The Microplastic Hazard in Aquatic Resource
İdil Can Tunçelli, Nuray ErkanIn the last thirty years, seafood consumption has increased rapidly, but this growth is endangered by microplastic (MP) pollution. The environmental persistence of plastics leads to significant pollution in water sources. MPs are classified by size into micro, macro, and nano categories and enter aquatic ecosystems from terrestrial, industrial, and domestic sources. Primary MPs originate from industrial production, while secondary MPs result from the breakdown of larger plastics in nature. Aquatic organisms ingest MPs, introducing them into the food chain, which poses serious threats to human health. Research indicates that MP exposure can lead to developmental, reproductive, and neurotoxic effects. MPs enter the food chain and reach humans primarily by consuming aquatic products. Fish, shellfish, and other aquatic sources are exposed to this pollution. Additionally, plastics used in processing and packaging contribute to MP contamination. Protective clothing, equipment, and ambient air used during food processing also increase the risk of MP contamination. The health effects of MPs include immunotoxicity, genotoxicity, and oxidative stress. Chemical pollutants absorbed by plastics pose additional health risks. Solutions include reducing plastic use, preventing plastic waste from entering the environment, and developing standardised measurement techniques for accurately detecting MPs. Furthermore, bio-packaging materials made from biological substances should be created. To achieve sustainable and safe food production, environmentally friendly methods such as controlled and sustainable food production models like aquaponic and IMTA (Integrated Multi-Trophic Aquaculture) systems should be promoted. These systems have the potential to protect water quality and reduce MP risks. Global awareness, education, and collaboration are crucial in mitigating MP pollution.
Akuati̇k Kaynaklarda Mi̇kroplasti̇k Tehli̇kesi̇
İdil Can Tunçelli, Nuray ErkanSon otuz yılda deniz ürünleri tüketimi hızla artmış, ancak bu artış mikroplastik (MP) kirliliğiyle tehlikeye girmiştir. Plastiklerin çevresel kalıcılığı, su kaynaklarında büyük bir kirliliğe yol açmaktadır. MP’ler, boyutlarına göre mikro, makro ve nano olarak sınıflandırılmakta ve akuatik ekosistemlere karasal, endüstriyel ve evsel kaynaklardan girmektedir. Birincil MP’ler endüstriyel üretimden, ikincil MP’ler ise büyük plastiklerin doğada parçalanması sonucu oluşmaktadır. Akuatik canlılar MP’leri yutarak besin zincirine katmakta, bu da insan sağlığı üzerinde ciddi tehditler oluşturmaktadır. Araştırmalar, MP maruziyetinin gelişimsel, üreme ve nörotoksisite gibi sağlık etkilerine yol açtığını göstermektedir. MP’lerin gıda zincirine girişi ve insanlara taşınması, özellikle akuatik ürünlerin tüketimi yoluyla gerçekleşmektedir. Balık, kabuklu deniz ürünleri ve diğer akuatik kaynaklar bu kirliliğe maruz kalmaktadır. Ayrıca, işleme ve ambalajlama süreçlerinde kullanılan plastikler de MP kontaminasyonuna yol açmaktadır. Gıda işleme aşamalarında kullanılan koruyucu kıyafetler, ekipmanlar ve ortam havası da MP bulaşma riskini artırır. MP’lerin sağlık üzerindeki etkileri arasında immünotoksisite, genotoksisite ve oksidatif stres bulunmaktadır. Plastiklerin absorbe ettiği kimyasal kirleticiler de ek sağlık riskleri oluşturur. Çözüm önerileri arasında, plastik kullanımının azaltılması, plastik atıkların çevreye ulaşmasının engellenmesi ve MP’lerin doğru tespiti için standart ölçüm tekniklerinin geliştirilmesi yer almaktadır. Ayrıca, biyolojik malzemelerden üretilen biyoambalaj materyalleri geliştirilmelidir. Sürdürülebilir ve güvenli gıda üretimi için kontrollü ve sürdürülebilir gıda üretim modelleri olan akuaponik ve IMTA (Entegre Multi-Trofik Akuakültür) sistemleri gibi çevre dostu yöntemlerin yaygınlaştırılması gerekmektedir. Bu sistemler, su kalitesini koruma ve MP riskini azaltma potansiyeline sahiptir. Küresel farkındalık, eğitim ve iş birlikleri, MP kirliliğinin azaltılmasında kritik öneme sahiptir.
References
- Abbasi, S., & Turner, A. (2021). Dry and wet deposition of microplastics in a semi-arid region (Shiraz, Iran). Science of the Total Environment, 786: 147358. https://doi.org/10.1016/j.scitotenv.2021.147358 google scholar
- Abidli, S., Pinheiro, M., Lahbib, Y., Neuparth, T., Santos, M.M., & El Menif, N.T. (2021). Effects of environ-mentally relevant levels of polyethylene microplastic on Mytilus galloprovincialis (Mollusca: Bivalvia): filtration rate and oxidative stress. Environmental Science and Pollution Research, 28(21): 26643-26652. https://doi.org/10.1007/s11356-021-12506-8 google scholar
- Afrin, S., Rahman, M. M., Hossain, M. N., Uddin, M. K., & Malafaia, G. (2022). Are there plastic particles in my sugar? A pioneering study on the characterization of microplastics in commercial sugars and risk as-sessment. Science of The Total Environment, 837: 155849. https://doi.org/10.1016/j.scitotenv.2022.155849 google scholar
- Akhbarizadeh, R., Dobaradaran, S., Nabipour, I., Tajbakhsh, S., Darabi, A.H., & Spitz, J. (2020). Abundance, composition, and potential intake of microplastics in canned fish. Marine Pollution Bulletin, 160: 111633. https://doi.org/10.1016/j.marpolbul.2020.111633 google scholar
- Alak, G., Köktürk, M., & Atamanalp, M. (2021). Evaluation of different packaging methods and storage tempe-rature on MPs abundance and fillet quality of rainbow trout. Journal of Hazardous Materials, 420, 126573. https://doi.org/10.1016/j.jhazmat.2021.126573 google scholar
- Alak, G., Köktürk, M., Ucar, A., Parlak, V., Kocaman, E. M., & Atamanalp, M. (2022). Thermal processing implications on microplastics in rainbow trout fillet. Journal of Food Science, 87: 5455-5466. https://doi. org/10.1111/1750-3841.16382 google scholar
- Alimba, C.G. & Faggio, C. (2019). Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology, 68: 61-74. https://doi.org/10.1016/j.etap.2019.03.001 google scholar
- Amaral-Zettler, L.A., Zettler, E.R., Slikas, B., Boyd, G.D., Melvin, D.W., Morrall, C.E., Proskurowski, G., & Mincer, T.J. (2015). The biogeography of the Plastisphere: implications for policy. Frontiers in Ecology and the Environment, 13(10): 541-546. https://doi.org/10.1890/150017 google scholar
- Amato-Lourenço, L.F., Carvalho-Oliveira, R., Junior, G.R., dos Santos Galvao, L., Ando, R.A., & Mauad, T. (2021). Presence of airborne microplastics in human lung tissue. Journal of Hazardous Materials, 416: 126124. https://doi.org/10.1016/j.jhazmat.2021.126124 google scholar
- Amiri, H., Hoseini, M., Abbasi, S., Malakootian, M., Hashemi, M., Jaafarzadeh, N., & Turner, A. (2022). Ge-ophagy and microplastic ingestion. Journal of Food Composition and Analysis, 106: 104290. https://doi. org/10.1016/j.jfca.2021.104290 google scholar
- Anbumani, S., & Kakkar, P. (2018). Ecotoxicological effects of microplastics on biota: a review. Environmental Science and Pollution Research, 25(15): 14373-14396. https://doi.org/10.1007/s11356-018-1999-x google scholar
- Andrady, A.L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8): 1596-1605 https://doi.org/10.1016/j.marpolbul.2011.05.030 google scholar
- Andrady, A.L., & Neal, M.A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977-1984. https://doi.org/10.1098/rstb.2008.0304 google scholar
- Asmonaite, G. (2019). Microplastics in the aquatic environment: Insights into biological fate and effects in fish. University of Gothenburg. Faculty of Science, PhD Thesis. google scholar
- Au, S. Y., Lee, C. M., Weinstein, J. E., van den Hurk, P., & Klaine, S. J. (2017). Trophic transfer of microplas-tics in aquatic ecosystems: identifying critical research needs. Integrated Environmental Assessment and Management, 13(3): 505-509. https://doi.org/10.1002/ieam.1907 google scholar
- Avio, C.G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d’Errico, G., Pauletto, M., Bargelloni, L., & Regoli, F. (2015). Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental Pollution, 198: 211-222. https://doi.org/10.1016/j.envpol.2014.12.021 google scholar
- Aydın, M., Karadurmuş, U., & Kontaş, S. (2015). Ecosystem effects of the commercial scorpion-fish nets used in Ordu region. Turkish Journal of Maritime and Marine Sciences, 1(1): 61-68. google scholar
- Baechler, B.R., Stienbarger, C.D., Horn, D.A., Joseph, J., Taylor, A.R., Granek, E.F., & Brander, S.M. (2020). Microplastic occurrence and effects in commercially harvested North American finfish and shellfish: cur-rent knowledge and future directions. Limnology and Oceanography Letters, 5(1): 113-136. https://doi. org/10.1002/lol2.10122 google scholar
- Baganz, G.F.M., Junge, R., Portella, M.C., Goddek, S., Keesman, K.J., Baganz, D., Staaks, G., Shaw, C., Loh-rberg, F., & Kloas, W. (2021). The aquaponic principle-It is all about coupling. Reviews in Aquaculture, 14(1): 252-264. https://doi.org/10.1111/raq.12596 google scholar
- Bai, C.L., Liu, L.Y., Guo, J.L., Zeng, L.X., & Guo, Y. (2022). Microplastics in take-out food: Are we over taking it?. Environmental Research, 215: 114390. https://doi.org/10.1016/j.envres.2022.114390 google scholar
- Barnes, D.K.A., Galgani, F., Thompson, R.C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments, Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526): 1985-1998. https://doi.org/10.1098/rstb.2008.0205 google scholar
- Bayer, F.L., & Jetten, J. (2023). Safety assessment of refillable and recycled plastics packaging for food use. In Present Knowledge in Food Safety, Academic Press, 240-259. https://doi.org/10.1016/B978-0-12-819470-6.00021-4 google scholar
- Bessa, F., Frias, J., Kögel, T., Lusher, A., Andrade, J. M., Antunes, J., Sobral, P., Pagter, E., Nash, R., O’Connor, I., Pedrotti, M.L., Kerros, M. E., Leon, V., Tirelli, V, Suaria, G., Lopes, C., Raimundo, J., Caetano, M., Gago, J., Vinas, L., Carretero, O., Magnusson, K., Granberg, M., Dris, R., Fischer, M., Scholz-Böttcher, B., Muniategui, S., Grueiro, G., Fernandez, V., Palazzo, L., de Lucia, A., Camedda, A., Avio, C. G., Gorbi, S., Pittura, L., Regoli, F., & Gerdts, G. (2019). Harmonized protocol for monitoring microplastics in biota. JPI-Oceans BASEMAN Project. 1-30. google scholar
- Bhagat, J., Nishimura, N., & Shimada, Y. (2021). Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives. Journal of Hazardous Materials, 405: 123913. https://doi.org/10.1016/j.jhazmat.2020.123913 google scholar
- Bhagat, J., Zang, L., Nishimura, N., & Shimada, Y. (2020). Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Science of The Total Environment, 728: 138707. https://doi.org/10.1016/j.scito-tenv.2020.138707 google scholar
- Binh, P.T.X., Ha, H.T.T., Thuy, D.T., Huong, N.T.A., & Loi, N.T.M. (2022). Preliminary observation of microp-lastic contamination in some spice-salt samples purchased in Hanoi city. Vietnam Journal of Food Control, 5(3), 207-216. https://doi.org/10.47866/2615-9252/vjfc.3930 google scholar
- Birnstiel, S., Soares-Gomes, A., & da Gama, B.A. (2019). Depuration reduces microplastic content in wild and farmed mussels. Marine Pollution Bulletin, 140: 241-247. https://doi.org/10.1016/j.marpolbul.2019.01.044 google scholar
- Bonanno G, & Orlando-Bonaca M. (2018). Ten inconvenient questions about plastics in the sea. Environmental Science Policy, 85: 146-54 https://doi.org/10.1016/j.envsci.2018.04.005 google scholar
- Bouwmeester, H., Hollman, P.C., & Peters, R.J. (2015). Potential health impact of environmentally released mic-ro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environmental Science & Technology, 49(15): 8932-8947. https://doi.org/10.1021/acs.est.5b01090 google scholar
- Brachner, A., Fragouli, D., Duarte, I.F., Farias, P.M., Dembski, S., Ghosh, M., Barisic, I., Zdzieblo, D., Va-noirbeek, J., Schwable, P., & Neuhaus, W. (2020). Assessment of human health risks posed by nano-and microplastics is currently not feasible. International Journal of Environmental Research and Public Health, 17(23): 8832. https://doi.org/10.3390/ijerph17238832 google scholar
- Browne, M.A. (2015). Sources and pathways of microplastics to habitats. Marine Anthropogenic Litter, 229-244. https://doi.org/10.1007/978-3-319-16510-3_9 google scholar
- Browne, M.A., Dissanayake, A., Galloway, T.S., Lowe, D.M., & Thompson, R.C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13): 5026-5031. https://doi.org/10.1021/es800249a google scholar
- Can Tunçelli, İ. & Erkan, N. (2021). Gıda güvenliği açısından su ürünlerinde mikroplastik riski ve araştırma yöntemleri. Aquatic Research, 4(1): 73-87. https://doi.org/10.3153/AR21007 google scholar
- Catarino, A.I., Macchia, V., Sanderson, W.G., Thompson, R.C., & Henry, T.B. (2018). Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 237: 675-684. https://doi.org/10.1016/j.envpol.2018.02.069 google scholar
- Catarino, A.I., Macchia, V., Sanderson, W.G., Thompson, R.C., & Henry, T.B. (2018). Low levels of microp-lastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 237: 675-684. https://doi.org/10.1016/j. envpol.2018.02.069 google scholar
- Chen, G., Li, Y., & Wang, J. (2021). Occurrence and ecological impact of microplastics in aquaculture ecosys-tems. Chemosphere, 274: 129989. https://doi.org/10.1016/j.chemosphere.2021.129989 google scholar
- Chen, X., Chen, X., Liu, Q., Zhao, Q., Xiong, X., & Wu, C. (2021). Used disposable face masks are significant sources of microplastics to environment. Environmental Pollution, 285: 117485. https://doi.org/10.1016/j. envpol.2021.117485 google scholar
- Cincinelli, A., Martellini, T., Guerranti, C., Scopetani, C., Chelazzi, D., & Giarrizzo, T. (2019). A potpourri of microplastics in the sea surface and water column of the Mediterranean Sea. TrAC Trends in Analytical Chemistry, 110: 321-326. https://doi.org/10.1016/j.trac.2018.10.026 google scholar
- Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T.S. (2013). Microp-lastic ingestion by zooplankton. Environmental Science and Technology, 47(12): 6646-6655. https://doi. org/10.1021/es400663f google scholar
- Conesa, J.A. & Iniguez, M.E. (2020). Analysis of microplastics in food samples. Handbook of Microplastics in the Environment, 1-16. https://doi.org/10.1007/978-3-030-10618-8_5-1 google scholar
- Costa, J.PD. Santos, P.S., Duarte, A.C., & Rocha-Santos, T. (2016). (Nano) plastics in the environment-sour-ces, fates and effects. Science of The Total Environment, 566: 15-26. https://doi.org/10.1016/j.scito-tenv.2016.05.041 google scholar
- Costa, M.F., Ivar do Sul, J. A., Silva-Cavalcanti, J. S., Araujo, M. C. B., Spengler, Â., &Tourinho, P. S. (2010). On the importance of size of plastic fragments and pellets on the strandline: a snapshot of a Brazilian bea-ch. Environmental Monitoring and Assessment, 168, 299-304. https://doi.org/10.1007/s10661-009-1113-4 google scholar
- Cozar, A., Echevarria, F., Gonzalez-Gordillo, J.I., Irigoien, X., Ubeda, B., Hernandez- Leon, S., Palma, A.T., Navarro, S., Garcia-de-Lomas, J., Ruiz, A., Fernandez-de- Puelles, M.L., & Duarte, C.M. (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences, 111: 10239-10244. https://doi. org/10.1073/pnas.1314705111 google scholar
- Çobanoğlu, H., Belivermiş, M., Sıkdokur, E., Kılıç, Ö., & Çayır, A. (2021). Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes. Chemosphere, 272: 129805. https:// doi.org/10.1016/j.chemosphere.2021.129805 google scholar
- Çullu, A. F., Sönmez, V.Z., & Sivri, N. (2021). Microplastic contamination in surface waters of the Küçükçekme-ce Lagoon, Marmara Sea (Turkey): Sources and areal distribution. Environmental Pollution, 268: 115801. https://doi.org/10.1016/j.envpol.2020.115801 google scholar
- Dawson, A.L., Li, J.Y., & Kroon, F.J. (2022). Plastics for dinner: Store-bought seafood, but not wild-caught from the Great Barrier Reef, as a source of microplastics to human consumers. Environmental Advances: 100249. https://doi.org/10.1016/j.envadv.2022.100249 google scholar
- De Falco, F., Di Pace, E., Cocca, M., & Avella, M. (2019). The contribution of washing processes of synthetic clothes to microplastic pollution. Scientific Reports, 9(1): 1-11. https://doi.org/10.1038/s41598-019-43023-x google scholar
- De Sa, L.C., Oliveira, M., Ribeiro, F., Rocha, T.L., & Futter, M.N. (2018). Studies ofthe effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future?. Science of the Total Environment, 645: 1029-1039. https://doi.org/10.1016/j.scitotenv.2018.07.207 google scholar
- De-la-Torre, G.E., Dioses-Salinas, D.C., Castro, J.M., Antay, R., Fernandez, N.Y., Espinoza-Motriberon, D., & Saldana-Serrano, M. (2020). Abundance and distribution of microplastics on sandy beaches of Lima, Peru. Marine Pollution Bulletin, 151: 110877. https://doi.org/10.1016/j.marpolbul.2019.110877 google scholar
- De-la-Torre, G.E., Dioses-Salinas, D.C., Dobaradaran, S., Spitz, J., Nabipour, I., Keshtkar, M., Akhbarizadeh, R., Tangestani, M., Abedi, D., & Javanfekr, F. (2022). Release of phthalate esters (PAEs) and microplastics (MPs) from face masks and gloves during the COVID-19 pandemic. Environmental Research, 215: 114337. https://doi.org/10.1016/j.envres.2022.114337 google scholar
- Derraik, J.G. (2002). The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin, 44(9): 842-852. https://doi.org/10.1016/S0025-326X(02)00220-5 google scholar
- Di, M., & Wang, J. (2018). Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Science of the Total Environment, 616: 1620-1627. https://doi.org/10.1016/j.scitotenv.2017.10.150 google scholar
- Diaz-Basantes, M.F., Nacimba-Aguirre, D., Conesa, J.A., & Fullana, A. (2022). Presence of microplastics in commercial canned tuna. Food Chemistry, 385: 132721. https://doi.org/10.1016/j.foodchem.2022.132721 google scholar
- Ding, J., Zhang, S., Razanajatovo, R.M., Zou, H., & Zhu, W. (2018). Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environmental Pollution, 238: 1-9. https://doi.org/10.1016/j.envpol.2018.03.001 google scholar
- Dool, T., & Bosker, T. (2022). Predicted microplastic uptake through trophic transfer by the shortbeaked com-mon dolphin (Delphinus delphis) and common bottlenose dolphin (Tursiops truncatus) in the Northeast Atlantic Ocean and Mediterranean Sea. Marine Pollution Bulletin, 180, 113745. https://doi.org/10.1016/j. marpolbul.2022.113745 google scholar
- Dos Santos, N., Clyde-Smith, D., Qi, Y., Gao, F., Busquets, R., & Campos, L.C. (2023). A study of microfiber phytoremediation in vertical hydroponics. Sustainability, 15(4): 2851. https://doi.org/10.3390/su15042851 google scholar
- Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first over-view of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221: 453-458. https://doi.org/10.1016/j.envpol.2016.12.013 google scholar
- Du, F., Cai, H., Zhang, Q., Chen, Q., & Shi, H. (2020). Microplastics in take-out food containers. Journal of Hazardous Materials, 399: 122969. https://doi.org/10.1016/j.jhazmat.2020.122969 google scholar
- Du, Y., Liu, X., Dong, X., & Yin, Z. (2022). A review on marine plastisphere: biodiversity, formation, and role in degradation. Computational and Structural Biotechnology Journal, 20: 975-988. https://doi.org/10.1016/j. csbj.2022.02.008 google scholar
- EC (European Council). 2002. Regulation (EC) No 178/2002. Of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. https://www.legislation.gov. uk/eur/2002/178/contents/data.pdf [5 December 2020]. google scholar
- Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., & Amato, S. (2013). Mic-roplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 77(1-2): 177-182. https://doi.org/10.1016/j.marpolbul.2013.10.007 google scholar
- Erkan, H.S., Turan, N.B., Albay, M., & Engin, G.O. (2021). A preliminary study on the distribution and morpho-logy of microplastics in the coastal areas of Istanbul, the metropolitan city of Turkey: The effect of location differences. Journal of Cleaner Production, 307: 127320. https://doi.org/10.1016/j.jclepro.2021.127320 google scholar
- Erkan, N. (2002). Soğukta depolanan bazı balık cinslerinde kullanılan koruyucu katkı maddelerinin raf ömrüne etkisi. İstanbul Üniversitesi. Fen Bilimleri Enstitüsü, Su Ürünleri Avlama ve İşleme Teknolojisi Anabilim Dalı, Doktora Tezi. google scholar
- Everaert, G., De Rijcke, M., Lonneville, B., Janssen, C. R., Backhaus, T., Mees, J., van Sebille, E., Koelmans, A.A., Catarino, A.I., & Vandegehuchte, M.B. (2020). Risks of floating microplastic in the global ocean. Environmental Pollution, 267: 115499. https://doi.org/10.1016/j.envpol.2020.115499 google scholar
- Fadare, O.O., Wan, B., Guo, L.H., & Zhao, L. (2020). Microplastics from consumer plastic food containers: Are we consuming it?. Chemosphere, 253: 126787. https://doi.org/10.1016/j.chemosphere.2020.126787 google scholar
- Fagiano, V., Alomar, C., Compa, M., Soto-Navarro, J., Jorda, G., & Deudero, S. (2022). Neustonic microplastics and zooplankton in coastal waters of Cabrera marine protected area (Western Mediterranean Sea). Science of The Total Environment, 804: 150120. https://doi.org/10.1016/j.scitotenv.2021.150120 google scholar
- FAO (2020). FAO Fisheries Department, Fishery Information, Data and Statistics Unit. FishstatJ, a tool for fishery statistical analysis, release 2.0.0. Rome: FAO. google scholar
- FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en google scholar
- Fernandez, B., & Albentosa, M. (2019). Insights into the uptake, elimination and accumulation of microplastics in mussel. Environmental Pollution, 249: 321-329. https://doi.org/10.1016/j.envpol.2019.03.037 google scholar
- Foekema, E.M., De Gruijter, C., Mergia, M.T., van Franeker, J.A., Murk, A.J., & Koelmans, A.A. (2013). Plas-tic in north sea fish. Environmental Science & Technology, 47(15): 8818-8824. https://doi.org/10.1021/ es400931b google scholar
- Fred-Ahmadu, O.H., Bhagwat, G., Oluyoye, I., Benson, N.U., Ayejuyo, O.O., & Palanisami, T. (2020). In-teraction of chemical contaminants with microplastics: principles and perspectives. Science of the Total Environment, 706: 135978. https://doi.org/10.1016/j.scitotenv.2019.135978 google scholar
- Galgani, F., Hanke, G., Werner, S.D.V.L., & De Vrees, L. (2013). Marine litter within the European marine strategy framework directive. ICES Journal of Marine Science, 70(6): 1055-1064. https://doi.org/10.1093/ icesjms/fst122 google scholar
- Gamarro, E.G., Ryder, J., Elvevoll, E.O., & Olsen, R.L. (2020). Microplastics in Fish and Shellfish-A Threat to Seafood safety?. Journal of Aquatic Food Product Technology, 29(4): 417-425. https://doi.org/10.1080/10 498850.2020.1739793 google scholar
- Gao, X., Hassan, I., Peng, Y., Huo, S., & Ling, L. (2021). Behaviors and influencing factors of the heavy metals adsorption onto microplastics: A review. Journal of Cleaner Production, 319: 128777. https://doi. org/10.1016/j.jclepro.2021.128777 google scholar
- GESAMP (2016). Sources, fate and effects of microplastics in the marine environment: part two of a global assessment. (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Rep. Stud. GESAMP No. 93, 220. google scholar
- Geyer, R., Jambeck, J.R., & Law, K.L. (2017). Production, use, and fate of all plastics ever made. Science Ad-vances, 3(7): e1700782. https://doi.org/10.1126/sciadv.1700782 google scholar
- Goldberg, E.D. (1995). Emerging problems in the coastal zone for the twenty-first century. Marine Pollution Bulletin, 31(4-12): 152-158. https://doi.org/10.1016/0025-326X(95)00102-S google scholar
- Granby, K., Rainieri, S., Rasmussen, R.R., Kotterman, M.J., Sloth, J.J., Cederberg, T.L., Barranco, A., Marques, A., & Larsen, B.K. (2018). The influence of microplastics and halogenated contaminants in feed on toxi-cokinetics and gene expression in European seabass (Dicentrarchus labrax). Environmental Research, 164: 430-443. https://doi.org/10.1016/j.envres.2018.02.035 google scholar
- Gregory, M.R. (1999). Plastics and South Pacific Island shores: environmental implications. Ocean & Coastal Management, 42(6-7): 603-615. https://doi.org/10.1016/S0964-5691(99)00036-8 google scholar
- Gunn, R., Hardesty, B. D., & Butler, J. (2010). Tackling ‘ghost nets’: local solutions to a global issue in northern Australia. Ecological Management & Restoration, 11(2), 88-98. https://doi.org/10.1111/j.1442-8903.2010.00525.x google scholar
- Guo, X., & Wang, J. (2019). The chemical behaviors of microplastics in marine environment: A review. Marine Pollution Bulletin, 142: 1-14. https://doi.org/10.1016/j.marpolbul.2019.03.019 google scholar
- Gündoğdu, S. (2018). Contamination of table salts from Turkey with microplastics. Food Additives & Contami-nants: Part A, 35(5): 1006-1014. https://doi.org/10.1080/19440049.2018.1447694 google scholar
- Gündoğdu, S. & Cevik, C. (2017). Micro-and mesoplastics in Northeast Levantine coast of Turkey: The prelimi-nary results from surface samples. Marine Pollution Bulletin, 118(1-2): 341-347. https://doi.org/10.1016/j. marpolbul.2017.03.002 google scholar
- Gündoğdu, S., Çevik, C., & Ataş, N.T. (2020). Stuffed with microplastics: Microplastic occurrence in traditi-onal stuffed mussels sold in the Turkish market. Food Bioscience, 37: 100715. https://doi.org/10.1016/j. fbio.2020.100715 google scholar
- Gündoğdu, S., Çevik, C., Ayat, B., Aydoğan, B., & Karaca, S. (2018a). How microplastics quantities increase with flood events? An example from Mersin Bay NE Levantine coast of Turkey. Environmental Pollution, 239: 342-350. https://doi.org/10.1016/j.envpol.2018.04.042 google scholar
- Gündoğdu, S., Çevik, C., Güzel, E., & Kilercioğlu, S. (2018b). Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environmental Moni-toring and Assessment, 190(11): 1-10. https://doi.org/10.1007/s10661-018-7010-y google scholar
- Gündoğdu, S., & Walker, T.R. (2021). Why Turkey should not import plastic waste pollution from developed countries?. Marine Pollution Bulletin, 171: 112772. https://doi.org/10.1016/j.marpolbul.2021.112772 google scholar
- Gündoğdu, S., Eroldoğan, O.T., Evliyaoğlu, E., Turchini, G.M., & Wu, X.G. (2021). Fish out, plastic in: Global pattern of plastics in commercial fishmeal. Aquaculture, 534: 736316. https://doi.org/10.1016/j.aquacultu-re.2020.736316 google scholar
- Gündoğdu, S., Rathod, N., Hassoun, A., Jamroz, E., Kulawik, P., Gokbulut, C., Aıt-Kaddourh, A., & Özogul, F. (2022). The impact of nano/micro-plastics toxicity on seafood quality and human health: Facts and gaps. Cri-tical Reviews in Food Science and Nutrition, 63(23): 1-19. https://doi.org/10.1080/10408398.2022.2033684 google scholar
- Güven, O., Gökdağ, K., Jovanovic, B., & Kıdeyş, A.E. (2017). Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environ-mental Pollution, 223: 286-294. https://doi.org/10.1016/j.envpol.2017.01.025 google scholar
- Habib, R.Z., Poulose, V., Alsaidi, R., Al Kendi, R., Iftikhar, S.H., Mourad, A.H.I., Kittaneh, W.F., & Thiemann, T. (2022a). Plastic cutting boards as a source of microplastics in meat. Food Additives and Contaminants: Part A, 39(3): 609-619. https://doi.org/10.1080/19440049.2021.2017002 google scholar
- Habib, R.Z., Kindi, R.A., Salem, F.A., Kittaneh, W.F., Poulose, V., Iftikhar, S.H., Mourad, A.I., & Thiemann, T. (2022b). Microplastic contamination of chicken meat and fish through plastic cutting boards. Inter-national Journal of Environmental Research and Public Health, 19(20): 13442. https://doi.org/10.3390/ ijerph192013442 google scholar
- Hanachi, P., Karbalaei, S., Walker, T.R., Cole, M., & Hosseini, S. V. (2019). Abundance and properties of microp-lastics found in commercial fish meal and cultured common carp (Cyprinus carpio). Environmental Science and Pollution Research, 26(23): 23777-23787. https://doi.org/10.1007/s11356-019-05637-6 google scholar
- Hantoro, I., Löhr, A. J., Van Belleghem, F.G., Widianarko, B., & Ragas, A.M. (2019). Microplastics in coastal areas and seafood: implications for food safety. Food Additives & Contaminants: Part A, 36(5): 674-711. https://doi.org/10.1080/19440049.2019.1585581 google scholar
- Hartmann, N.B., Huffer, T., Thompson, R.C., Hassellöv, M., Verschoor, A., Daugaard, A.E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M.P., Hess., M.C., Ivleva, N.P., Lusher, A.L. & Wagner, M. (2019). Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris, Environmental Science and Technology, 53(3): 1039-1047. https://doi.org/10.1021/acs.est.8b05297 google scholar
- Harvey, F. & Watts, J. (2018). Microplastics found in human stools for the first time. The Guardian, 22. google scholar
- Hasan, J., Islam, S.M., Alam, M.S., Johnson, D., Belton, B., Hossain, M.A.R., & Shahjahan, M. (2022). Presence of microplastics in two common dried marine fish species from Bangladesh. Marine Pollution Bulletin, 176: 113430. https://doi.org/10.1016/j.marpolbul.2022.113430 google scholar
- He, Y.J., Qin, Y., Zhang, T.L., Zhu, Y.Y., Wang, Z.J., Zhou, Z.S., Xie., T, & Luo, X.D. (2021). Migration of (non) intentionally added substances and microplastics from microwavable plastic food containers. Journal of Hazardous Materials, 417: 126074. https://doi.org/10.1016/j.jhazmat.2021.126074 google scholar
- Helm, P.A. (2017). Improving microplastics source apportionment: a role for microplastic morphology and taxonomy?. Analytical Methods, 9(9): 1328-1331. https://doi.org/10.1039/C7AY90016C google scholar
- Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., & Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology, 46(6): 3060-3075. https://doi.org/10.1021/es2031505 google scholar
- Hirt, N., & Body-Malapel, M. (2020). Immunotoxicity and intestinal effects of nano-and microplastics: a review of the literature. Particle and Fibre Toxicology, 17(1): 1-22. https://doi.org/10.1186/s12989-020-00387-7 google scholar
- Hu, J., Xu, X., Song, Y., Liu, W., Zhu, J., Jin, H., & Meng, Z. (2022). Microplastics in Widely Used Polypropy-lene-Made Food Containers. Toxics, 10(12): 762. https://doi.org/10.3390/toxics10120762 google scholar
- Huang, W., Song, B., Liang, J., Niu, Q., Zeng, G., Shen, M., Deng, J., Luo, Y., Wen, X., & Zhang, Y. (2021). Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological ef-fects, trophic transfer, and potential impacts to human health. Journal of Hazardous Materials, 405: 124187. https://doi.org/10.1016/j.jhazmat.2020.124187 google scholar
- Hurley, R., Woodward, J., & Rothwell, J. J. (2018). Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nature Geoscience, 11(4): 251-257. https://doi.org/10.1038/s41561-018-0080-1 google scholar
- Iniguez, M.E., Conesa, J.A., & Fullana, A. (2017). Microplastics in Spanish table salt. Scientific Reports, 7(1): 1-7. https://doi.org/10.1038/s41598-017-09128-x google scholar
- Ivar do Sul, J.A., Costa, M.F. (2014). The present and future of microplastic pollution in the marine environment. Environmental Pollution, 185: 352-364. https://doi.org/10.1016/j.envpol.2013.10.036 google scholar
- Jadhav, E.B., Sankhla, M.S., Bhat, R.A., & Bhagat, D.S. (2021). Microplastics from food packaging: An over-view of human consumption, health threats, and alternative solutions. Environmental Nanotechnology, Monitoring & Management, 16: 100608. https://doi.org/10.1016/j.enmm.2021.100608 google scholar
- Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., & Kara Lavender Law. (2015). Plastic waste inputs from land into the ocean. Science, 347: 768-771. https://doi.org/10.1126/ science.1260352 google scholar
- Jovanovic, B., Gökdağ, K., Güven, O., Emre, Y., Whitley, E.M., & Kideys, A.E. (2018). Virgin microplastics are not causing imminent harm to fish after dietary exposure. Marine Pollution Bulletin, 130: 123-131. https:// doi.org/10.1016/j.marpolbul.2018.03.016 google scholar
- Kacprzak, S. &Tijing, L.D. (2022). Microplastics in indoor environment: Sources, mitigation and fate. Journal of Environmental Chemical Engineering, 107359. https://doi.org/10.1016/j.jece.2022.107359 google scholar
- Kadac-Czapska, K., Knez, E., & Grembecka, M. (2022). Food and human safety: the impact of microplastics. Critical Reviews in Food Science and Nutrition, 1-20. https://doi.org/10.1080/10408398.2022.2132212 google scholar
- Kalakova, G., & Bundschuh, M. (2022). Aquatic biofilms-Sink or source of microplastics? A critical reflection on current knowledge. Environmental Toxicology and Chemistry, 41(4): 838-843. https://doi.org/10.1002/etc.5195 google scholar
- Kalcı'kova, G. (2023). Beyond ingestion: Adhesion of microplastics to aquatic organisms. Aquatic Toxicology, 258: 106480. https://doi.org/10.1016/j.aquatox.2023.106480 google scholar
- Karami, A., Golieskardi, A., Choo, C.K., Larat, V., Karbalaei, S., & Salamatinia, B. (2018). Microplastic and mesoplastic contamination in canned sardines and sprats. Science of The Total Environment, 612: 1380-1386.https://doi.org/10.1016/j.scitotenv.2017.09.005 google scholar
- Karami, A., Golieskardi, A., Keong Choo, C., Larat, V., Galloway, T.S., & Salamatinia, B. (2017a). The presence of microplastics in commercial salts from different countries. Scientific Reports, 7(1): 1-11. https://doi. org/10.1038/srep46173 google scholar
- Karami, A., Golieskardi, A., Ho, Y.B., Larat, V., & Salamatinia, B. (2017b). Microplastics in eviscerated flesh and excised organs of dried fish. Scientific Reports, 7(1): 1-9. https://doi.org/10.1038/s41598-017-05828-6 google scholar
- Karbalaei, S., Golieskardi, A., Watt, D.U., Boiret, M., Hanachi, P., Walker, T.R., & Karami, A. (2020). Analysis and inorganic composition of microplastics in commercial Malaysian fish meals. Marine Pollution Bulletin, 150: 110687. https://doi.org/10.1016/j.marpolbul.2019.110687 google scholar
- Kim, J.H., Yu, Y.B., & Choi, J.H. (2021). Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. Journal of Hazardous Materials, 413: 125423. https://doi.org/10.1016/j.jhazmat.2021.125423 google scholar
- Kim, J., Poirier, D.G., Helm, P.A., Bayoumi, M., & Rochman, C.M. (2020). No evidence of spherical microp-lastics (10-300 gm) translocation in adult rainbow trout (Oncorhynchus mykiss) after a two-week dietary exposure. PLoS One, 15(9): e0239128. https://doi.org/10.1371/journal.pone.0239128 google scholar
- Kocatepe, D. & Turan, H. (2018). Su Ürünleri İşleme Teknolojisinde Kullanımı Yasal Olan Gıda Katkı Maddelerinin Değerlendirilmesi. International Journal of Eastern Mediterranean Agricultural Research, 1(1): 78-95. google scholar
- Koelmans, A.A., Redondo-Hasselerharm, P.E., Nor, N.H.M., de Ruijter, V.N., Mintenig, S.M., & Kooi, M. (2022). Risk assessment of microplastic particles. Nature Reviews Materials, 7(2): 138-152. https://doi. org/10.1038/s41578-021-00411-y google scholar
- Kontominas, M.G., Badeka, A.V., Kosma, I.S., & Nathanailides, C.I. (2021). Innovative seafood preservation technologies: Recent developments. Animals, 11(1): 92. https://doi.org/10.3390/ani11010092 google scholar
- Kris-Etherton, P.M., Grieger, J.A., & Etherton, T.D. (2009). Dietary reference intakes for DHA and EPA. Prostag-landins, Leukotrienes and Essential Fatty Acids, 81(2-3): 99-104. https://doi.org/10.1016/j.plefa.2009.05.011 google scholar
- Kumar, R., Verma, A., Shome, A., Sinha, R., Sinha, S., Jha, P.K., Kumar, R., Kumar, P., Shubham, Das, S., Sharma, P., & Vara Prasad, P.V. (2021). Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability, 13(17): 9963.https://doi.org/10.3390/su13179963 google scholar
- Kuoppamaki, K., Pflugmacher Lima, S., Scopetani, C., & Setala, H. (2021). The ability of selected filter ma-terials in removing nutrients, metals, and microplastics from stormwater in biofilter structures. Journal of Environmental Quality, 50(2): 465-475. https://doi.org/10.1002/jeq2.20201 google scholar
- Kuttykattil, A., Raju, S., Vanka, K.S., Bhagwat, G., Carbery, M., Vincent, S.G.T., Raja, S., & Palanisami, T. (2022). Consuming microplastics? Investigation of commercial salts as a source of microplastics (MPs) in diet. Environmental Science and Pollution Research, 1-13. https://doi.org/10.2139/ssrn.3983986 google scholar
- Kwon, J.H., Kim, J.W., Pham, T.D., Tarafdar, A., Hong, S., Chun, S.H., Lee, S., Kang, D., Kim, J., Kim, S., & Jung, J. (2020a). Microplastics in food: a review on analytical methods and challenges. International Jour-nal of Environmental Research and Public Health, 17(18): 6710. https://doi.org/10.3390/ijerph17186710 google scholar
- Kwon, O.Y., Kang, J.H., Hong, S.H., & Shim, W.J. (2020b). Spatial distribution of microplastic in the surface waters along the coast of Korea. Marine Pollution Bulletin, 155: 110729. https://doi.org/10.1016/j.marpol-bul.2019.110729 google scholar
- Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, K., Maral, H., Schoeneich-Argent, R., Brambini, R., & Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports, 8(1): 1-15. https://doi.org/10.1038/s41598-018-22939-w google scholar
- Li, J., Chapman, E.C., Shi, H., & Rotchell, J.M. (2020). PVC does not influence cadmium uptake or effects in the mussel (Mytilus edulis)”, Bulletin of Environmental Contamination and Toxicology, 104(3): 315-320. https://doi.org/10.1007/s00128-020-02789-x google scholar
- Li, Q., Feng, Z., Zhang, T., Ma, C., & Shi, H. (2020). Microplastics in the commercial seaweed nori. Journal of Hazardous Materials, 388: 122060. https://doi.org/10.1016/j.jhazmat.2020.122060 google scholar
- Lin, Q., Zhao, S., Pang, L., Sun, C., Chen, L., & Li, F. (2022). Potential risk of microplastics in processed foods: Preliminary risk assessment concerning polymer types, abundance, and human exposure of microplastics. Ecotoxicology and Environmental Safety, 247: 114260. https://doi.org/10.1016/j.ecoenv.2022.114260 google scholar
- Liu, F., Nord, N. B., Bester, K., & Vollertsen, J. (2020). Microplastics removal from treated wastewater by a biofilter. Water, 12(4): 1085. https://doi.org/10.3390/w12041085 google scholar
- Luo, H., Liu, C., He, D., Xu, J., Sun, J., Li, J., Pan, X. (2022a). Environmental behaviors of microplastics in aqu-atic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions. Journal of Hazardous Materials, 423: 126915. https://doi.org/10.1016/j.jhazmat.2021.126915 google scholar
- Luo, Y., Chuah, C., Al Amin, M., Khoshyan, A., Gibson, C.T., Tang, Y., Naidu, R., & Fang, C. (2022b). Assessment of microplastics and nanoplastics released from a chopping board using Raman imaging in combination with three algorithms. Journal of Hazardous Materials, 431: 128636. https://doi.org/10.1016/j.jhazmat.2022.128636 google scholar
- Lusher, A.L., Hernandez-Milian, G., O’Brien, J., Berrow, S., O’Connor, I., & Officer, R. (2015). Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: the True’s beaked whale Mesoplodon mirus. Environmental Pollution, 199: 185-191. https://doi.org/10.1016/j.envpol.2015.01.023 google scholar
- Lusher, A.L., Mchugh, M., & Thompson, R.C. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin, 67(1-2): 94-99. https:// doi.org/10.1016/j.marpolbul.2012.11.028 google scholar
- Lusher, A., Hollman, P., & Mendoza-Hill, J. (2017). Microplastics in fisheries and aquaculture: status of know-ledge on their occurrence and implications for aquatic organisms and food safety, FAO. google scholar
- Lwanga, E.H., Beriot, N., Corradini, F., Silva, V., Yang, X., Baartman, J., Rezaei, M.,, Van Schaik, L., Riksen, M., & Geissen, V. (2022). Review of microplastic sources, transport pathways and correlations with other soil stressors: a journey from agricultural sites into the environment. Chemical and Biological Technologies in Agriculture, 9(1): 1-20. https://doi.org/10.1186/s40538-021-00278-9 google scholar
- Lwanga, E.H., Thapa, B., Yang, X., Gertsen, H., Salanki, T., Geissen, V., & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Science of the Total Environment, 624: 753-757. https://doi.org/10.1016/j.scitotenv.2017.12.144 google scholar
- Ma, J., Chen, F., Xu, H., Jiang, H., Liu, J., Li, P., Chen, C.C., & Pan, K. (2021). Face masks as a source of nanoplastics and microplastics in the environment: Quantification, characterization, and potential for bioac-cumulation. Environmental Pollution, 288: 117748. https://doi.org/10.1016/j.envpol.2021.117748 google scholar
- Mahamud, A.S.U., Anu, M.S., Baroi, A., Datta, A., Khan, M.S.U., Rahman, M., Tabassum, T., Tanwi, J.T., & Rahman, T. (2022). Microplastics in fishmeal: A threatening issue for sustainable aquaculture and human health. Aquaculture Reports, 25: 101205. https://doi.org/10.1016/j.aqrep.2022.101205 google scholar
- Makhdoumi, P., Naghshbandi, M., Ghaderzadeh, K., Mirzabeigi, M., Yazdanbakhsh, A., & Hossini, H. (2021). Micro-plastic occurrence in bottled vinegar: Qualification, quantification and human risk exposure. Process Safety and Environmental Protection, 152: 404-413. https://doi.org/10.1016/j.psep.2021.06.022 google scholar
- Mani, T., Hauk, A., Walter, U., & Burkhardt-Holm, P. (2015). Microplastics profile along the Rhine River. Scientific reports, 5(1): 1-7. https://doi.org/10.1038/srep17988 google scholar
- Mathalon, A., & Hill, P. (2014). Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Marine Pollution Bulletin, 81(1): 69-79. https://doi.org/10.1016/j.marpolbul.2014.02.018 google scholar
- Moore, C.J. (2008). Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research, 108: 131-139. https://doi.org/10.1016/j.envres.2008.07.025 google scholar
- Moore, R.C., Noel, M., Etemadifar, A., Loseto, L., Posacka, A.M., Bendell, L., & Ross, P.S. (2022). Microplas-tics in beluga whale (Delphinapterus leucas) prey: An exploratory assessment of trophic transfer in the Be-aufort Sea. Science of The Total Environment, 806: 150201. https://doi.org/10.1016/j.scitotenv.2021.150201 google scholar
- Neves, D., Sobral, P., Ferreira, J.L., & Pereira, T. (2015). Ingestion of microplastics by commercial fish off the Portuguese coast. Marine Pollution Bulletin, 101(1): 119-126. https://doi.org/10.1016/j.marpolbul.2015.11.008 google scholar
- Othman, R., Ramya, R., Latif, N.H.M., Sulaiman, W.S.H.W., Hatta, F.A.M., Ali, Q.A.M., & Jusoh, N.H.M. (2022). Mitigation of the Micro-and Nanoplastic Using Phycoremediation Technology. In Impact of Plastic Waste on the Marine Biota. Singapore: Springer Nature Singapore, 183-208. https://doi.org/10.1007/978-981-16-5403-910 google scholar
- Öztürk, B. (2013). Some remarks of Illegal, Unreported and Unregulated (IUU) fishing in Turkish part of the Black Sea. Journal of Black Sea/Mediterranean Environment, 19(2): 256-267. google scholar
- Pappoe, C., Palm, L.M.N.D., Denutsui, D., Boateng, C.M., Danso-Abbeam, H., & Serfor-Armah, Y. (2022). Oc-currence of microplastics in gastrointestinal tract of fish from the Gulf of Guinea, Ghana. Marine Pollution Bulletin, 182: 113955. https://doi.org/10.1016/j.marpolbul.2022.113955 google scholar
- Park, S.Y., & Kim, C.G. (2019). Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere, 222: 527-533. https://doi.or-g/10.1016/j.chemosphere.2019.01.159 google scholar
- Patra, S., Varandas, S., Santos, D., Felix, L., Fernandes, L., Cabecinha, E., & Monteiro, S.M. (2021). Multi-bio-marker responses of asian clam Corbicula fluminea (Bivalvia, Corbiculidea) to cadmium and microplastics pollutants. Water, 13(4): 394. https://doi.org/10.3390/w13040394 google scholar
- Peixoto, D., Pinheiro, C., Amorim, J., Oliva-Teles, L., Guilhermino, L., & Vieira, M.N. (2019). Microplastic pollution in commercial salt for human consumption: A review. Estuarine, Coastal and Shelf Science, 219: 161-168. https://doi.org/10.1016/j.ecss.2019.02.018 google scholar
- Perez-Guevara, F., Roy, P.D., Elizalde-Martmez, I., Kutralam-Muniasamy, G., & Shruti, V.C. (2022). Human exposure to microplastics from urban decentralized pay-to-fetch drinking-water refill kiosks. Science of the Total Environment, 848: 157722. https://doi.org/10.1016/j.scitotenv.2022.157722 google scholar
- Piyawardhana, N., Weerathunga, V., Chen, H.S., Guo, L., Huang, P.J., Ranatunga, R.R.M.K.P., & Hung, C.C. (2022). Occurrence of microplastics in commercial marine dried fish in Asian countries. Journal of Hazar-dous Materials, 423: 127093. https://doi.org/10.1016/j.jhazmat.2021.127093 google scholar
- PlasticEurope (2021), Plastics - the Facts, An analysis of European plastics production, demand and waste data, Belgium: PlasticEurope, pp. 1-34, 2021. https://plasticseurope.org/wp-content/uploads/2021/12/Plas-tics-the-Facts-2021-web-final.pdf google scholar
- Provenza, F., Rampih, D., Pignattelli, S., Pastorino, P., Barcelo, D., Prearo, M., Specchiulli, A., & Renzi, M. (2022). Mussel watch program for microplastics in the Mediterranean sea: Identification of biomarkers of exposure using Mytilus galloprovincialis. Ecological Indicators, 142: 109212. https://doi.org/10.1016/j. ecolind.2022.109212 google scholar
- Qiao, R., Sheng, C., Lu, Y., Zhang, Y., Ren, H., & Lemos, B. (2019). Microplastics induce intestinal inflam-mation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Science of the Total Environment, 662: 246-253. https://doi.org/10.1016/j.scitotenv.2019.01.245 google scholar
- Quinzi, V., Orilisi, G., Vitiello, F., Notarstefano, V., Marzo, G., & Orsini, G. (2023). A spectroscopic study on orthodontic aligners: First evidence of secondary microplastic detachment after seven days of artificial saliva exposure. Science of The Total Environment, 161356. https://doi.org/10.1016/j.scitotenv.2022.161356 google scholar
- Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M.C.A., Baiocco, F., Draghi, S., D’Amore, E., Rinaldo, D., Matta, M., & Giorgini, E. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146: 106274. https://doi. org/10.1016/j.envint.2020.106274 google scholar
- Rehse, S., Kloas, W., & Zarfl, C. (2018). Microplastics reduce short-term effects of environmental contaminants. Part I: effects of bisphenol A on freshwater zooplankton are lower in presence of polyamide particles. Internati-onal Journal of Environmental Research and Public Health, 15(2): 280. https://doi.org/10.3390/ijerph15020280 google scholar
- Reisser, J., Shaw, J., Wilcox, C., Hardesty, B.D., Proietti, M., Thums, M., & Pattiaratchi, C. (2013). Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways. PloS One, 8(11): e80466. https://doi.org/10.1371/journal.pone.0080466 google scholar
- Ribeiro, F., Okoffo, E.D., O’Brien, J.W., Fraissinet-Tachet, S., O’Brien, S., Gallen, M., Samanipour, S., Ka-serzon, S., Mueller, J.F., Galloway, T. & Thomas, K.V. (2020). Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry. Environ-mental Science & Technology, 54(15): 9408-9417. https://doi.org/10.1021/acs.est.0c02337 google scholar
- Rimm, E.B., Appel, L.J., Chiuve, S.E., Djousse, L., Engler, M. B., Kris-Etherton, P.M., Mozaffarian, D., Siscovi-ck, D.S., & Lichtenstein, A.H. (2018). Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the American Heart Association. Circulation, 138(1): e35-e47. https://doi. org/10.1161/CIR.0000000000000574 google scholar
- Rios, L.M., Moore, C., Jones, P.R. (2007). Persistent organic pollutants carried by synthetic polymers in the ocean environment. Marine Pollution Bulletin, 54(8): 1230-1237. https://doi.org/10.1016/j.marpolbul.2007.03.022 google scholar
- Rivera-Hernandez, J.R., Fernandez, B., Santos-Echeandia, J., Garrido, S., Morante, M., Santos, P., & Alben-tosa, M. (2019). Biodynamics of mercury in mussel tissues as a function of exposure pathway: natural vs microplastic routes. Science of The Total Environment, 674: 412-423. https://doi.org/10.1016/j.scito-tenv.2019.04.175 google scholar
- Rochman, C.M., Brookson, C., Bikker, J., Djuric, N., Earn, A., Bucci, K., Athey, S., Huntington, A., McIlwraith, H., Munno, K., De Frond, H., Kolomijeca, A., Erdle, L., Grbic, J., Bayoumi, M., Borrelle, S.B., Wu, T., Santoro, S., Werbowski, L.M., Zhu, X., Giles, R.K., Hamilton, B.M., Thaysen, C., Kaura, A., Klasios, N., Ead, L., Kim, J., Sherlock, C., Ho, A., Hung, C. (2019). Rethinking microplastics as a diverse contaminant suite. Environmental Toxicology and Chemistry, 38(4): 703-711. https://doi.org/10.1002/etc.4371 google scholar
- Rozman, U., Kokalj, A.J., Dolar, A., Drobne, D., & Kalcııkovâ, G. (2022). Long-term interactions between microplastics and floating macrophyte Lemna minor: The potential for phytoremediation of microplastics in the aquatic environment. Science of the Total Environment, 831: 154866. https://doi.org/10.1016/j.sci-totenv.2022.154866 google scholar
- Rochman, C.M., Tahir, A., Williams, S.L., Baxa, D.V., Lam, R., Miller, J.T., Teh, F., Werorilangi, S., & Teh, S.J. (2015). Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports, 5(1): 1-10. https://doi.org/10.1038/srep14340 google scholar
- Ru, D., Liu, J., Hu, Z., Zou, Y., Jiang, L., Cheng, X., & Lv, Z. (2017). Improvement of aquaponic performance through micro-and macro-nutrient addition. Environmental Science and Pollution Research, 24: 16328-16335.https://doi.org/10.1007/s11356-017-9273-1 google scholar
- Ryan, P.G. (2015). A brief history of marine litter research. Marine Anthropogenic Litter, 1-25. https://doi. org/10.1007/978-3-319-16510-3_1 google scholar
- Ryan, P.G., Moore, C.J., Van Franeker, J.A., & Moloney, C.L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526): 1999-2012. https://doi.org/10.1098/rstb.2008.0207 google scholar
- Santillo, D., Miller, K., & Johnston, P. (2017). Microplastics as contaminants in commercially important seafood spe-cies. Integrated Environmental Assessment and Management, 13(3): 516-21. https://doi.org/10.1002/ieam.1909 google scholar
- Santos, A.J., Bellini, C., Bortolon, L.F., & Coluchi, R. (2012). Ghost nets haunt the olive ridley turtle (Lepi-dochelys olivacea) near the Brazilian Islands of Fernando de Noronha and Atol das Rocas. Herpetological Review, 43(2): 245. google scholar
- Schmid, C., Cozzarini, L., & Zambello, E. (2021). Microplastic’s story. Marine Pollution Bulletin, 162: 111820. https://doi.org/10.1016/j.marpolbul.2020.111820 google scholar
- Senathirajah, K., Attwood, S., Bhagwat, G., Carbery, M., Wilson, S., & Palanisami, T. (2021). Estimation of the mass of microplastics ingested-A pivotal first step towards human health risk assessment. Journal of Hazardous Materials, 404: 124004. https://doi.org/10.1016/j.jhazmat.2020.124004 google scholar
- Shen, M., Zeng, Z., Song, B., Yi, H., Hu, T., Zhang, Y., Zeng, G., & Xiao, R. (2021). Neglected microplastics pollution in global COVID-19: Disposable surgical masks. Science of the Total Environment, 790: 148130. https://doi.org/10.1016/j.scitotenv.2021.148130 google scholar
- Shi, H. (2021). Editorial overview: Microplastics in food and human exposure to microplastics. Current Opinion in Food Science 42: 3-4. https://doi.org/10.1016/j.cofs.2021.11.009 google scholar
- Shlush, E., & Davidovich-Pinhas, M. (2022). Bioplastics for food pack-aging. Trends in Food Science & Tech-nology 125: 66-80. https://doi.org/10.1016/j.tifs.2022.04.026 google scholar
- Shruti, V.C., Kutralam-Muniasamy, G., Perez-Guevara, F., Roy, P.D., & Elizalde-Martmez, I. (2022). First evi-dence of microplastic contamination in ready-to-use packaged food ice cubes. Environmental Pollution, 120905. https://doi.org/10.1016/j.envpol.2022.120905 google scholar
- Sid, S., Mor, R.S., Kishore, A., & Sharanagat, V.S. (2021). Bio-sourced polymers as alternatives to conventio-nal food packaging materials: A review. Trends in Food Science and Technology, 115: 87-104. https://doi. org/10.1016/j.tifs.2021.06.026 google scholar
- Silva, A.B., Bastos, A.S., Justino, C.I., da Costa, J.P., Duarte, A.C., & Rocha-Santos, T.A. (2018). Microplastics in the environment: Challenges in analytical chemistry-A review. Analytica Chimica Acta, 1017: 1-19. https://doi.org/10.1016/j.aca.2018.02.043 google scholar
- Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5, 375-386. https://doi.org/10.1007/s40572-018-0206-z google scholar
- Sobhani, Z., Lei, Y., Tang, Y., Wu, L., Zhang, X., Naidu, R., Megharaj, M., & Fang, C. (2020). Microplastics generated when opening plastic packaging. Scientific Reports, 10(1): 1-7. https://doi.org/10.1038/s41598-020-61146-4 google scholar
- Song, Y.K., Hong, S.H., Eo, S., Jang, M., Han, G. M., Isobe, A., & Shim, W.J. (2018). Horizontal and vertical distribution of microplastics in Korean coastal waters. Environmental Science & Technology, 52(21): 1218812197. https://doi.org/10.1021/acs.est.8b04032 google scholar
- Sridhar, A., Kannan, D., Kapoor, A., & Prabhakar, S. (2022). Extraction and detection methods of microplas-tics in food and marine systems: A critical review. Chemosphere, 286: 131653. https://doi.org/10.1016/j. chemosphere.2021.131653 google scholar
- Sridharan, S., Kumar, M., Singh, L., Bolan, N.S., & Saha, M. (2021). Microplastics as an emerging source of particulate air pollution: A critical review. Journal of Hazardous Materials, 418: 126245. https://doi. org/10.1016/j.jhazmat.2021.126245 google scholar
- Stelfox, M., Lett, C., Reid, G., Souch, G., & Sweet, M. (2020). Minimum drift times infer trajectories of ghost nets found in the Maldives. Marine Pollution Bulletin, 154: 111037. https://doi.org/10.1016/j.marpol-bul.2020.111037 google scholar
- Syranidou, E., Karkanorachaki, K., Amorotti, F., Franchini, M., Repouskou, E., Kaliva, M., & Kalogerakis, N. (2017). Biodegradation of weathered polystyrene films in seawater microcosms. Scientific Reports, 7(1): 1-12. https://doi.org/10.1038/s41598-017-18366-y google scholar
- Tanaka, K., & Takada, H. (2016). “Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters”. Scientific Reports, 6(1): 1-8. https://doi.org/10.1038/srep34351 google scholar
- Tang, Y., Zhou, W., Sun, S., Du, X., Han, Y., Shi, W., & Liu, G. (2020). Immunotoxicity and neurotoxicity of bisphenol A and microplastics alone or in combination to a bivalve species, Tegillarca granosa. Environ-mental Pollution, 265: 115115. https://doi.org/10.1016/j.envpol.2020.115115 google scholar
- Thakur, K., Kuthiala, T., Singh, G., Arya, S.K., Iwai, C.B., Ravindran, B., Khoo, K.S., Chang, S.W., & Awast-hi, M.K. (2023). An alternative approach towards nitrification and bioremediation of wastewater from aquaponics using biofilm-based bioreactors: A review. Chemosphere, 137849. https://doi.org/10.1016/j. chemosphere.2023.137849 google scholar
- Thiele, C.J., Hudson, M.D., Russell, A.E., Saluveer, M., & Sidaoui-Haddad, G. (2021). Microplastics in fish and fishmeal: an emerging environmental challenge?. Scientific Reports, 11(1), 1-12. https://doi.org/10.1038/ s41598-021-81499-8 google scholar
- Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A., McGonigle, D., & Russell, A. (2004). Lost at sea: where is all the plastic? Science, 304: 838. https://doi.org/10.1126/science.1094559 google scholar
- Tong, H., Jiang, Q., Hu, X., & Zhong, X. (2020). Occurrence and identification of microplastics in tap water from China. Chemosphere, 252: 126493. https://doi.org/10.1016/j.chemosphere.2020.126493 google scholar
- Torres-Agullo, A., Karanasiou, A., Moreno, T., & Lacorte, S. (2021). Overview on the occurrence of microp-lastics in air and implications from the use of face masks during the COVID-19 pandemic. Science of the Total Environment, 800: 149555. https://doi.org/10.1016/j.scitotenv.2021.149555 google scholar
- Trestrail, C., Nugegoda, D., & Shimeta, J. (2020). Invertebrate responses to microplastic ingestion: Reviewing the role of the antioxidant system. Science of The Total Environment, 734: 138559. https://doi.org/10.1016/j. scitotenv.2020.138559 google scholar
- Tunçelli, G., Can Tunçelli, İ., & Memiş, D. (2023). Evaluation of lettuce (Lactuca sativa L.) in aquaponic system in terms of food safety. Ege Journal of Fisheries and Aquatic Sciences, 40(1): 27-34. https://doi. org/10.12714/egejfas.40.1.04 google scholar
- Turner, A., & Holmes, L. (2011). Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (central Mediterranean). Marine Pollution Bulletin, 62(2): 377-381. https:// doi.org/10.1016/j.marpolbul.2010.09.027 google scholar
- Usman, S., Abdull Razis, A. F., Shaari, K., Amal, M. N. A., Saad, M. Z., Mat Isa, N., Nazarudin, M.F., Zulkifli, S.S., Sutra, J., & Ibrahim, M. A. (2020). Microplastics pollution as an invisible potential threat to food safety and security, policy challenges and the way forward. International Journal of Environmental Research and Public Health, 17(24): 9591. https://doi.org/10.3390/ijerph17249591 google scholar
- Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J., & Janssen, C.R. (2015). Microplastics in sedi-ments: a review of techniques, occurrence and effects. Marine Environmental Research, 111: 5-17. https:// doi.org/10.1016/j.marenvres.2015.06.007 google scholar
- Van Cauwenberghe, L., & Janssen, C.R. (2014). Microplastics in bivalves cultured for human consumption. Environmental Pollution, 193: 65-70. https://doi.org/10.1016/j.envpol.2014.06.010 google scholar
- Varlık, C., Erkan, N., Özden, Ö., Mol, S., & Baygar, T. (2004) Su Ürünleri İşleme Teknolojisi, İstanbul Üniversitesi Su Ürünleri Fakültesi. Yayın No. 7. İstanbul. google scholar
- Velis, C.A., & Cook, E. (2021). Mismanagement of plastic waste through open burning with emphasis on the global south: a systematic review of risks to occupational and public health. Environmental Science & Technology, 55(11): 7186-7207. https://doi.org/10.1021/acs.est.0c08536 google scholar
- Vendel, A.L., Bessa, F., Alves, V.E.N., Amorim, A.L.A., Patricio, J., & Palma, A.R.T. (2017). Widespread mic-roplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures. Marine Pollution Bulletin, 117(1-2): 448-455. https://doi.org/10.1016/j.marpolbul.2017.01.081 google scholar
- Virsek, M.K., Lovsin, M.N., Koren, S., Krzan, A., & Peterlin, M. (2017). Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Marine Pollution Bulletin, 125(1-2): 301-309. https://doi.org/10.1016/j.marpolbul.2017.08.024 google scholar
- Wang, F., Wong, C.S., Chen, D., Lu, X., Wang, F., & Zheng E.Y. (2018). Interaction of toxic chemicals with microplastics: A critical review. Water Research, 139: 208-19. https://doi.org/10.1016/j.watres.2018.04.003 google scholar
- Wang, J., Tan, Z., Peng, J., Qiu, Q., & Li, M. (2016). The behaviors of microplastics in the marine environment. Marine Environmental Research 113: 7-17. https://doi.org/10.1016/j.marenvres.2015.10.014 google scholar
- Wang, Z., An, C., Chen, X., Lee, K., Zhang, B., & Feng, Q. (2021). Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. Journal of Hazardous Materials, 417: 126036. https://doi.org/10.1016/j.jhazmat.2021.126036 google scholar
- Wong, J.K.H., Lee, K.K., Tang, K.H.D., & Yap, P.S. (2020). Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of the Total Environment, 719: 137512. https://doi.org/10.1016/j.scitotenv.2020.137512 google scholar
- Wright, S.L., & Kelly, F.J. (2017). Plastic and human health: a micro issue? Environmental Science and Tech-nology, 51(12): 6634-6647. https://doi.org/10.1021/acs.est.7b00423 google scholar
- Wu, D., Feng, Y., Wang, R., Jiang, J., Guan, Q., Yang, X., Wei, H., Xia, Y., & Luo, Y. (2022). Pigment micropar-ticles and microplastics found in human thrombi based on Raman spectral evidence. Journal of Advanced Research, 49: 141-150. https://doi.org/10.1016/j.jare.2022.09.004 google scholar
- Yang, X., Man, Y. B., Wong, M.H., Owen, R.B., & Chow, K. L. (2022). Environmental health impacts of mic-roplastics exposure on structural organization levels in the human body. Science of The Total Environment, 154025. https://doi.org/10.1016/j.scitotenv.2022.154025 google scholar
- Yu, F., Yang, C., Zhu, Z., Bai, X., & Ma, J. (2019). Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Science of the Total Environment, 694: 133643. https://doi. org/10.1016/j.scitotenv.2019.133643 google scholar
- Yuan, Z., Nag, R., & Cummins, E. (2022). Human health concerns regarding microplastics in the aquatic en-vironment - from marine to food systems. Science of The Total Environment, 823: 153730. https://doi. org/10.1016/j.scitotenv.2022.153730 google scholar
- Zeytin, S., Wagner, G., Mackay-Roberts, N., Gerdts, G., Schuirmann, E., Klockmann, S., & Slater, M. (2020). Quantifying microplastic translocation from feed to the fillet in European sea bass Dicentrarchus labrax. Marine Pollution Bulletin, 156: 111210. https://doi.org/10.1016/j.marpolbul.2020.111210 google scholar
- Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. (2020a). A review of microplastics in table salt, drinking water, and air: direct human exposure. Environmental Science and Technology, 54(7): 37403751. https://doi.org/10.1021/acs.est.9b04535 google scholar
- Zhang, Q., Zhao, Y., Du, F., Cai, H., Wang, G., & Shi, H. (2020b). Microplastic fallout in different indoor environments. Environmental Science and Technology, 54(11): 6530-6539. https://doi.org/10.1021/acs. est.0c00087 google scholar
- Zhang, S., Wang, J., Liu, X., Qu, F., Wang, X., Wang, X., Wang, X., & Sun, Y. (2019). Microplastics in the en-vironment: A review of analytical methods, distribution, and biological effects. TrAC Trends in Analytical Chemistry, 111: 62-72. https://doi.org/10.1016/j.trac.2018.12.002 google scholar
- Zhao, S., Zhu, L., & Li, D. (2015). Microplastic in three urban estuaries, China. Environmental Pollution, 206: 597-604. https://doi.org/10.1016/j.envpol.2015.08.027 google scholar
- Zhao, X., Zhou, Y., Liang, C., Song, J., Yu, S., Liao, G., Zou, P., Tang, K., & Wu, C. (2022). Airborne microp-lastics: Occurrence, sources, fate, risks and mitigation. Science of The Total Environment, 159943. https:// doi.org/10.1016/j.scitotenv.2022.159943 google scholar
- Zhou, A., Zhang, Y., Xie, S., Chen, Y., Li, X., Wang, J., & Zou, J. (2021). Microplastics and their potential effects on the aquaculture systems: A critical review. Reviews in Aquaculture, 13(1): 719-733. https://doi. org/10.1111/raq.12496 google scholar
- Ziino, G., Nalbone, L., Giarratana, F., Romano, B., Cincotta, F., & Panebianco, A. (2021). Microplastics in vacuum packages of frozen and glazed icefish (Neosalanx spp.): A freshwater fish intended for human consumption. Italian Journal of Food Safety, 10(4). https://doi.org/10.4081/ijfs.2021.9974 google scholar
- Zhu, X., Giles, R.K., 357, Hamilton, B.M., Thaysen, C., Kaura, A., Klasios, N., Ead, L., Kim, J., Sherlock, C., Ho, A., &Hung, C. (2019). Rethinking microplastics as a diverse contaminant suite. Environmental Toxi-cology and Chemistry, 38(4): 703-711. https://doi.org/10.1002/etc.4371 google scholar