CHAPTER


DOI :10.26650/B/LSB23LSB24.2024.026.013   IUP :10.26650/B/LSB23LSB24.2024.026.013    Full Text (PDF)

Non-thermal Applications - Pulse Electric Field, Ultrasound, Ultraviolet Light, Pulse Light, Cold Plasma Applications

Didem Üçok

Non-thermal applications are modern technologies used to enhance the quality and safety of seafood. While traditional thermal processes extend the shelf life of foods and inactivate pathogenic microorganisms, these processes can cause nutrient losses and chemical changes. Non-thermal applications are environmentally friendly and cause less damage to the nutritional value of seafood. These methods include pulsed electric field (PEF), ultrasound, ultraviolet light, pulsed light, and cold plasma applications. PEF uses strong electric currents to inactivate microorganisms and facilitate the processing of food materials. Ultrasound uses high-frequency sound waves to inactivate microorganisms and is used in food processing. Ultraviolet light and pulsed light technologies kill microorganisms and decontaminate food surfaces. Cold plasma application uses ionised neutral gas to inactivate microorganisms and extend the shelf life of seafood. The advantages of non-thermal applications include preserving nutritional value, energy efficiency, environmentally friendly, and the production of minimally processed products. However, the disadvantages include the high costs of some technologies, limited widespread use in large-scale applications, and incomplete understanding of the effects of some methods. Non-thermal applications are increasingly used in the seafood industry to obtain minimally processed, long shelf-life, and safer products. However, further research is needed to apply these technologies on a larger scale.


DOI :10.26650/B/LSB23LSB24.2024.026.013   IUP :10.26650/B/LSB23LSB24.2024.026.013    Full Text (PDF)

Isıl Olmayan Uygulamalar - Darbeli̇ Elektri̇k Alan, Ultrason, Ultravi̇yole Işık, Darbeli̇ Işık, Soğuk Plazma Uygulamaları

Didem Üçok

Isıl olmayan uygulamalar, su ürünlerinin kalite ve güvenliğini artırmak için kullanılan modern teknolojilerdir. Geleneksel ısıl işlemler, besinlerin raf ömrünü uzatmak ve patojen mikroorganizmaları etkisiz hale getirmek için kullanılırken, bu işlemler besin değerinde kayıplara ve kimyasal değişimlere neden olabilir. Isıl olmayan uygulamalar, su ürünlerinin besin değerini koruyarak daha az zarar verir ve çevre dostudur. Bu yöntemler arasında darbeli elektrik alan (DEA), ultrason, ultraviyole ışık, darbeli ışık ve soğuk plazma uygulamaları bulunur. DEA, güçlü elektrik akımları kullanarak mikroorganizmaları etkisiz hale getirir ve gıda maddelerinin işlenmesini kolaylaştırır. Ultrason, yüksek frekanslı ses dalgaları kullanarak mikroorganizmaları inaktive eder ve gıda işleme süreçlerinde kullanılır. Ultraviyole ışık ve darbeli ışık teknolojileri, mikroorganizmaları öldürerek gıda yüzeylerini dekontamine eder. Soğuk plazma uygulaması, nötr iyonize gaz kullanarak mikroorganizmaları etkisiz hale getirir ve su ürünlerinin raf ömrünü uzatır. Isıl olmayan uygulamaların avantajları arasında besin değerinin korunması, enerji verimliliği, çevre dostu olmaları ve minimal işlenmiş ürünlerin elde edilmesi sayılabilir. Dezavantajları ise, bazı teknolojilerin yüksek maliyetli olması, geniş ölçekli uygulamalarda henüz yeterince yaygınlaşmamış olmaları ve bazı yöntemlerin etkisinin tam olarak anlaşılamamış olmasıdır. Isıl olmayan uygulamalar, su ürünleri endüstrisinde minimal işlenmiş, uzun raf ömrüne sahip ve güvenliği artırılmış ürünler elde etmek için giderek daha fazla kullanılmaktadır. Ancak, bu teknolojilerin geniş ölçekte uygulanabilmesi için daha fazla araştırmaya ihtiyaç vardır.



References

  • Aadil, R.M., Zeng, X.A., Ali, A., Zeng, F., Faooq, M.A., Han, Z., et al. (2005). Influence of different pulsed electric field strengths on the quality of the grapefruit juice. International Journal of Food Science and Technology, 50: 2290-2296. https://doi.org/10.1111/ijfs.12891 google scholar
  • Albertos, I., Martm-Diana, A., Cullen, P. J., Tiwari, B. K., Ojha, S. K., Bourke, P., Alvarez, C., Rico, D. (2017). Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parame-ters of fresh mackerel (Scomber scombrus) fillets. Innovative Food Science & Emerging Technologies, 44: 117-122. https://doi.org/10.1016/j.ifset.2017.07.006 google scholar
  • Albertos, I., Martin-Diana, A. B., Cullen, P. J., Tiwari, B. K., Ojha, K. S., Bourke, P., & Rico, D. (2019). Shel-f-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. Innovative Food Science & Emerging Technologies, 53: 85-91. https://doi.org/10.1016/j.ifset.2017.09.010 google scholar
  • Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H. & Wu, F. (2010). Effect of ultrason treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control, 21(4): 529-532. https://doi.org/10.1016/j. foodcont.2009.08.002 google scholar
  • Chauhan, N., Singh, J., Chandra, S., Chaudhary, V. & Kumar, V. (2018). “Non-thermal techniques: Application in food industries” A review. Journal of Pharmacognosy and Phytochemistry, 7(5): 1507-1518. google scholar
  • Cheigh, C.I., Hwang, H.J. & Chung, M.S. (2013). Intense pulsed light (IPL) and UV-C treatments for inactivating Listeria monocytogenes on solid medium and seafoods. Food Research International, 54(1): 745-752. https:// doi.org/10.1016/j.foodres.2013.08.025 google scholar
  • Chemat, F., Zil-e, Huma. Khan, M.K. (2011). Applications of ultrason in food technology: processing, pre-servation and extraction. Ultrasonics Sonochemistry, 18(4): 813-835. https://doi.org/10.1016/j.ultson-ch.2010.11.023 google scholar
  • Chen, J., Wang, S.Z., Chen, J.Y., Chen, D.Z., Deng, S.G. & Xu, B. (2019). Effect of cold plasma on maintai-ning the quality of chub mackerel (Scomber japonicus): Biochemical and sensory attributes. Journal of the Science of Food and Agriculture, 99(1): 39-46. https://doi.org/10.1002/jsfa.9138 google scholar
  • Choudhary, R. & Bandla, S. (2012). Ultraviolet pasteurization for food industry. International Journal of Food Science and Nutrition Engineering, 2(1): 12-15. https://doi.org/10.5923/j.food.20120201.03 google scholar
  • Dasan, B.G., Boyaci, I.H., & Mutlu, M. (2017). Nonthermal plasma treatment of Aspergillus spp. spores on hazelnuts in an atmospheric pressure fluidized bed plasma system: Impact of process parameters and sur-veillance of the residual viability of spores. Journal of Food Engineering, 196: 139-149. https://doi.or-g/10.1016/j.jfoodeng.2016.09.028 google scholar
  • Dolatowski, Z.J., Stadnik, J., & Stasiak, D. (2007). Applications of ultrason in food technology. Acta Scientiarum Polonorum Technologia Alimentaria, 6(3): 88-99. google scholar
  • Dong, S., Gao, A., Zhao, Y., Li, Y.T., & Chen, Y. (2017). Characterization of physicochemical and structural properties of atmospheric cold plasma (ACP) modified zein. Food and Bioproducts Processing, 106: 65-74. https://doi.org/10.1016/j.fbp.2017.05.011 google scholar
  • Ekonomou, S.I., & Boziaris, I.S. (2021). Non-thermal methods for ensuring the microbiological quality and safety of seafood. Applied Sciences, 11(2): 833. https://doi.org/10.3390/app11020833 google scholar
  • Gavahian, M., Chu, Y.H., Khaneghah, A.M., Barba, F.J., & Misra, N.N. (2018). A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science & Technology, 77: 32-41. https://doi. org/10.1016/j.tifs.2018.04.009 google scholar
  • Gomez-Lopez, V.M., Ragaert, P., Debevere, J., & Devlieghere, F. (2007). Pulsed light for food decontamination: a review. Trends in Food Science and Technology, 18(9): 464-473. https://doi.org/10.1016/j.tifs.2007.03.010 google scholar
  • Hassoun, A., Ojha, S., Tiwari, B., Rustad, T., Nilsen, H., Heia, K., Cozzolino, D., Bekhit, A.E., Biancolillo, A., Wold, J.P. (2020). Monitoring thermal and non-thermal treatments during processing of muscle foods: A comprehensive review of recent technological advances. Applied Sciences, 10(19): 6802. https://doi. org/10.3390/app10196802 google scholar
  • Heinrich, V., Zunabovic, M., Varzakas, T., Bergmair, J., & Kneifel, W. (2016). Pulsed light treatment of different food types with a special focus on meat: a critical review. Critical Reviews in Food Science and Nutrition, 56(4): 591-613. https://doi.org/10.1080/10408398.2013.826174 google scholar
  • Jadhav, H.B., Annapure, U.S., & Deshmukh, R.R. (2021). Non-thermal technologies for food processing. Fron-tiers in Nutrition, 8: 657090. https://doi.org/10.3389/fnut.2021.657090 google scholar
  • Jayasooriya, S.D., Torley, P.J., D’arcy, B.R. & Bhandari, B.R. (2007). Effect of high power ultrason and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. Meat Science, 75(4): 628639. https://doi.org/10.1016/j.meatsci.2006.09.010 google scholar
  • John, D. & Ramaswamy, H.S. (2018). Pulsed light technology to enhance food safety and quality: a mini-review. Current Opinion in Food Science, 23: 70-79. https://doi.org/10.1016/j.cofs.2018.06.004 google scholar
  • Keener, L. & Krishnamurthy, K. (2014). Shedding light on food safety: Applications of pulsed light processing. Food Safety Magazine, 20(3), 28-33. google scholar
  • Kontominas, M.G., Badeka, A.V., Kosma, I.S., Nathanailides, C.I., 2021 Innovative Seafood Preservation Tech-nologies: Recent Developments Animals, 11: 92. https://doi.org/10.3390/ani11010092 google scholar
  • Mandal, R., Mohammadi, X., Wiktor, A., Singh, A., & Pratap Singh, A. (2020). Applications of pulsed light decontamination technology in food processing: An overview. Applied Sciences, 10(10): 3606. https://doi. org/10.3390/app10103606 google scholar
  • Marquenie, D., Geeraerd, A.H., Lammertyn, J., Soontjens, C., Van Impe, J.F., Michiels, C.W. & Nicolaı, B.M. (2003). Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. International journal of food microbiology, 85(1-2), 185-196. https://doi. org/10.1016/S0168-1605(02)00538-X google scholar
  • McClements, D.J. (1995). Advances in the application of ultrason in food analysis and processing. Trends in Food Science and Technology, 6(9): 293-299. https://doi.org/10.1016/S0924-2244(00)89139-6 google scholar
  • McClurkin-Moore, J.D., Ileleji, K.E., & Keener, K.M. (2017). The effect of high-voltage atmospheric cold plasma treatment on the shelf-life of distillers wet grains. Food and Bioprocess Technology, 10: 1431-1440. https://doi.org/10.1007/s11947-017-1903-6 google scholar
  • Misra, N.N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inacio, R. S., Saraiva, J.A., Barba, F.J. (2017). Landmarks in the historical development of twenty first century food processing technologies. Food Rese-arch International, 97: 318-339. https://doi.org/10.1016/j.foodres.2017.05.001 google scholar
  • Misra, N.N., Seeratpreet Kaur, Brijesh K. Tiwari, Amritpal Kaur, Narpinder Singh, and P. J. Cullen. (2015). At-mospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44: 115-121. https:// doi.org/10.1016/j.foodhyd.2014.08.019 google scholar
  • Mol, S., Akan, T., Kartal, S., Coşansu, S., Tosun, Ş. Y., Alakavuk, D. Ü., Ulusoy, Ş., Doğruyol, H., Bostan, K. (2023). Effects of Air and Helium Cold Plasma on Sensory Acceptability and Quality of Fresh Sea Bass (Dicentrarchus labrax). Food and Bioprocess Technology, 16(3): 537-548. https://doi.org/10.1007/s11947-022-02950-w google scholar
  • Neetoo, H. & Chen, H. (2014). Alternative food processing technologies. Food processing: Principles and app-lications, 137-169. https://doi.org/10.1002/9781118846315.ch7 google scholar
  • Niemira, B. A., Boyd, G. & Sites, J. (2014). Cold plasma rapid decontamination of food contact surfaces contami-nated with Salmonella biofilms. Journal of Food Science, 79(5): M917-M922. https://doi.org/10.1111/1750-3841.12379 google scholar
  • Nowosad, K., Sujka, M., Pankiewicz, U. & Kowalski, R. (2021). The application of PEF technology in food pro-cessing and human nutrition. Journal of Food Science and Technology, 58: 397-411. https://doi.org/10.1007/ s13197-020-04512-4 google scholar
  • Olatunde, O.O. & Benjakul, S. (2018). Nonthermal processes for shelf-life extension of seafoods: A revisit. Comprehensive Reviews in Food Science and Food Safety, 17(4): 892-904. https://doi.org/10.1111/1541-4337.12354 google scholar
  • Olatunde, O.O., Benjakul, S. & Vongkamjan, K. (2020). Shelf-life of refrigerated Asian sea bass slices treated with cold plasma as affected by gas composition in packaging. International Journal of Food Microbiology, 324: 108612. https://doi.org/10.1016/j.ijfoodmicro.2020.108612 google scholar
  • Olatunde, O.O., Shiekh, K.A. & Benjakul, S. (2021). Pros and cons of cold plasma technology as an alternative non-thermal processing technology in seafood industry. Trends in Food Science and Technology, 111: 617627. https://doi.org/10.1016/j.tifs.2021.03.026 google scholar
  • de Oliveira Bottino, F., Rodrigues, B.L., de Nunes Ribeiro, J.D., Lazaro, C.A., & Conte-Junior, C.A. (2016). Effect of UV-C radiation on shelf life of vacuum package Colossoma macropomum x Piaractus mesopota-micus fillets. Procedia Food Science, 7: 13-16. https://doi.org/10.1016/j.profoo.2016.02.077 google scholar
  • Oms-Oliu, G., Martm-Belloso, O. & Soliva-Fortuny, R. (2010). Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology, 3: 13-23. https://doi.org/10.1007/s11947-008-0147-x google scholar
  • Pankaj, S.K., Wan, Z., & Keener, K.M. (2018). Effects of cold plasma on food quality: A review. Foods, 7(1): 4. https://doi.org/10.3390/foods7010004 google scholar
  • Rezek Jambrak, A., Nutrizio, M., Djekic, I., Pleslic, S., & Chemat, F. (2021). Internet of nonthermal food pro-cessing technologies (IoNTP): Food industry 4.0 and sustainability. Applied Sciences, 11(2), 686. https:// doi.org/10.3390/app11020686 google scholar
  • Roberts, P. & Hope, A. (2003). Virus inactivation by high intensity broad spectrum pulsed light. Journal of Virological Methods, 110(1): 61-65. https://doi.org/10.1016/S0166-0934(03)00098-3 google scholar
  • Rodrigues, B. L., da Silveira Alvares, T., Sampaio, G.S.L., Cabral, C.C., Araujo, J.V.A., Franco, R.M., Mano, S.B., Junior, C.A.C. (2016). Influence of vacuum and modified atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets. Food Control, 60: 596-605. https://doi.org/10.1016/j.foodcont.2015.09.004 google scholar
  • Ranjha, M.M.A., Kanwal, R., Shafique, B., Arshad, R.N., Irfan, S., Kieliszek, M., Kowalczewski, M., Muham-mad, I., Muhammad, Z.K., Roobab, U. & Aadil, R.M. (2021). A critical review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules, 26(16): 4893. https://doi.org/10.3390/ molecules26164893 google scholar
  • Rosario, D.K., Rodrigues, B.L., Bernardes, P.C., & Conte-Junior, C.A. (2021). Principles and applications of non-thermal technologies and alternative chemical compounds in meat and fish. Critical reviews in Food Science and Nutrition, 61(7): 1163-1183. https://doi.org/10.1080/10408398.2020.1754755 google scholar
  • Rowan, N.J., MacGregor, S.J., Anderson, J.G., Fouracre, R.A., McIlvaney, L. & Farish, O. (1999). Pulsed-light inactivation of food-related microorganisms. Applied and Environmental Microbiology, 65(3): 1312-1315. https://doi.org/10.1128/AEM.65.3.1312-1315.1999 google scholar
  • dos Santos Aguilar, J.G. (2019). Pulsed light treatment in food. Chemical Reports, 1(2): 108-111. https://doi. org/10.25082/CR.2019.02.007 google scholar
  • Sireesha, T., Gowda, N.N., & Kambhampati, V. (2022). Ultrasonication in seafood processing and preservati-on: a comprehensive review. Applied Food Research, 100208. https://doi.org/10.1016/j.afres.2022.100208 google scholar
  • Sharma, R.R. & Demirci, A. (2003). Inactivation of Escherichia coli O157: H7 on inoculated alfalfa seeds with pulsed ultraviolet light and response surface modeling. Journal of Food Science, 68(4): 1448-1453. https:// doi.org/10.1111/j.1365-2621.2003.tb09665.x google scholar
  • Singla, M. & Sit, N. (2021). Application of ultrason in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73: 105506. https://doi.org/10.1016/j.ultsonch.2021.105506 google scholar
  • Szeto, W., Yam, W.C., Huang, H. & Leung, D.Y. (2020). The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens. BMC Infectious Diseases, 20(1): 1-9. https://doi.org/10.1186/ s12879-020-4847-9 google scholar
  • Tao, Y. & Sun, D. W. (2015). Enhancement of food processes by ultrason: a review. Critical Reviews in Food Science and Nutrition, 55(4): 570-594. https://doi.org/10.1080/10408398.2012.667849 google scholar
  • Toyokawa, Y., Yagyu, Y., Yamashiro, R., Ninomiya, K. & Sakudo, A. (2018). Roller conveyer system for the reduction of pesticides using non-thermal gas plasma-A potential food safety control measure? Food Control, 87: 211-217. https://doi.org/10.1016/j.foodcont.2017.12.030 google scholar
  • Troy, D.J., Ojha, K.S., Kerry, J.P., & Tiwari, B.K. (2016). Sustainable and consumer-friendly emerging te-chnologies for application within the meat industry: An overview. Meat Science, 120: 2-9. https://doi. org/10.1016/j.meatsci.2016.04.002 google scholar
  • Turantaş, F., Kılıç, G.B., & Kılıç, B. (2015). Ultrason in the meat industry: General applications and decon-tamination efficiency. International Journal of Food Microbiology, 198: 59-69. https://doi.org/10.1016/j. ijfoodmicro.2014.12.026 google scholar
  • Aadil, R.M., Zeng, X.A., Ali, A., Zeng, F., Faooq, M.A., Han, Z., et al. (2015). Influence of different pulsed electric field strengths on the quality of the grapefruit juice. International Journal of Food Science and Technology, 50: 2290-2296. https://doi.org/10.1111/ijfs.12891 google scholar
  • Albertos, I., Martm-Diana, A., Cullen, PJ., Tiwari, B.K., Ojha, S. K., Bourke, P., Alvarez, C. & Rico, D. (2017). Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parame-ters of fresh mackerel (Scomber scombrus) fillets. Innovative Food Science and Emerging Technologies, 44: 117-122. https://doi.org/10.1016/j.ifset.2017.07.006 google scholar
  • Albertos, I., Martin-Diana, A.B., Cullen, P.J., Tiwari, B.K., Ojha, K.S., Bourke, P. & Rico, D. (2019). Shelf-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. Innovative Food Science & Emerging Technologies, 53: 85-91. https://doi.org/10.1016/j.ifset.2017.09.010 google scholar
  • Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H. & Wu, F. (2010). Effect of ultrason treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control, 21(4), 529-532. https://doi.org/10.1016/j. foodcont.2009.08.002 google scholar
  • Chauhan, N., Singh, J., Chandra, S., Chaudhary, V. & Kumar, V. (2018). “Non-thermal techniques: Application in food industries” A review. Journal of Pharmacognosy and Phytochemistry, 7(5): 1507-1518. google scholar
  • Cheigh, C.I., Hwang, H.J. & Chung, M.S. (2013). Intense pulsed light (IPL) and UV-C treatments for inactivating Listeria monocytogenes on solid medium and seafoods. Food Research International, 54(1): 745-752. https:// doi.org/10.1016/j.foodres.2013.08.025 google scholar
  • Chemat, F. & Muhammed Kamran Khan, Zil-e H. (2011). Applications of ultrason in food technology: pro-cessing, preservation and extraction. Ultrasonics Sonochemistry, 18(4): 813-835. https://doi.org/10.1016/j. ultsonch.2010.11.023 google scholar
  • Chen, J., Wang, S.Z., Chen, J.Y., Chen, D.Z., Deng, S.G. & Xu, B. (2019). Effect of cold plasma on maintai-ning the quality of chub mackerel (Scomber japonicus): Biochemical and sensory attributes. Journal of the Science of Food and Agriculture, 99(1): 39-46. https://doi.org/10.1002/jsfa.9138 google scholar
  • Choudhary, R. & Bandla, S. (2012). Ultraviolet pasteurization for food industry. International Journal of Food Science and Nutrition Engineering, 2(1): 12-15. https://doi.org/10.5923/j.food.20120201.03 google scholar
  • Dasan, B.G., Boyaci, I.H. & Mutlu, M. (2017). Nonthermal plasma treatment of Aspergillus spp. spores on hazelnuts in an atmospheric pressure fluidized bed plasma system: Impact of process parameters and surveillance of the residu-al viability of spores. Journal of Food Engineering, 196: 139-149. https://doi.org/10.1016/j.jfoodeng.2016.09.028 google scholar
  • Dolatowski, Z.J., Stadnik, J. & Stasiak, D. (2007). Applications of ultrason in food technology. Acta Scientiarum Polonorum Technologia Alimentaria, 6(3): 88-99. google scholar
  • Dong, S., Gao, A., Zhao, Y., Li, Y.T. & Chen, Y. (2017). Characterization of physicochemical and structural properties of atmospheric cold plasma (ACP) modified zein. Food and Bioproducts Processing, 106: 65-74. https://doi.org/10.1016/j.fbp.2017.05.011 google scholar
  • Ekonomou, S. I. & Boziaris, I. S. (2021). Non-thermal methods for ensuring the microbiological quality and safety of seafood. Applied Sciences, 11(2): 833. https://doi.org/10.3390/app11020833 google scholar
  • Gavahian, M., Chu, Y.H., Khaneghah, A.M., Barba, F.J. & Misra, N.N. (2018). A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science and Technology, 77: 32-41. https://doi. org/10.1016/j.tifs.2018.04.009 google scholar
  • Gomez-Lopez, V.M., Ragaert, P., Debevere, J. & Devlieghere, F. (2007). Pulsed light for food decontamination: a review. Trends in Food Science and Technology, 18(9): 464-473. https://doi.org/10.1016/j.tifs.2007.03.010 google scholar
  • Hassoun, A., Ojha, S., Tiwari, B., Rustad, T., Nilsen, H., Heia, K., Cozzolino, D., Bekhit, A.E., Biancolillo, A. & Wold, J.P. (2020). Monitoring thermal and non-thermal treatments during processing of muscle foods: A comprehensive review of recent technological advances. Applied Sciences, 10(19): 6802. https://doi. org/10.3390/app10196802 google scholar
  • Heinrich, V., Zunabovic, M., Varzakas, T., Bergmair, J. & Kneifel, W. (2016). Pulsed light treatment of different food types with a special focus on meat: a critical review. Critical Reviews in Food Science and Nutrition, 56(4): 591-613. https://doi.org/10.1080/10408398.2013.826174 google scholar
  • Jadhav, H.B., Annapure, U.S. & Deshmukh, R.R. (2021). Non-thermal technologies for food processing. Fron-tiers in Nutrition, 8: 657090. https://doi.org/10.3389/fnut.2021.657090 google scholar
  • Jayasooriya, S.D., Torley, P.J., D’arcy, B.R. & Bhandari, B.R. (2007). Effect of high power ultrason and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. Meat Science, 75(4): 628639. https://doi.org/10.1016/j.meatsci.2006.09.010 google scholar
  • John, D. & Ramaswamy, H.S. (2018). Pulsed light technology to enhance food safety and quality: a mini-review. Current Opinion in Food Science, 23: 70-79. https://doi.org/10.1016/j.cofs.2018.06.004 google scholar
  • Keener, L. & Krishnamurthy, K. (2014). Shedding light on food safety: Applications of pulsed light processing. Food Safety Magazine, 20(3): 28-33. google scholar
  • Kontominas, M.G., Badeka, A.V., Kosma, I.S. & Nathanailides, C.I., 2021 Innovative Seafood Preservation Technologies: Recent Developments Animals, 1: 92. https://doi.org/10.3390/ani11010092 google scholar
  • Mandal, R., Mohammadi, X., Wiktor, A., Singh, A. & Pratap Singh, A. (2020). Applications of pulsed light decontamination technology in food processing: An overview. Applied Sciences, 10(10): 3606. https://doi. org/10.3390/app10103606 google scholar
  • Marquenie, D., Geeraerd, A.H., Lammertyn, J., Soontjens, C., Van Impe, J.F., Michiels, C. W. & Nicolaı, B.M. (2003). Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. International journal of food microbiology, 85(1-2): 185-196. https://doi. org/10.1016/S0168-1605(02)00538-X google scholar
  • McClements, D.J. (1995). Advances in the application of ultrason in food analysis and processing. Trends in Food Science & Technology, 6(9): 293-299. https://doi.org/10.1016/S0924-2244(00)89139-6 google scholar
  • McClurkin-Moore, J.D., Ileleji, K.E. & Keener, K.M. (2017). The effect of high-voltage atmospheric cold plasma treatment on the shelf-life of distillers wet grains. Food and Bioprocess Technology, 10, 1431-1440. https:// doi.org/10.1007/s11947-017-1903-6 google scholar
  • Misra, N.N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inacio, R.S., Saraiva, J.A., Barba, F.J. (2017). Landmarks in the historical development of twenty first century food processing technologies. Food Rese-arch International, 97: 318-339. https://doi.org/10.1016/j.foodres.2017.05.001 google scholar
  • Misra, N.N., Kaur, S., Brijesh K. T., Kaur, A., Singh, N. & Cullen, P.J. “Atmospheric pressure cold plasma (ACP) treatment of wheat flour.” Food Hydrocolloids 44(2015): 115-121. https://doi.org/10.1016/j.foo-dhyd.2014.08.019 google scholar
  • Mol, S., Akan, T., Kartal, S., Coşansu, S., Tosun, Ş.Y., Alakavuk, D.Ü., Ulusoy, Ş., Doğruyol, H., Bostan, K. (2023). Effects of Air and Helium Cold Plasma on Sensory Acceptability and Quality of Fresh Sea Bass (Dicentrarchus labrax). Food and Bioprocess Technology, 16(3): 537-548. https://doi.org/10.1007/s11947-022-02950-w google scholar
  • Neetoo, H. & Chen, H. (2014). Alternative food processing technologies. Food processing: Principles and app-lications, 137-169. https://doi.org/10.1002/9781118846315.ch7 google scholar
  • Niemira, B.A., Boyd, G. & Sites, J. (2014). Cold plasma rapid decontamination of food contact surfaces contami-nated with Salmonella biofilms. Journal of Food Science, 79(5): M917-M922. https://doi.org/10.1111/1750-3841.12379 google scholar
  • Nowosad, K., Sujka, M., Pankiewicz, U. & Kowalski, R. (2021). The application of PEF technology in food pro-cessing and human nutrition. Journal of Food Science and Technology, 58: 397-411. https://doi.org/10.1007/ s13197-020-04512-4 google scholar
  • Olatunde, O.O. & Benjakul, S. (2018). Nonthermal processes for shelf-life extension of seafoods: A revisit. Comprehensive Reviews in Food Science and Food Safety, 17(4): 892-904. https://doi.org/10.1111/1541-4337.12354 google scholar
  • Olatunde, O.O., Benjakul, S. & Vongkamjan, K. (2020). Shelf-life of refrigerated Asian sea bass slices treated with cold plasma as affected by gas composition in packaging. International Journal of Food Microbiology, 324: 108612. https://doi.org/10.1016/j.ijfoodmicro.2020.108612 google scholar
  • Olatunde, O.O., Shiekh, K.A. & Benjakul, S. (2021). Pros and cons of cold plasma technology as an alternative non-thermal processing technology in seafood industry. Trends in Food Science and Technology, 111: 617627. https://doi.org/10.1016/j.tifs.2021.03.026 google scholar
  • de Oliveira Bottino, F., Rodrigues, B.L., de Nunes Ribeiro, J.D., Lazaro, C.A., & Conte-Junior, C.A. (2016). Effect of UV-C radiation on shelf life of vacuum package Colossoma macropomum x Piaractus mesopota-micus fillets. Procedia Food Science, 7: 13-16. https://doi.org/10.1016/j.profoo.2016.02.077 google scholar
  • Oms-Oliu, G., Martm-Belloso, O. & Soliva-Fortuny, R. (2010). Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology, 3: 13-23. https://doi.org/10.1007/s11947-008-0147-x google scholar
  • Pankaj, S. K., Wan, Z. & Keener, K. M. (2018). Effects of cold plasma on food quality: A review. Foods, 7(1), 4. https://doi.org/10.3390/foods7010004 google scholar
  • Rezek Jambrak, A., Nutrizio, M., Djekic, I., Pleslic, S. & Chemat, F. (2021). Internet of nonthermal food pro-cessing technologies (IoNTP): Food industry 4.0 and sustainability. Applied Sciences, 11(2): 686. https:// doi.org/10.3390/app11020686 google scholar
  • Roberts, P. & Hope, A. (2003). Virus inactivation by high intensity broad spectrum pulsed light. Journal of Virological Methods, 110(1): 61-65. https://doi.org/10.1016/S0166-0934(03)00098-3 google scholar
  • Rodrigues, B.L., da Silveira Alvares, T., Sampaio, G.S.L., Cabral, C.C., Araujo, J.V.A., Franco, R.M., Mano, S.B., Junior, C. A.C. (2016). Influence of vacuum and modified atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets. Food Control, 60: 596-605. https://doi.org/10.1016/j.foodcont.2015.09.004 google scholar
  • Ranjha, M.M.A., Kanwal, R., Shafique, B., Arshad, R. N., Irfan, S., Kieliszek, M., Kowalczewski, M., Muham-mad, I., Muhammad, Z.K., Roobab, U. & Aadil, R.M. (2021). A critical review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules, 26(16): 4893. https://doi.org/10.3390/ molecules26164893 google scholar
  • Rosario, D.K., Rodrigues, B.L., Bernardes, P.C. & Conte-Junior, C.A. (2021). Principles and applications of non-thermal technologies and alternative chemical compounds in meat and fish. Critical Reviews in Food Science and Nutrition, 61(7): 1163-1183. https://doi.org/10.1080/10408398.2020.1754755 google scholar
  • Rowan, N.J., MacGregor, S.J., Anderson, J.G., Fouracre, R.A., McIlvaney, L. & Farish, O. (1999). Pulsed-light inactivation of food-related microorganisms. Applied and Environmental Microbiology, 65(3): 1312-1315. https://doi.org/10.1128/AEM.65.3.1312-1315.1999 google scholar
  • dos Santos Aguilar, J.G. (2019). Pulsed light treatment in food. Chemical Reports, 1(2): 108-111. https://doi. org/10.25082/CR.2019.02.007 google scholar
  • Sireesha, T., Gowda, N.N. & Kambhampati, V. (2022). Ultrasonication in seafood processing and preservation: a comprehensive review. Applied Food Research, 100208. https://doi.org/10.1016/j.afres.2022.100208 google scholar
  • Sharma, R.R. & Demirci, A. (2003). Inactivation of Escherichia coli O157: H7 on inoculated alfalfa seeds with pulsed ultraviolet light and response surface modeling. Journal of Food Science, 68(4): 1448-1453. https:// doi.org/10.1111/j.1365-2621.2003.tb09665.x google scholar
  • Singla, M. & Sit, N. (2021). Application of ultrason in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73: 105506. https://doi.org/10.1016/j.ultsonch.2021.105506 google scholar
  • Szeto, W., Yam, W.C., Huang, H. & Leung, D.Y. (2020). The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens. BMC Infectious Diseases, 20(1): 1-9. https://doi.org/10.1186/ s12879-020-4847-9 google scholar
  • Tao, Y. & Sun, D.W. (2015). Enhancement of food processes by ultrason: a review. Critical reviews in food science and nutrition, 55(4): 570-594. https://doi.org/10.1080/10408398.2012.667849 google scholar
  • Toyokawa, Y., Yagyu, Y., Yamashiro, R., Ninomiya, K. & Sakudo, A. (2018). Roller conveyer system for the reduction of pesticides using non-thermal gas plasma-A potential food safety control measure? Food Control, 87: 211-217. https://doi.org/10.1016/j.foodcont.2017.12.030 google scholar
  • Troy, D.J., Ojha, K.S., Kerry, J.P. & Tiwari, B.K. (2016). Sustainable and consumer-friendly emerging te-chnologies for application within the meat industry: An overview. Meat Science, 120: 2-9. https://doi. org/10.1016/j.meatsci.2016.04.002 google scholar
  • Turantaş, F., Kılıç, G.B. & Kılıç, B. (2015). Ultrason in the meat industry: General applications and decon-tamination efficiency. International Journal of Food Microbiology, 198: 59-69. https://doi.org/10.1016/j. ijfoodmicro.2014.12.026 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.