CHAPTER


DOI :10.26650/B/LSB23LSB24.2024.026.017   IUP :10.26650/B/LSB23LSB24.2024.026.017    Full Text (PDF)

The Active and Intelligent Packaging Technology

Emine Olum

The rapid acceleration of technological developments and digital transformation has made the widespread use of active and intelligent packaging techniques in seafood, increasingly important for both food safety and efficient use of natural resources. Given the characteristics of seafood, including its susceptibility to microbial growth, its oxidation-prone fatty structure, and the rapid degradation of its proteins, active packaging systems are implemented by incorporating oxygen and moisture absorbers or by adding antimicrobial and antioxidant substances to the package to enhance preservation. This creates an environment within package that restricts the growth of microorganisms and slows down chemical deterioration. Intelligent packaging technology, on the other hand, is a system that provides information about the condition of the food inside the package, updates this information, and continuously monitors it. Inteligent packages, using various biosensors, ensure accurate traceability by prodiving information on the freshness and safety of the product to the producer, consumer, and supplier throughout the entire process from moment the product is packaged until it reaches the consumer. As a result of inappropriate temperature and duration conditions during the supply process of seafood, certain microbial activities and subsequent chemical reactions can occur, leading to the spoilage of products before their expiration date. By monitoring the spoilage through the inclusion of time-temperature indicators in the intelligent packaging systems, the deficiencies in the process can be accurately identified. Additionally, intelligent packaging systems encompass various subcategories such as gas indicators, freshness indicators, and biosensors. A critical aspect of these systems is the integration of sensors, markers, or indicators, usually in the form of labels, that monitor spoilage by detecting abnormal changes in the levels of O2 , CO2 , and various volatile nitrogen compounds inside package. The development of these systems, which are not yet widely used commercially, will significantly contribute to minimizing product losses.


DOI :10.26650/B/LSB23LSB24.2024.026.017   IUP :10.26650/B/LSB23LSB24.2024.026.017    Full Text (PDF)

Akti̇f ve Akıllı Paketleme Teknoloji̇si̇

Emine Olum

Teknolojik gelişmeler ve dijital dönüşümle hızlı bir ivme kazanan aktif ve akıllı paketleme tekniklerinin deniz ürünlerinde kullanımının yaygınlaşması gıda güvenliği kadar kaynakların verimli kullanılması için de oldukça önemlidir. Deniz ürünlerinin mikrobiyel gelişime elverişli olması, oksidasyona duyarlı yağlı yapısı, proteinlerinin kolay parçalanması gibi özellikleri dikkate alınarak uygulanan aktif paketleme sistemleri paket içerisinde oksijen ve nem tutucuların yerleştirilmesi veya antimikrobiyel ve antioksidan maddelerin pakete eklenmesini içerir. Böylece paket içerisinde mikroorganizmaların gelişimini kısıtlayıcı ve kimyasal bozulmaları yavaşlatan bir ortam oluşturulur. Akıllı paketleme teknolojisi ise paket içerisinde bulunan gıdanın durumu hakkında bilgi sağlayan, bu bilgileri güncelleyen ve sürekli izleyen bir sistemdir. Akıllı paketler, içerdiği bir takım biyosensörler sayesinde ürünün pakete girdiği andan itibaren son tüketiciye ulaşana kadar geçirdiği tüm süreçte üretici, tüketici ve tedarikçiye ürünün tazeliği ve güvenirliği hakkında bilgi vererek doğru bir izlenebilirlik sağlar. Deniz ürünlerinin tüm üretim ve tedarik sürecinde uygun olmayan sıcaklık ve sürelerde bekletilmesi neticesinde ortaya çıkan bir takım mikrobiyolojik faaliyetler ve devamında gerçekleşen kimyasal reaksiyonlar sonucu, ürünler son tüketim tarihinden önce bozulabilir. Tedarik veya depolama sürecinden ileri gelen aksaklıklar sonucu oluşan bozulmaların akılllı ambalajlama sistemlerine dahil edilen sıcaklık-süre indikatörleri ile izlenmesi sayesinde süreçteki aksaklıklar doğru bir şekilde belirlenir. Diğer yandan akıllı paketleme sistemlerinin gaz indikatörleri, tazelik indikatörleri, biyosensörler gibi çeşitli alt kolları bulunur. Bu sistemlerde esas olan ürünün bozulmasını izleyen bir takım sensörlerin, belirteçlerin veya indikatörlerin pakete genellikle etiket olarak entegrasyonu ile paket içerisindeki O2 , CO2 ve çeşitli uçucu azotlu bileşiklerin seviyesindeki anormal değişimlerin belirlenmesidir. Ticari kullanımı henüz yaygın olmayan bu sistemlerin geliştirilmesi ile ürün kayıplarının minimize edilmesine önemli katkılar sağlanacaktır.



References

  • Abad, E., Palacio, F., Nuin, M., De Zarate, A.G., Juarros, A., Gomez, J.M. & Marco, S. (2009). RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain. Journal of food engineering, 93(4), 394-399. google scholar
  • Abedi-Firoozjah, R., Salim, S.A., Hasanvand, S., Assadpour, E., Azizi-Lalabadi, M., Prieto, M.A. & Jafari, S.M. (2023). Application of smart packaging for seafood: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 22(2), 1438-1461. google scholar
  • Ahmed, I., Lin, H., Zou, L., Brody, A.L., Li, Z., Qazi, I.M., ... & Lv, L. (2017). A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 82, 163-178. google scholar
  • Ambrosio, R.L., Gogliettino, M., Agrillo, B., Proroga, Y.T., Balestrieri, M., Gratino, L., ... & Anastasio, A. (2022). An Active Peptide-Based Packaging System to Improve the Freshness and Safety of Fish Products: A Case Study. Foods, 11(3), 338. google scholar
  • Ayhan, Z. (2023). Yeni nesil ambalajlama teknolojisi, webiner, erişim tarihi: 16.06.2022. https://www.youtube. com/watch?v=XoiRcm01v20&t=2064s google scholar
  • Azeredo, H.M. & Correa, D.S. (2021). Smart choices: Mechanisms of intelligent food packaging. Current Re-search in Food Science, 4, 932-936. google scholar
  • Azizi-Lalabadi, M., Rafiei, L., Divband, B. & Ehsani, A. (2020). Active packaging for Salmon stored at refrige-rator with Polypropylene nanocomposites containing 4A zeolite, ZnO nanoparticles, and green tea extract. Food Science & Nutrition, 8(12), 6445-6456. google scholar
  • Barbosa-Pereira, L., Cruz, J.M., Sendon, R., de Quiros, A.R.B., Ares, A., Castro-Lopez, M., ... & Paseiro-Losada, P. (2013). Development of antioxidant active films containing tocopherols to extend the shelf life of fish. Food Control, 31(1), 236-243. google scholar
  • Basavegowda, N. & Baek, K.H. (2021). Advances in functional biopolymer-based nanocomposites for active food packaging applications. Polymers, 13(23), 4198. google scholar
  • Becerril, R., Nerin, C. & Silva, F. (2020). Encapsulation systems for antimicrobial food packaging components: An update. Molecules, 25(5), 1134. google scholar
  • Benbettaieb, N. (2021). Active and Intelligent Packaging. Packaging Materials and Processing for Food, Phar-maceuticals and Cosmetics, 10(9781119825081), 183-222. google scholar
  • Beshai, H., Sarabha, G.K., Rathi, P., Alam, A.U., & Deen, M.J. (2020). Freshness monitoring of packaged ve-getables. Applied Sciences, 10(21), 7937. google scholar
  • Biji, K.B., Ravishankar, C.N., Mohan, C.O. & Srinivasa Gopal, T.K. (2015). Smart packaging systems for food applications: a review. Journal of Food Science and Technology, 52, 6125-6135. google scholar
  • Boz, Z., Welt, B.A., Brecht, J.K., Pelletier, W., McLamore, E., Kiker, G.A. & Butler, J.E. (2018). Review of challenges and advances in modification of food package headspace gases. Journal of Applied Packaging Research, 10(1), 5. google scholar
  • Chen, J., Lu, Y., Yan, F., Wu, Y., Huang, D. & Weng, Z. (2020). A fluorescent biosensor based on catalytic acti-vity of platinum nanoparticles for freshness evaluation of aquatic products. Food Chemistry, 310, 125922. google scholar
  • Chung, W.Y., Le, G.T., Tran, T.V. & Nguyen, N.H. (2017). Novel proximal fish freshness monitoring using batteryless smart sensor tag. Sensors and Actuators B: Chemical, 248, 910-916. google scholar
  • Efatian, H., Ahari, H., Shahbazzadeh, D., Nowruzi, B. & Yousefi, S. (2021). Fabrication and characterization of LDPE/silver-copper/titanium dioxide nanocomposite films for application in Nile Tilapia (Oreochromis niloticus) packaging. Journal of Food Measurement and Characterization, 15, 2430-2439. google scholar
  • European Commission. (2009). Commission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food. Off. J. Eur. Union, 135, 3-11. google scholar
  • Fang, Z., Zhao, Y., Warner, R.D. & Johnson, S.K. (2017). Active and intelligent packaging in meat industry. Trends in Food Science and Technology, 61(2), 60-71. google scholar
  • FAO (2018). Te State of World Fisheries and Aquaculture - Meeting the Sustainable Development Goals, Erişim tarihi: 16.06.2022. https://www.fao.org/3/i9540en/i9540en.pdf google scholar
  • Fernandez-Saiz, P., Sanchez, G., Soler, C., Lagaron, J.M. & Ocio, M.J. (2013). Chitosan films for the microbi-ological preservation of refrigerated sole and hake fillets. Food Control, 34(1), 61-68. google scholar
  • Gaikwad, K.K., Deshmukh, R.K. & Lee, Y.S. (2022). Natural phenolic compound coated oxygen scavenging active polyolefin film for preserving quality of fish cake. Biomass Conversion and Biorefinery, 1-10. google scholar
  • Gaikwad, K.K., Singh, S. & Ajji, A. (2019). Moisture absorbers for food packaging applications. Environmental Chemistry Letters, 17(2), 609-628. google scholar
  • Ghaani, M., Cozzolino, C.A., Castelli, G., & Farris, S. (2016). An overview of the intelligent packaging techno-logies in the food sector. Trends in Food Science & Technology, 51, 1-11. google scholar
  • Gökoğlu, N. (2020). Innovations in Seafood Packaging Technologies: A Review. Food Reviews International, 36(4), 340-366. google scholar
  • Gomez-Estaca, J., Lopez-de-Dicastillo, C., Hernandez-Munoz, P., Catala, R. & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51. google scholar
  • Guo, L., Wang, T., Wu, Z., Wang, J., Wang, M., Cui, Z., ... & Chen, X. (2020). Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks. Advanced Materials, 32(45), 2004805. google scholar
  • Hansen, A.Â., M0rk0re, T., Rudi, K., Olsen, E. & Eie, T. (2007). Quality changes during refrigerated storage of MA-packaged pre-rigor fillets of farmed Atlantic cod (Gadus morhua L.) using traditional MAP, CO2 emitter, and vacuum. Journal of Food Science, 72(9), M423-M430. google scholar
  • Hansen, A.Â., Moen, B., Rodbotten, M., Berget, I. & Pettersen, M.K. (2016). Effect of vacuum or modified atmosphere packaging (MAP) in combination with a CO2 emitter on quality parameters of cod loins (Gadus morhua). Food Packaging and Shelf Life, 9, 29-37. google scholar
  • Heising, J.K., Dekker, M., Bartels, P.V. & Van Boekel, M.A.J.S. (2012). A non-destructive ammonium detection method as indicator for freshness for packed fish: Application on cod. Journal of Food Engineering, 110(2), 254-261. google scholar
  • Hidayah, E.N., Triastuti, R.J., & Abdillah, A.A. (2020). The effect of iron powder as oxygen absorber active packaging on fish oil total oxidation value. In IOP conference series: earth and environmental science, 441(1), 012009, IOP Publishing. google scholar
  • Kalpana, S., Priyadarshini, S.R., Leena, M.M., Moses, J.A. & Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93, 145-157. google scholar
  • Katsouli, M., Semenoglou, I., Kotsiri, M., Gogou, E., Tsironi, T. & Taoukis, P. (2022). Active and Intelligent Packaging for Enhancing Modified Atmospheres and Monitoring Quality and Shelf Life of Packed Gilthead Seabream Fillets at Isothermal and Variable Temperature Conditions. Foods, 11(15), 2245. google scholar
  • Kilinc, B. & Altas, S. (2016). Effect of absorbent pads containing black seed or rosemary oils on the shelf life of sardine [Sardina pilchardus (Walbaum, 1792)] fillets. Journal ofApplied Ichthyology, 32(3), 552-558. google scholar
  • Kocaman, N, & Sarımehmetoğlu, B. (2010). Gıdalarda akıllı ambalaj kullanımı. Veteriner Hekimler Derneği Dergisi, 81(2), 67-72. google scholar
  • Kontaminas, M.G., Badeka, A.V., Kosma, I.S., & Nathanailides, C.I. (2021). Recent developments in seafood packaging technologies. Foods, 10(5), 940. google scholar
  • Laorenza, Y., Chonhenchob, V., Bumbudsanpharoke, N., Jittanit, W., Sae-Tan, S., Rachtanapun, C., ... & Har-nkarnsujarit, N. (2022). Polymeric packaging applications for seafood products: Packaging-deterioration relevance, technology and trends. Polymers, 14(18), 3706. google scholar
  • Lopez-de-Dicastillo, C., Gomez-Estaca, J., Catala, R., Gavara, R. & Hernandez-Munoz, P. (2012). Active an-tioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chemistry, 131(4), 1376-1384. google scholar
  • Liu, X., Chen, K., Wang, J., Wang, Y., Tang, Y., Gao, X., ... & Li, J. (2020). An on-package colorimetric sensing label based on a sol-gel matrix for fish freshness monitoring. Food chemistry, 307, 125580. google scholar
  • Luo, X., Zaitoon, A. & Lim, L.T. (2022). A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Comprehensive Reviews in Food Science and Food Safety, 21(3), 2489-2519. google scholar
  • Luo, X., Ho, I., Brankovan, S. & Lim, L.T. (2021). Inkjet-printed gradient colorimetric indicators for monitoring fish freshness. Food Packaging and Shelf Life, 29, 100719. google scholar
  • Mai, N., Audorff, H., Reichstein, W., Haarer, D., Olafsdottir, G., Bogason, S.G., ... & Arason, S. (2011). Perfor-mance of a photochromic time-temperature indicator under simulated fresh fish supply chain conditions. International Journal of Food Science & Technology, 46(2), 297-304. google scholar
  • Mexis, S.F., Chouliara, E. & Kontominas, M.G. (2009). Combined efect of an oxygen absorber and oregano essential oil on shelf life extension of rainbow trout fllets stored at 4 °C. Food Microbiol, 26, 598-605. google scholar
  • Mizielinska, M., Kowalska, U., Jarosz, M. & Suminska, P. (2018). A comparison of the effects of packaging containing nano ZnO or polylysine on the microbial purity and texture of cod (Gadus morhua) fillets. Na-nomaterials, 8(3), 158. google scholar
  • Mohan, C.O., Abin, J., Kishore, P., Panda, S.K. & Ravishankar, C.N. (2019). Effect of Vacuum and Active Pac-kaging on the Biochemical and Microbial Quality of Indian Oil Sardine (Sardinella longiceps) During Iced Storage. Journal of Packaging Technology and Research, 3(1), 43-55. google scholar
  • Mohan, C.O., Ravishankar, C.N. & Srinivasagopal, T.K. (2008). Effect of O2 scavenger on the shelf-life of catfish (Pangasius sutchi) steaks during chilled storage. Journal of the Science of Food and Agriculture, 88(3), 442-44. google scholar
  • Mohan, C.O., Ravishankar, C. N., Gopal, T.S., Kumar, K.A. & Lalitha, K.V. (2009). Biogenic amines formation in seer fish (Scomberomorus commerson) steaks packed with O2 scavenger during chilled storage. Food Research International, 42(3), 411-416. google scholar
  • Mohebi, E. & Marquez, L. (2015). Intelligent packaging in meat industry: An overview of existing solutions. Journal of Food Science and Technology, 52(July), 3947-3964. google scholar
  • Mohebi, E. & Shahbazi, Y. (2017). Application of chitosan and gelatin based active packaging films for peeled shrimp preservation: A novel functional wrapping design. LWT-Food Science and Technology, 76, 108-116. google scholar
  • Monteiro, M.L.G., Marsico, E.T., Mutz, Y.D.S., Castro, V.S., Moreira, R.V.D.B.P., Alvares, T.D.S. & Conte-Ju-nior, C.A. (2020). Combined effect of oxygen-scavenger packaging and UV-C radiation on shelf life of refrigerated tilapia (Oreochromis niloticus) fillets. Scientific Reports, 10(1), 4243. google scholar
  • Naghdi, S., Rezaei, M., & Abdollahi, M. (2021). A starch-based pH-sensing and ammonia detector film con-taining betacyanin of paperflower for application in intelligent packaging of fish. International Journal of Biological Macromolecules, 191, 161-170. google scholar
  • Nanou, E., Kotsiri, M., Kogiannou, D., Katsouli, M., & Grigorakis, K. (2023). Consumer Perception of Freshness and Volatile Composition of Fresh Gilthead Seabream and Seabass in Active Packaging with and without CO2-Emitting Pads. Foods, 12(3), 505. google scholar
  • Navarro-Segura, L., Ros-Chumillas, M., Martmez-Hernândez, G.B., & Lopez-Gomez, A. (2020). A new advan-ced packaging system for extending the shelf life of refrigerated farmed fish fillets. Journal of the Science of Food and Agriculture, 100(12), 4601-4611. google scholar
  • Öksüztepe, G., & Beyazgül, P. (2015). Akıllı ambalajlama sistemleri ve gıda güvenliği. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 29(1), 67-74. google scholar
  • Özçandır, S., & Yetim, H. (2010). Akıllı ambalajlama teknolojisi ve gıdalarda izlenebilirlik. Electronic Journal of Food Technologies, 5(1), 1-11. google scholar
  • Pacquit, A., Lau, K.T., McLaughlin, H., Frisby, J., Quilty, B., & Diamond, D. (2006). Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta, 69(2), 515-520. google scholar
  • Pacquit, A., Crowley, K., & Diamond, D. (2008). Smart packaging technologies for fish and seafood produ-cts. Smart packaging technologies for fast moving consumer goods, 75-98. google scholar
  • Pereira de Abreu, D.A., Cruz, J.M., & Paseiro Losada, P. (2012). Active and intelligent packaging for the food industry. Food Reviews International, 28(2), 146-187. google scholar
  • Priyadarshi, R., Ezati, P., & Rhim, J.W. (2021). Recent advances in intelligent food packaging applications using natural food colorants. ACS Food Science & Technology, 1(2), 124-138. google scholar
  • Remya, S., Mohan, C.O., Venkateshwarlu, G., Sivaraman, G.K., & Ravishankar, C.N. (2017). Combined effect of O2 scavenger and antimicrobial film on shelf life of fresh cobia (Rachycentron canadum) fish steaks stored at 2 C. Food Control, 71, 71-78. google scholar
  • Rollini, M., Nielsen, T., Musatti, A., Limbo, S., Piergiovanni, L., Hernandez Munoz, P., & Gavara, R. (2016). Antimicrobial performance of two different packaging materials on the microbiological quality of fresh salmon. Coatings, 6(1), 6. google scholar
  • Shi, C., Ji, Z., Zhang, J., Jia, Z., & Yang, X. (2022). Preparation and characterization of intelligent packaging film for visual inspection of tilapia fillets freshness using cyanidin and bacterial cellulose. International Journal of Biological Macromolecules, 205, 357-365. google scholar
  • Shruthy, R., Jancy, S. & Preetha, R. (2021). Cellulose nanoparticles synthesised from potato peel for the deve-lopment of active packaging film for enhancement of shelf life of raw prawns (Penaeus monodon) during frozen storage. International Journal of Food Science & Technology, 56(8), 3991-3999. google scholar
  • Soon, J.M. & Manning, L. (2019). Developing anti-counterfeiting measures: The role of smart packaging. Food Research International, 123, 135-143. google scholar
  • Stejskal, N., Miranda, J.M., Martucci, J.F., Ruseckaite, R.A., Barros-Velâzquez, J. & Aubourg, S.P. (2020). Qua-lity enhancement of refrigerated hake muscle by active packaging with a protein concentrate from Spirulina platensis. Food and Bioprocess Technology, 13, 1110-1118. google scholar
  • Summers, L. (1992). Intelligent Packaging; Centre for Exploitation of Science and Technology: London, UK. google scholar
  • Trebar, M., Grah, A., Melcon, A.A. & Parreno, A. (2011, September). Towards RFID traceability systems of far-med fish supply chain. In SoftCOM 2011, 19th International Conference on Software, Telecommunications and Computer Networks,1-6. IEEE. google scholar
  • Trebar, M., Lotric, M. & Fonda, I. (2015). Use of RFID temperature monitoring to test and improve fish packing methods in styrofoam boxes. Journal of Food Engineering, 159, 66-75. google scholar
  • Trebar, M., Lotric, M., Fonda, I., Pletersek, A. & Kovacic, K. (2013). RFID data loggers in fish supply chain traceability. International Journal of Antennas and Propagation, 2013. google scholar
  • Trigo, M., Nozal, P., Miranda, J.M., Aubourg, S.P., & Barros-Velâzquez, J. (2022). Antimicrobial and antioxidant effect of lyophilized Fucus spiralis addition on gelatin film during refrigerated storage of mackerel. Food Control, 131, 108416. google scholar
  • Tsironi, T., Giannoglou, M., Platakou, E., & Taoukis, P. (2016). Evaluation of Time Temperature Integrators for shel-f-life monitoring of frozen seafood under real cold chain conditions. Food Packaging and Shelf Life, 10, 46-53. google scholar
  • Tsironi, T., Ntzimani, A., Gogou, E., Tsevdou, M., Semenoglou, I., Dermesonlouoglou, E. & Taoukis, P. (2019). Modeling the effect of active modified atmosphere packaging on the microbial stability and shelf life of gutted sea bass. Applied Sciences, 9(23), 5019. google scholar
  • Vilas, C., Mauricio-Iglesias, M. & Garda, M.R. (2020). Model-based design of smart active packaging systems with antimicrobial activity. Food Packaging and Shelf Life, 24, 100446. google scholar
  • Vishnu, N., Gandhi, M., Rajagopal, D. & Kumar, A.S. (2017). Pencil graphite as an elegant electrochemical sensor for separation-free and simultaneous sensing of hypoxanthine, xanthine and uric acid in fish samples. Analytical Methods, 9(15), 2265-2274. google scholar
  • Wu, D., Zhang, M., Chen, H., & Bhandari, B. (2021). Freshness monitoring technology of fish products in intelligent packaging. Critical Reviews in Food Science and Nutrition, 61(8), 1279-1292. google scholar
  • Wyrwa, J. & Barska, A. (2017). Innovations in the food packaging market: active packaging. European Food Research and Technology, 243(10), 1681-1692 google scholar
  • Yu, D., Wu, L., Regenstein, J.M., Jiang, Q., Yang, F., Xu, Y. & Xia, W. (2020). Recent advances in quality re-tention of non-frozen fish and fishery products: A review. Critical Reviews in Food Science and Nutrition, 60(10), 1747-1759. google scholar
  • Zhang, Y., Wang, W., Yan, L., Glamuzina, B. & Zhang, X. (2019). Development and evaluation of an intelligent traceability system for waterless live fish transportation. Food Control, 95, 283-297. google scholar
  • Zhang, S., Ma, X., Yu, H., Lu, X., Liu, J., Zhang, L., ... & Ning, G. (2022). Silver (i) metal-organic fra-mework-embedded polylactic acid electrospun fibrous membranes for efficient inhibition of bacteria. Dalton Transactions, 51(17), 6673-6681. google scholar
  • Zhu, J., Liu, Z., Chen, H., Liu, H., Bao, X., Li, C., ... & Yu, L. (2021). Designing and developing biodegradab-le intelligent package used for monitoring spoilage seafood using aggregation-induced emission indica-tor. LWT, 151, 112135. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.