar
- Sommer, U., Adrian, R., De Senerpont Domis, L., Elser, J. J., Gaedke, U., Ibelings, B., ... Winder, M. (2012). Beyond the Plankton Ecology Group (PEG) Model: Mechanisms Driving Plankton Succession. Annual Review of Ecology, Evolution, and Systematics, 43(1), 429-448. https://doi.org/10.1146/annurev-ecol-sys-110411-160251 google scholar
- Sönmez, S., & Karaytuğ, S. (2019). Morphological and molecular contribution to the taxonomy of Attheyella (Attheyella) crassa (GO Sars, 1863) species complex (Harpacticoida: Canthocamptidae). Acta Zoologica Bulgarica, 71(1), 9-16. google scholar
- Spoljar, M., TomljanovR, T., Drazina, T., Lajtner, J., Stulec, H., MatuHc, D., & Fressl, J. (2016). Zooplankton structure in two interconnected ponds: Similarities and differences. Croatian Journal of Fisheries, 74, 6-13. https://doi.org/10.1515/cjf-2016-0002 google scholar
- Spoljar, M., Drazina, T., Lajtner, J., Dmc-SerHc, M., RadanovR, I., Wallace, R. L., MatuHc, D., & Tomljano-vıc, T. (2018). Zooplankton assemblage in four temperate shallow waterbodies in association with habitat heterogeneity and alternative states. Limnologica, 71, 51-61. https://doi.org/10.1016/j.limno.2018.05.004 google scholar
- Song, C., Choi, H., Jeon, M. S., Kim, E. J., Gyeong-Jeong, H., Kim, S., Kim, C., Hwang, H., Purnaningtyas, D. W., Lee, S., Eyun, S., & Lee, Y. H. (2021). Scientific Reports, 11, 24339. https://doi.org/10.1038/s41598-021-03656-3 google scholar
- Stamou, G. (2016). Indices implementation on zooplankton community for the assessment of ecological quality of water bodies. Master Thesis, Aristotle University of Thessaloniki. google scholar
- Stamou, G., Polyzou, C., Karagianni, A., & Michaloudi, E. (2017). Taxonomic distinctness indices for discrimi-nating patterns in freshwater rotifer assemblages. Hydrobiologia, 796(1), 319-331. https://doi.org/10.1007/ s10750-016-2894-4 google scholar
- Stamou, G., Katsiapi, M., Moustaka-Gouni, M., & Michaloudi, E. (2019a). Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia, 844(1), 83-103. google scholar
- Stamou, G., Katsiapi, M., Moustaka-Gouni, M., & Michaloudi, E. (2019b). Grazing potential—A functional plankton food web metric for ecological water quality assessment in Mediterranean lakes. Water, 11(6), 1274. google scholar
- Stamou, G., Mazaris, A. D., Moustaka-Gouni, M., Spoljar, M., Ternjej, I., Drazina, T., ... Michaloudi, E. (2022). Introducing a zooplanktonic index for assessing water quality of natural lakes in the Mediterranean region. Ecological Informatics, 69, 101616. google scholar
- Stamou, G., Katsiapi, M., Demertzioglou, M., Voutsa, D., Kozari, A., Pantelaki, I., . Michaloudi, E. (2023). Pelagial Zooplankton Community in a Newly Established Reservoir during and after the Impoundment of a Hydropower Dam. Diversity, 15(2), 257. https://doi.org/10.3390/d15020257 google scholar
- Stansfield, J. H., Perrow, M. R., Tench, L. D., Jowitt, A. J. D., & Taylor, A. A. L. (1997). Submerged mac-rophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia, 342'343, 229-240. https://doi.or-g/10.1023/A:1017091407556 google scholar
- Steinberg, D. K., Carlson, C. A., Bates, N. R., Goldthwait, S. A., Madin, L. P., & Michaels, A. F. (2000). Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research, 47, 137-158. https://doi.org/10.1016/ S0967-0637(99)00052-7 google scholar
- Tang, C. Q., Leasi, F., Obertegger, U., Kieneke, A., Barraclough, T. G., & Fontaneto, D. (2012). The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences of the United States of America, 109,1620816212. https://doi.org/10.1073/pnas.1209160109 google scholar
- Tavşanoğlu, Ü. N., Idil Çakıroğlu, A., Erdoğan, S., Meerhoff, M., Jeppesen, E., & Beklioğlu, M. (2012). Sedi-ments, not plants, offer the preferred refuge for Daphnia against fish predation in Mediterranean shallow lakes: An Experimental Demonstration. Freshwater Biology, 57, 795-802. https://doi.org/10.1111/j.1365-2427.2012.02745.x google scholar
- Ternjej, I., Plenkovfc-Moraj, A., Mihaljevfc, Z., & Kerovec, M. (2010). Spatial and temporal variation of plankton in a Mediterranean karstic lake. Ekologia Bratislava, 29, 65-86. https://doi.org/10.4149/ekol_2010_01_65 google scholar
- Teixeira-de Mello, F., Meerhoff, M., Pekcan-Hekim, Z., & Jeppesen, E. (2009). Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology, 54, 1202-1215. https://doi.org/10.1111/j.1365-2427.2009.02167.x google scholar
- Thum, R. A., & Derry, A. M. (2008). Taxonomic implications for diaptomid copepods based on contrasting patterns of mitochondrial DNA sequence divergences in four morphospecies. Hydrobiologia, 614, 197-207. https://doi.org/10.1007/s10750-008-9506-x google scholar
- Vardaka, E., Moustaka-Gouni, M., Cook, C. M., & Lanaras, T. (2005). Cyanobacterial blooms and water quality in Greek waterbodies. Journal of Applied Phycology, 17(5), 391-401. https://doi.org/10.1007/s10811-005-8700-8 google scholar
- Vijverberg, J., & Boersma, M. (1997). Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus. Hydrobiologia, 360, 233-242. https://doi.org/10.1007/978-94-011-4964-8_26 google scholar
- Wallace, R. L. (2002). Rotifers: Exquisite Metazoans1. Integrative and Comparative Biology, 42(3), 660-667. https://doi.org/10.1093/icb/42.3.660 google scholar
- Wallace, R. L., Snell, T. W., & Smith, H. A. (2015). Chapter 13—Phylum Rotifera. In J. H. Thorp & D. C. Rogers (Eds.), Thorp and Covich’s Freshwater Invertebrates (Fourth Edition) (pp. 225-271). Boston: Academic Press. https://doi.org/10.1016/B978-0-12-385026-3.00013-9 google scholar
- Wan, X., Yang, T., Zhang, Q., Wang, W., & Wang, Y. (2021). Joint effects of habitat indexes and physic-chemical factors for freshwater basin of semi-arid area on plankton integrity - A case study of the Wei River Basin, China. Ecological Indicators, 120, 106909. https://doi.org/10.1016/j.ecolind.2020.106909 google scholar
- Warwick, R. M., & Clarke, K. R. (2001). Practical measures of marine biodiversity based on relatedness of species. Oceanography and Marine Biology, 39, 207-231. google scholar
- Weithoff, G. (2003). The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplank-ton—A new understanding of phytoplankton ecology? Freshwater Biology, 48(9), 1669-1675. https://doi. org/10.1046/j.1365-2427.2003.01116.x google scholar
- Wetzel, R. G. (2001). Limnology 3rd Edition—Lake and River Ecosystems. Elsevier. https://doi.org/10.1016/ C2009-0-02112-6 google scholar
- Wright, D. I., & Shapiro, J. (1984). Nutrient reduction by biomanipulation: An unexpected phenomenon and its possible cause: With 4 figures and 1 table in the text. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 22(1), 518-524. google scholar
- Xiong, W., Li, H., & Zhan, A. (2016). Early detection of invasive species in marine ecosystems using high-th-roughput sequencing: technical challenges and possible solutions. Marine Biology, 163, 139. https://doi. org/10.1007/s00227-016-2911-1 google scholar
- Xiong, W., Huang, X., Chen, Y., Fu., Du., Chen, X., & Zhan, A. (2020). Zooplankton biodiversity monitoring in polluted freshwater ecosystems: A technical review. Environmental Science and Ecotechnology, 1, 100008. https://doi.org/10.1016/j.ese.2019.100008 google scholar
- Yang, J., Zhang, X., Xie, Y., Song, C., Sun, J., Zhang, Y., Giesy, J. P., & Yu, H. (2017). Ecogenomics of zooplank-ton community reveals ecological threshold of ammonia nitrogen. Environmental Science and Technology, 51, 3057-3064. https://doi.org/10.1021/acs.est.6b05606 google scholar
- Yao, N., Feng, B., Zhang, M., He, L., Zhang, H., & Liu, Z. (2021). Impact of Industrial Production, Dam Const-ruction, and Agriculture on the Z-IBI in River Ecosystems: A Case Study of the Wanan River Basin in China. Water, 13(2), 123. https://doi.org/10.3390/w13020123 google scholar
- Yu, J., Liu, Z., He, H., Zhen, W., Guan, B., Chen, F., Li, K., Zhong, P., Teixeira-de Mello, F., & Jeppesen, E. (2016). Submerged macrophytes facilitate dominance of omnivorous fish in a subtropical shallow lake: implications for lake restoration. Hydrobiologia, 775, 97-107. https://doi.org/10.1007/s10750-016-2717-7 google scholar
- Yuan, L. L., & Pollard, A. I. (2018). Changes in the relationship between zooplankton and phytoplankton bi-omasses across a eutrophication gradient. Limnology and Oceanography, 63(6), 2493-2507. https://doi. org/10.1002/lno.10955 google scholar
- Zelinka, M., Marvan, P. (1961). Zur Prâzisierung der biologischen Klassifikation der Reinheit fliessender Gewâs-ser. Archive für Hydrobiologie, 57, 389-407. google scholar
- Zhan, A., Hulak, M., Sylvester, F., Huang, X., Adebayo, A. A., Abbott, C. L, Adamowicz, S. J., Heath, D. D., Cristescu, M. E., & MacIsaac, H. J. (2013). High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecology and Evolution, 4 (6), 558-565. https://doi.or-g/10.1111/2041-210X.12037 google scholar
- Zhang, Y., Ban, X., Li, E., Wang, Z., & Xiao, F. (2020). Evaluating ecological health in the middle-lower rea-ches of the Hanjiang River with cascade reservoirs using the Planktonic index of biotic integrity (P-IBI). Ecological Indicators, 114, 106282. https://doi.org/10.1016/j.ecolind.2020.106282 google scholar
- Zhao, J., Ramin, M., Cheng, V., & Arhonditsis, G. B. (2008). Plankton community patterns across a trophic gradient: The role of zooplankton fUnctional groups. Ecological Modelling, 213(3), 417-436. https://doi. org/10.1016/j.ecolmodel.2008.01.016 google scholar
- Zhao, L., Zhang, X., Xu, M., Mao, Y., & Huang, Y. (2021). DNA metabarcoding of zooplankton communities: species diversity and seasonal variation revealed by 18S rRNA and COI. PeerJ, 9, e11057. https://doi. org/10.7717/peerj.11057 google scholar