CHAPTER


DOI :10.26650/B/LSB23LSB24.2024.026.006   IUP :10.26650/B/LSB23LSB24.2024.026.006    Full Text (PDF)

Environmental Pollutants and Risks in Food Safety

Şafak Ulusoy

Rapid global population growth has led to significant environmental waste deposition. Contamination of the environment with harmful substances, which adversely affects the health of humans and other living organisms, causes environmental pollution. Water is a fundamental component of life, and although it covers approximately three-fourths of Earth’s surface, sustainability issues regarding freshwater resources persist. Aquatic pollution occurs when potentially harmful substances mix with water bodies or seep into groundwater. Compounds such as pesticides and other organic solvents adversely affect human health and can pollute water. Microorganisms present in water bodies can cause various diseases. Global warming and the associated environmental changes have exacerbated the impact of pollutants and biological systems. Alongside population growth, agricultural, medical, and industrial activities have increased, resulting in untreated or inadequately treated wastewater being discharged into natural water sources. The rapid exposure of natural resources to escalating environmental pollution has underscored the urgency of sustainability efforts.


DOI :10.26650/B/LSB23LSB24.2024.026.006   IUP :10.26650/B/LSB23LSB24.2024.026.006    Full Text (PDF)

Gıda Güvenli̇ği̇nde Çevresel Ki̇rleti̇ci̇ler ve Ri̇skleri̇

Şafak Ulusoy

Dünya nüfusundaki hızlı artış, çevreye büyük miktarda atık bırakılmasına yol açmaktadır. Bu atıkların çevreyi ve canlı sağlığını olumsuz etkileyen zararlı maddelerle kirlenmesi, çevre kirliliğine neden olmaktadır. Su, yaşamın temel bileşenidir ve dünya yüzeyinin büyük bir kısmını kaplasa da, tatlı su kaynaklarının sürdürülebilirliği büyük sorunlarla karşı karşıyadır. Akuatik kirlilik, potansiyel olarak zararlı maddelerin su kütlelerine karışması veya yeraltı sularına sızmasıyla ortaya çıkar. Pestisitler ve diğer organik çözücüler gibi maddeler, insan sağlığı üzerinde olumsuz etkilere sahiptir ve suyu kirletebilir. Aynı zamanda su kütlelerinde bulunan mikroorganizmalar, çeşitli hastalıklara neden olabilir. Küresel ısınma ve çevresel değişiklikler, kirletici maddelerin ve biyolojik sistemlerin üzerindeki etkilerini artırmaktadır. Dünya nüfusunun artmasıyla birlikte tarımsal, tıbbi ve endüstriyel faaliyetler de artmıştır, bu da arıtılmamış veya yetersiz arıtılmış atık suların doğal su kaynaklarına deşarjını artırmıştır. Bu durum, doğal kaynakların hızla artan çevresel kirlilikten etkilenmesine yol açmış ve sürdürülebilirlik konusu önem kazanmıştır.



References

  • Adeleye, A.S., Conway, J.R., Garner, K., Huang, Y., Su, Y., & Keller, A.A. (2016). Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal, 286: 640-662. https://doi.org/10.1016/j.cej.2015.10.105 google scholar
  • Aemig, Q., Helias, A., & Patureau, D. (2021). Impact assessment of a large panel of organic and inorganic mic-ropollutants released by wastewater treatment plants at the scale of France. Water Research, 188: 116524. https://doi.org/10.1016/j.watres.2020.116524 google scholar
  • Agency for Toxic Substances and Disease Registry (ATSDR). (2023). Toxicological Profiles. https://www.atsdr. cdc.gov/toxprofiledocs/index.html Ziyaret tarihi: 16 Mart 2023. google scholar
  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials Part A, 323: 274-298. https://doi.org/10.1016/j.jhazmat.2016.04.045 google scholar
  • Akbarzade, S., Chamsaz, M., Rounaghi, G.H., & Ghorbani, M. (2018). Zero valent fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organop-hosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spe-ctrometry. Analytical and Bioanalytical Chemistry, 410: 429-439. https://doi.org/10.1007/s00216-017-0732-9 google scholar
  • Andrady, A.L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8): 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030 google scholar
  • Anh, H.Q., Watanabe, I., Tomioka, K., Minh, T.B., & Takahashi, S. (2019). Characterization of 209 polychlori-nated biphenyls in street dust from northern Vietnam: Contamination status, potential sources, and risk as-sessment. Science of The Total Environment, 652: 345-355. https://doi.org/10.1016/j.scitotenv.2018.10.240 google scholar
  • Antoniadis, V., Shaheen, S.M., Levizou, E., Shahid, M., Niazi, N.K., Vithanage, M., Ok, Y.S., Bolan, N., & Rinklebe, J. (2019). A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. Environment International, 127: 819-847. https://doi.org/10.1016/j.envint.2019.03.039 google scholar
  • Arisekar, U., Shakila, R.J., Shalini, R., Jeyasekaran, G., & Padmavathy, P. (2022). Effect of household culinary processes on organochlorine pesticide residues (OCPs) in the seafood (Penaeus vannamei) and its associ-ated human health risk assessment: Our vision and future scope. Chemosphere, 297: 134075. https://doi. org/10.1016/j.chemosphere.2022.134075 google scholar
  • Ashraf, M.A. (2017). Persistent organic pollutants (POPs): A global issue, a global challenge. Environmental and Science Pollution Research, 24(5): 4223-4227. https://doi.org/10.1007/s11356-015-5225-9 google scholar
  • Aydın, M.E. (2019). Suda mikrokirleticiler ve muhtemel etkileri. Türkiye Bilimler Akademisi (TÜBA), II. Gıda ve Sağlıklı Beslenme Sempozyumu Raporu ‘Su Ürünleri ve Sağlık’. Ankara. google scholar
  • Benedict, L.A. (2007). Recent trends of polychlorinated biphenyls and polybrominated diphenyl ethers in the Hudson River Basin, Thesis (PhD), Rensselaer Polytechnic Institute, New York. google scholar
  • Besha, A.T., Gebreyohannes, A.Y., Tufa, R.A., Bekele, D.N., Curcio, E., & Giorno, L. (2017). Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropol-lutants on membrane fouling: A review. Journal of Environmental Chemical Engineering, 5(3): 2395-2414. https://doi.org/10.1016/j.jece.2017.04.027 google scholar
  • Berkani, M., Vasseghian, Y., Le, V.T., Dragoi, E.N., & Khaneghah, A.M. (2021). The Fenton-like reaction for Arsenic removal from groundwater: Health risk assessment. Environmental Research, 202: 111698. https:// doi.org/10.1016/j.envres.2021.111698 google scholar
  • Birch, G.F. (2017). Determination of sediment metal background concentrations and enrichment in marine en-vironments - A critical review. Science of The Total Environment, 580: 813-831. https://doi.org/10.1016/j. scitotenv.2016.12.028 google scholar
  • Birleşmiş Milletler Çevre Programı (UNEP). (2009). Stockholm Convention, The 12 initial POPs under the Stockholm Convention. http://www.pops.int/TheConvention/ThePOPs/The12InitialPOPs/tabid/296/Default. aspx Ziyaret tarihi: 14 Mart 2023. google scholar
  • Birleşmiş Milletler Çevre Programı (UNEP). (2017). The 16 New POPs, An introduction to the chemicals added to the Stockholm Convention as Persistent Organic Pollutants by the Conference of the Parties, June 2017. google scholar
  • Birleşmiş Milletler Çevre Programı (UNEP). (2019). What are POPs? http://www.pops.int/TheConvention/The-POPs/tabid/673/Default.aspx Ziyaret tarihi: 14 Mart 2023. google scholar
  • Cao, Y., & Li, X. (2014). Adsorption of graphene for the removal of inorganic pollutants in water purification: a review. Adsorption 20: 713-727. https://doi.org/10.1007/s10450-014-9615-y google scholar
  • Cao, J., Wang, G., Wang, T., Chen, J., Wenjing, G., Wu, P., He, X., & Xie, L. (2019). Copper caused reproductive endocrine disruption in zebrafish (Danio rerio). Aquatic Toxicology, 211: 124-136. https://doi.org/10.1016/j. aquatox.2019.04.003 google scholar
  • Çakıroğulları, G.Ç., Uçar, Y., & Kılıç, D. (2009). Dioksin ve dioksin benzeri poliklorlu bifenillerin doğaya ve çevreye etkisi. Ziraat Mühendisliği, 353: 40-43. google scholar
  • Carlile, B. (2006). Pesticide selectivity, health and the environment, Cambridge University press publishing, New York, 9780521010818. https://doi.org/10.1017/CBO9780511617874 google scholar
  • Catania, V., Cascio Diliberto, C., Cigna, V., & Quatrini, P. (2020). Microbes and Persistent Organic Pollutants in the Marine Environment. Water Air and Soil Pollution, 231: 354. https://doi.org/10.1007/s11270-020-04712-w google scholar
  • Chakraborty, P., Khuman, S.N., Selvaraj, S., Sampath, S., Devi, N.L., Bang, J.J., & Katsoyiannis, A. (2016). Polychlorinated biphenyls and organochlorine pesticides in River Brahmaputra from the outer Himalayan Range and River Hooghly emptying into the Bay of Bengal: Occurrence, sources and ecotoxicological risk assessment. Environmental Pollution, 219: 998-1006. https://doi.org/10.1016/j.envpol.2016.06.067 google scholar
  • Dehghani, S., Fararouei, M., Rafiee, A., Hoepner, L., Oskoei, V., & Hoseini, M. (2022). Prenatal exposure to polycyclic aromatic hydrocarbons and effects on neonatal anthropometric indices and thyroid-stimulating hormone in a Middle Eastern population. Chemosphere, 286: 131605. https://doi.org/10.1016/j.chemosphe-re.2021.131605 google scholar
  • De Pinho, J.V., Rodrigues, P.A., Guimarâes, I.D.L., Monteiro, F.C., Ferrari, R.G., Hauser-Davis, R.A., & Con-te-Junior, C.A. (2022). The Role of the ecotoxicology applied to seafood as a tool for human health risk sssessments concerning polycyclic aromatic hydrocarbons. International Journal of Environmental Research and Public Health, 19(3): 1211. https://doi.org/10.3390/ijerph19031211 google scholar
  • EFSA (European Food Safety Authority). (2012). Perfluoroalkylated substances in food: occurrence and dietary exposure. EFSA Journal, 10(6): 2743. https://doi.org/10.2903/j.efsa.2012.2743 google scholar
  • EFSA (European Food Safety Authority). (2018a). Panel on Contaminants in the Food Chain (CONTAM), et al. (2018). Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in food and feed. EFSA Journal, 16(11): e05333. https://doi.org/10.2903/j.efsa.2018.5333 google scholar
  • EFSA (European Food Safety Authority). (2018b). Risk to human health related to the presence of perfluoroocta-ne sulfonic acid and perfluorooctanoic acid in food. EFSA Journal, 16(12): 5194. https://doi.org/10.2903/j. efsa.2018.5194 google scholar
  • EC (European Commission). (2013). Directive 2013/39/EU of the European Parliament and of the council. https://eurlexeuropaeu/legal-content/EN/ALL/?uri=CELEX:32013L0039#ntr7-L_2013226EN01001202 -E0007 Ziyaret tarihi: 13 Mart 2023. google scholar
  • FAO (Food and Agriculture Organization of the United Nations). (2003). International Code of Conduct on the Distribution and Use of Pesticides. https://www.fao.org/publications/card/en/c/f7acebd6-8727-57cf-862d-2c50c876e730/ [Ziyaret tarihi: 13 Mart 2023]. google scholar
  • Fernandes, C., Fontamhas-Fernandes, A., Cabral, D., & Salgado, M.A. (2008). Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz-Paramos lagoon, Portugal. Environmental Monitoring and Asses-sesment, 136: 267-275. https://doi.org/10.1007/s10661-007-9682-6 google scholar
  • Guo, Z., Kodikara, D., Albi, L.S., Hatano, Y., Chen, G., Yoshimura, C., & Wang, J. (2023). Photodegradation of organic micropollutants in aquatic environment: Importance, factors and processes. Water Research, 231: 118236. https://doi.org/10.1016/j.watres.2022.118236 google scholar
  • Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E. (2018). Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of The Total Environment, 636: 299-313. https://doi.org/10.1016/j.scitotenv.2018.04.235 google scholar
  • Hamilton, D., & Crossley, S. (2004). Introduction. In: Hamilton D., Crossley, S. (ed.). Pesticide residues in food and drinking water human exposure and risks, John Wiley & Sons Ltd, England, 1-27. https://doi. org/10.1002/0470091614 google scholar
  • Hoang, H., Chiang, C., Lin, C., Wu, C., Lee, C., Cheruiyot, N.K., Tran, H., & Bui, X. (2021). Human health risk simulation and assessment of heavy metal contamination in a river affected by industrial activities. Environmental Pollution, 285: 117414. https://doi.org/10.1016/j.envpol.2021.117414 google scholar
  • Hojjati-Najafabadi, A., Mansoorianfar, M., Liang, T., Shahin, K., & Karimi-Maleh, H. (2022). A review on mag-netic sensors for monitoring of hazardous pollutants in water resources. Science of The Total Environment, 824: 153844. https://doi.org/10.1016/j.scitotenv.2022.153844 google scholar
  • Hong, Y., Liao, W., Yan, Z., Bai, Y., Feng, C., Xu, Z., & Xu, D. (2020). Progress in the research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. Journal of Chemistry, 2020: 1-12. https://doi.org/10.1155/2020/9010348 google scholar
  • Hossain, M.B., Rakib, R.J., Jolly, Y.N., & Rahman, M. (2021). Metals uptake and translocation in salt marsh macrophytes, Porteresia sp. from Bangladesh coastal area. Science of The Total Environment, 764: 144637. https://doi.org/10.1016/j.scitotenv.2020.144637 google scholar
  • Isangedighi, I.A., & David, G.S. (2019). Heavy metals contamination in fish: effects on human health. Journal of Aquatic Science and Marine Biology, 2(4): 7-12. google scholar
  • Jesus, F., Pereira, J. L., Campos, I., Santos, M., Re, A., Keizer, J., Nogueira, A., Gonçalves, F. J.M., Abrantes, N., & Serpa, D. (2022). A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna. Science of The Total Environment, 820: 153282. https://doi.org/10.1016/j. scitotenv.2022.153282 google scholar
  • Kanwar, V.S., Sharma, A., Srivastav, A.L., & Rani, L. (2020). Phytoremediation of toxic metals present in soil and water environment: a critical review. Environmental Science and Pollution Research, 27: 44835-44860. https://doi.org/10.1007/s11356-020-10713-3 google scholar
  • Karaman, C., Karaman, O., Show, P. L., Orooji, Y., & Karimi-Maleh, H. (2022). Utilization of a double-cross-lin-ked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: Equilibrium, kinetics, thermodynamics and artificial neural network modeling. Environmental Research, 207: 112156. https://doi.org/10.1016/j.envres.2021.112156 google scholar
  • Klima, V., Chadysiene, R., Ivanec-Goranina, R., Jasaitis, D., & Vasiliauskiene, V. (2020). Assessment of Air Pollution with Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofuranes (PCDFs) in Lithuania. Atmosphere, 11(7): 759. https://doi.org/10.3390/atmos11070759 google scholar
  • Kortei, N.K., Heymann, M.E., Essuman, E.K., Kpodo, F.M., Akonor, P.T., Lokpo, S.Y., Boadi, N.O., Ayim-A-konor, M., & Tettey, C. (2020). Health risk assessment and levels of toxic metals in fishes (Oreochromis noliticus and Clarias anguillaris) from Ankobrah and Pra basins: Impact of illegal mining activities on food safety. Toxicology Reports, 7: 360-369. https://doi.org/10.1016/j.toxrep.2020.02.011 google scholar
  • Leite, L.C.S., Vieira de Lima, N., Melo, E.S.P., Cardozo, C.M.L., & Nascimento, V.A. (2022). Exposure to toxic metals and health risk assessment through ingestion of canned sardines sold in Brazil. International Journal of Environmental Research and Public Health, 19: 7678. https://doi.org/10.3390/ijerph19137678 google scholar
  • Li, X., Yang, B., Yang, J., Fan, Y., Qian, X., & Li, H. (2021). Magnetic properties and its application in the prediction of potentially toxic elements in aquatic products by machine learning. Science of The Total Environment, 783: 147083. https://doi.org/10.1016/j.scitotenv.2021.147083 google scholar
  • Ling, M. P., Hsu, H. T., Shie, R. H., Wu, C., & Hong, Y. (2009). Health Risk of Consuming Heavy Metals in Farmed Tilapia in Central Taiwan. Bulletin of Environmental Contamination and Toxicology, 83: 558-564. https://doi.org/10.1007/s00128-009-9829-y google scholar
  • Liu, M., Xu, Y., Nawab, J., Rahman, Z., Khan, S., Idress, M., Ud din, Z., Ali, A., Ahmad, R., Khan, S., Khan, A., Khan, M.Q., Tang, Y., & Li, G. (2020). Contamination features, geo-accumulation, enrichments and human health risks of toxic heavy metal(loids) from fish consumption collected along Swat River. Pakistan. Environmental Technology & Innovation, 100554. https://doi.org/10.1016/j.eti.2019.100554 google scholar
  • Madima, N., Mishra, S.B., Inamuddin, I., & Mishra, A.K. (2020). Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review. Environmental Chemistry Letters, 18: 11691191. https://doi.org/10.1007/s10311-020-01001-0 google scholar
  • Marcantonio, V., Bocci, E., Ouweltjes, J.P., Zotto, L.D., & Monarca, D. (2020). Evaluation of sorbents for high temperature removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus. International Journal of Hydrogen Energy, 45(11): 6651-6662.https://doi.or-g/10.1016/j.ijhydene.2019.12.142 google scholar
  • Marella, T.K., Saxena, A., & Tiwari, A. (2020). Diatom mediated heavy metal remediation: a review. Bioresource Technology, 305: 123068. https://doi.org/10.1016/j.biortech.2020.123068 google scholar
  • Mishra, A., Kumari, M., Swati, Kumar, R., Iqbal, K., & Thakur, I.S. (2022). Persistent organic pollutants in the environment: Risk assessment, hazards, and mitigation strategies. Bioresource Technology Reports, 19: 101143. https://doi.org/10.1016/j.biteb.2022.101143 google scholar
  • Nadal, M., Marques, M., Mari, M., & Domingo, J.L. (2015). Climate change and environmental concentrations of POPs: a review. Environmental Research, 143: 177-185. https://doi.org/10.1016/j.envres.2015.10.012 google scholar
  • Ngoubeyou, P.S.K., Wolkersdorfer, C., Ndibewu, P.P., & Augustyn, W. (2022). Toxicity of polychlorinated biphenyls in aquatic environments - A review. Aquatic Toxicology, 251, 106284. https://doi.org/10.1016/j. aquatox.2022.106284 google scholar
  • Nasrollahzadeh, M., Sajjadi, M., Iravani, S., & Varma, R.S. (2021). Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydrate Polymers, 251, 116986. https://doi.org/10.1016/j.carbpol.2020.116986 google scholar
  • NTP (National Toxicology Program). (2016). Immunotoxicity Associated with Exposure to Perfluorooctanoic Acid or Perfluorooctane Sulfonate. https://ntp.niehs.nih.gov/ntp/ohat/pfoa_pfos/pfoa_pfosmonograph_508.pdf. google scholar
  • Ofori, S.A., Cobbina, S.J. & Doke, D.A. (2020). The occurrence and levels of polycyclic aromatic hydrocarbons (PAHs) in African environments-a systematic review. Environmental Science and Pollution Research, 27, 32389-32431. https://doi.org/10.1007/s11356-020-09428-2 google scholar
  • Rimayi, C.C. (2011). Influence of matrix effect on selected organochlorine pesticide residues in water from the Jukskei River catchment: Gauteng, South Africa, Boca Raton, Florida, USA, pp. 18-21. google scholar
  • Rusin, M., Dziubanek, G., Marchwinska-Wyrwal, E., Cwieİ4g-Drabek, M., Razzaghi, M., & Piekut, A. (2019). PCDDs, PCDFs and PCBs in locally produced foods as health risk factors in Silesia Province, Poland. Eco-toxicology and Environmental Safety, 172: 128-135. https://doi.org/10.1016/j.ecoenv.2019.01.052 google scholar
  • Saher, N.U., & Kanwal, N. (2019). Assessment of some heavy metal accumulation and nutritional quality of shel-lfish with reference to human health and cancer risk assessment: a seafood safety approach. Environmental Science and Pollution Research, 26: 5189-5201. https://doi.org/10.1007/s11356-018-3764-6 google scholar
  • Sajid, M., Nazal, M.K., Ihsanullah, Baig, N., & Osman, A.M. (2018). Removal of heavy metals and organic pollutants from water using dendritic polymers-based adsorbents: a critical review. In: Separation and Pu-rification Technology, 191: 400-423. https://doi.org/10.1016/j.seppur.2017.09.011 google scholar
  • Sharabati, M.A., Abokwiek, R., Al-Othman, A., Tawalbeh, M., Karaman, C., Orooji, Y., & Karimi, F. (2021). Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. Environmental Research, 202: 111694. https://doi.org/10.1016/j.env-res.2021.111694 google scholar
  • Singh, A.K., & Chandra, R. (2019). Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. Aquatic Toxicology, 211: 202-216. https://doi.org/10.1016/j.aquatox.2019.04.007 google scholar
  • Sumudumali, R.G.I., & Jayawardana, J.M.C.K. (2021). A Review of Biological Monitoring of Aquatic Ecosys-tems Approaches: With Special Reference to Macroinvertebrates and Pesticide Pollution. Environmental Management, 67: 263-276. https://doi.org/10.1007/s00267-020-01423-0 google scholar
  • Sun, K., Song, Y., He, F., Jing, M., Tang, J., & Liu, R., 2021. A review of human and animals’ exposure to polycyclic aromatic hydrocarbons: health risk and adverse effects, photoinduced toxicity and regulating effect of microplastics. Science of the Total Environment, 773: 145403. https://doi.org/10.1016/j.scito-tenv.2021.145403 google scholar
  • Ulusoy, Ş. (2023). Determination of toxic metals in canned tuna sold in developed and developing countries: Health risk assessment associated with human consumption. Marine Pollution Bulletin, 187: 114518. https:// doi.org/10.1016/j.marpolbul.2022.114518 google scholar
  • Umapathi, R., Sonwal, S., Lee, M. J., Mohana Rani, G., Lee, E.-S., Jeon, T.-J., Kang, S.-M., Oh, M.-H., & Huh, Y.S. (2021). Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coordination Chemistry Reviews, 446: 214061. https:// doi.org/10.1016/j.ccr.2021.214061 google scholar
  • USEPA (United States Environmental Protection Agency). (2000). Guidance for Assessing Chemical Contami-nant Data for Use in Fish Advisories, Volume 2: Risk Assessment and Fish Consumption Limits, 3rd ed.; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2000. google scholar
  • USEPA (United States Environmental Protection Agency). (2014). Toxic and priority pollutants under the clean water act. https://19january2017snapshotepagov/eg/toxic-and-priority-pollutants-under-clean-water-act_ html#priority Ziyaret tarihi: 13 Mart 2023. google scholar
  • USEPA (United States Environmental Protection Agency). (2022). USEPA Regional Screening Level (RSL) Summary Table. United States Environmental Protection Agency, Washington, DC, USA. google scholar
  • USEPA (United States Environmental Protection Agency). (2023). Our Current Understanding of the Human Health and Environmental Risks of PFAS. https://www.epa.gov/pfas/our-current-understanding-human-he-alth-and-environmental-risks-pfas google scholar
  • Tahir, M.B., Nawaz, T., Nabi, G., Sagir, M., Khan, M.I., & Malik, N. (2022). Role of nanophotocatalysts for the treatment of hazardous organic and inorganic pollutants in wastewater. International Journal of Environmen-tal Analytical Chemistry, 102(2): 491-515. https://doi.org/10.1080/03067319.2020.1723570 google scholar
  • Thanigaivel, S., Vickram, S., Dey, N., Jeyanthi, P., Subbaiya, R., Kim, W., Govarthanan, M., & Karmegam, N. (2023). Ecological disturbances and abundance of anthropogenic pollutants in the aquatic ecosystem: Critical review of impact assessment on the aquatic animals. Chemosphere, 313: 137475. https://doi.or-g/10.1016/j.chemosphere.2022.137475 google scholar
  • Wang, B. (2012). Polychlorinated biphenyls in fish from Maryland waters, Thesis (Master of Science), University of Maryland Baltimore County. google scholar
  • Wickrama-Arachchige, A.U., Guruge, K.S., Inagaki, Y., Tani, H., Dharmaratne, T.S., Niizuma, Y., & Ohura, T. (2021). Halogenated polycyclic aromatic hydrocarbons in edible aquatic species of two Asian countries: Congener profiles, biomagnification, and human risk assessment. Food Chemistry, 360: 130072. https://doi. org/10.1016/j.foodchem.2021.130072 google scholar
  • WHO (World Health Organisation). (2002). Polychlorinated dibenzodioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls. In: Safety evaluation of certain food additives and contaminants. Geneva, World Health Organization (WHO Food Additives Series No. 48; http://www.inchem.org/docu-ments/jecfa/jecmono/v48je20.htm google scholar
  • WHO (World Health Organisation). (2017). Progress on drinking water, sanitation and hygiene. https://apps. who.int/iris/bitstream/handle/10665/258617/9?sequence=1 google scholar
  • WHO (World Health Organisation). (2019). Preventing disease through healthy environments: exposure to dioxins and dioxin-like sybstances: a major public health concern. https://apps.who.int/iris/handle/10665/329485 google scholar
  • Yang, L. (2007) Organochlorine pesticides in sediments from Long Island Sounds, Proquest Information and Learning Company, USA, pp. 3-11. google scholar
  • Yang, G., He, Z., Liu, X., Liu, C., Zhan, J., Liu, D., Wang, P., & Zhou, Z. (2016). Polymer-coated magnetic nanospheres for preconcentration of organochlorine and pyrethroid pesticides prior to their determination by gas chromatography with electron capture detection. Microchimica Acta, 183: 1187-1194. https://doi. org/10.1007/s00604-015-1725-z google scholar
  • Yim, U.H., Hong, S.H., Shim, W.J., Oh, J.R., & Chang, M. (2005). Spatio-temporal distribution and characte-ristics of PAHs in sediments from Masan Bay, Korea. Marine Pollution Bulletin, 50(3): 319-326. https:// doi.org/10.1016/j.marpolbul.2004.11.003 google scholar
  • Zacharia, J.T. (2019). Degradation pathways of persistent organic pollutants (POPs) in the environment. In: Persistent Organic Pollutants. Intech Open, London, UK. google scholar
  • Zaynab, M., Fatima, M., Sharif, Y., Sughra, K., Sajid, M., Khan, K.A., Sneharani, A.H., & Li, S. (2021). Health and environmental effects of silent killers Organochlorine pesticides and polychlorinated biphenyl. Journal of King Saud University - Science, 33(6): 101511. https://doi.org/10.1016/j.jksus.2021.101511 google scholar
  • Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K.A., & Li, S. (2022). Health and environmental effects of heavy metals. Journal of King Saud University - Science, 34(1): 101653. https:// doi.org/10.1016/j.jksus.2021.101653 google scholar
  • Zhang, J., Yang, R., Li, Y. C., Peng, Y., Wen, X., & Ni, X. (2020). Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotoxicology and Environ-mental Safety, 195(1): 110475. https://doi.org/10.1016/j.ecoenv.2020.110475 google scholar
  • Zhang, J., Zhang, X., Hu, T., Xu, X., Zhao, D., Wang, X., Li, L., Yuan, X., Song, C., & Zhao, S. (2022). Poly-cyclic aromatic hydrocarbons (PAHs) and antibiotics in oil-contaminated aquaculture areas: Bioaccumula-tion, influencing factors, and human health risks. Journal of Hazardous Materials, 437: 129365. https://doi. org/10.1016/j.jhazmat.2022.129365 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.