Nanotechnology
Seda Oğur, Yusuf PilavcıTechnology developed at the nano level (1x10-9 m) is called nanotechnology. Nanomaterials that combine nanosized particles or materials offer various functional advantages in food packaging. They combine them with emulsion, encapsulation, edible film & coating, active and smart packaging and biosensor technologies. Nanobiodegradable packaging materials produced by integrating nanomaterials into biodegradable packaging materials produced from natural polymers, which do not show sufficient effectiveness in terms of mechanical strength and barrier (gas, water vapour, microorganism) properties, contribute greatly to bringing the existing properties to the desired level. Biodegradable packaging materials can be provided with antimicrobial properties by integrating silver and zinc nanoparticles, antioxidant properties by integrating cellulose nanocrystals, and moisture barrier properties by adding chitosan. Bionanocomposites, combining environmentally friendly biopolymers, functional nanomaterials, and advanced packaging technologies, offer significant potential for food safety and sustainable packaging in the food packaging and preservation stages. Therefore, research on the effectiveness of nanostructure applications (nanoparticles, nanoemulsions and nanofibers) in extending aquatic food products’ shelf life continues intensively. Nanocomposites are multiphase materials based on a combination of a polymer matrix (continuous phase) and a nanosized material (discontinuous phase). In this book chapter are mentioned about the properties of nanomaterials, functional applications of nanoparticles, nanomaterials used in biodegradable packaging, how bionanocomposites are designed and reinforcing materials used in their development, interactions in bionanocomposites, edible bionanocomposites, nanotechnology-based biosensors, the functionality of nanomaterials in active and smart packaging, and nanotechnology applications in aquatic-sourced foods.
Nanoteknoloji̇
Seda Oğur, Yusuf PilavcıNano düzeyde (1x10-9 m) geliştirilen teknolojiye nanoteknoloji denilmektedir. Nano boyuttaki partiküllerin veya materyallerin birleştirilmesiyle geliştirilen nanomalzemeler emülsiyon, enkapsülasyon, yenilebilir film & kaplama, aktif ve akıllı paketleme ve biyosensör teknolojileriyle birleştirilerek gıda ambalajlamada çeşitli fonksiyonel avantajlar sunmaktadır. Mekanik dayanım ve bariyer (gaz, su buharı, mikroorganizma) özellikleri açısından yeterli etkinlik gösteremeyen doğal polimerlerden üretilen biyobozunur ambalaj malzemelerine nanomateryallerin entegre edilmesiyle üretilen nanobiyobozunur ambalaj materyalleri ise mevcut özelliklerin istenilen düzeye getirilmesine oldukça katkı sağlamaktadır. Biyobozunur ambalaj materyallerine gümüş ve çinko nanopartiküllerin entegrasyonuyla antimikrobiyal özellik, selüloz nano kristallerinin entegrasyonuyla antioksidan özellik, kitosan ilavesiyle nem bariyer özelliği kazandırılabilmektedir. Çevre dostu biyopolimerlerin, işlevsel nanomalzemelerin ve gelişmiş ambalajlama teknolojilerinin kombinasyonu olan biyonanokompozitler gıda paketleme ve muhafaza aşamalarında gıda güvenliği ve sürdürülebilir paketleme açısından önemli potansiyeller sunmaktadır. Bu yüzden akuatik gıda ürünlerinin raf ömrünü uzatmada kullanılan nanoyapı uygulamalarının (nanopartiküller, nanoemülsiyonlar ve nanofiberler) etkinliğine yönelik araştırmalar yoğun bir şekilde devam etmektedir. Nanokompozitler bir polimer matrisinin (sürekli faz) ve nano boyutlu bir malzemenin (süreksiz faz) birleşmesine dayanan çok fazlı bir malzemedir. Bu kitap bölümünde nanomateryallerin özelliklerinden, nanopartiküllerin fonksiyonel uygulamalarından, biyobozunur ambalajlarda kullanılan nanomateryallerden, biyonanokompozitlerin nasıl dizayn edildiğinden ve geliştirilmesinde kullanılan takviye edici maddelerden, biyonanokompozitlerde yer alan etkileşimlerden, yenilebilir biyonanokompozitlerden, nanoteknoloji bazlı biyosensörlerden, aktif ve akıllı paketlemede nanomateryallerin fonksiyonelliğinden ve akuatik kaynaklı gıdalarda nanoteknoloji uygulamalarından bahsedilmektedir.
References
- Aboutorab, M., Ahari, H., Allahyaribeik, S., Yousefi, S. & Motalebi, A. (2021). Nano-emulsion of saffron essen-tial oil by spontaneous emulsification and ultrasonic homogenization extend the shelf life of shrimp (Crocus sativus L.). Journal of Food Processing and Preservation, 45(2), e15224. https://doi.org/10.1111/jfpp.15224 google scholar
- Afonso, A.S., Perez-Lopez, B., Faria, R.C., Mattoso, L.H., Hernandez-Herrero, M., Roig-Sagues, A.X., ... & Merkoçi, A. (2013). Electrochemical detection of Salmonella using gold nanoparticles. Biosensors and Bioelectronics, 40(1), 121-126. https://doi.org/10.1016/j.bios.2012.06.054 google scholar
- Aghaei, Z., Emadzadeh, B., Ghorani, B. & Kadkhodaee, R. (2018). Cellulose acetate nanofibres containing alizarin as a halochromic sensor for the qualitative assessment of rainbow trout fish spoilage. Food and Bioprocess Technology, 11(5), 1087-1095. https://doi.org/10.1007/s11947-017-2046-5 google scholar
- Aghaei, Z., Ghorani, B., Emadzadeh, B., Kadkhodaee, R. & Tucker, N. (2020). Protein-based halochromic elect-rospun nanosensor for monitoring trout fish freshness. Food Control, 111, 107065. https://doi.org/10.1016/j. foodcont.2019.107065 google scholar
- Akpan, E.I., Shen, X., Wetzel, B. & Friedrich, K. (2019). Design and synthesis of polymer nanocomposites. In Polymer Composites with Functionalized Nanoparticles (pp. 47-83). Elsevier. https://doi.org/10.1016/ B978-0-12-814064-2.00002-0 google scholar
- AlBaloul, A.Y., Sato, Y., Maishi, N., Hida, K. & Harashima, H. (2019). Two modes of toxicity of lipid nano-particles containing a pH-sensitive cationic lipid on human A375 and A375-SM melanoma cell lines. BPB Reports, 2(4), 48-55. https://doi.org/10.1248/bpbreports.2.4_48 google scholar
- Alboghbeish, H. & Khodanazary, A. (2019). The comparison of quality characteristics of refrigerated Caran-goides coeruleopinnatus fillets with chitosan and nanochitosan coating. Turkish Journal of Fisheries and Aquatic Sciences, 19(11), 957-967. https://doi.org/10.4194/1303-2712-v19_11_07 google scholar
- Alboofetileh, M., Rezaei, M., Hosseini, H. & Abdollahi, M. (2016). Efficacy of activated alginate-based nano-composite films to control Listeria monocytogenes and spoilage flora in rainbow trout slice. Journal of Food Science and Technology, 53, 521-530. https://doi.org/10.1007/s13197-015-2015-9 google scholar
- Alishahi, A. (2015). Application of nanotechnology in marine-based products: a review. Journal of Aquatic Food Product Technology, 24(5), 533-543. https://doi.org/10.1080/10498850.2013.788113 google scholar
- Al-Naamani, L., Dobretsov, S. & Dutta, J. (2016). Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innovative Food Science & Emerging Technologies, 38, 231-237. https://doi. org/10.1016/j.ifset.2016.10.010 google scholar
- Ameur, A., Bensid, A., Ozogul, F., Ucar, Y., Durmus, M., Kulawik, P. & Boudjenah-Haroun, S. (2022). Application of oil-in-water nanoemulsions based on grape and cinnamon essential oils for shelf-life extension of chilled flathead mullet fillets. Journal of the Science of Food and Agriculture, 102(1), 105-112. https://doi. org/10.1002/jsfa.11336 google scholar
- Amiri, E., Aminzare, M., Azar, H.H. & Mehrasbi, M.R. (2019). Combined antioxidant and sensory effects of corn starch films with nanoemulsion of Zataria multiflora essential oil fortified with cinnamaldehyde on fresh ground beef patties. Meat Science, 153, 66-74. https://doi.org/10.1016/j.meatsci.2019.03.004 google scholar
- Arora, A. & Padua, G.W. (2010). Nanocomposites in food packaging. Journal of Food Science, 75(1), R43-R49. https://doi.org/10.1111/j.1750-3841.2009.01456.x google scholar
- Asensio, C.M., Quiroga, P.R., Huang, Q., Nepote, V. & Grosso, N.R. (2019). Fatty acids, volatile compounds and microbial quality preservation with an oregano nanoemulsion to extend the shelf life of hake (Mer-luccius hubbsi) burgers. International Journal of Food Science & Technology, 54(1), 149-160. https://doi. org/10.1111/ijfs.13919 google scholar
- Ashori, A. & Bahrami, R. (2014). Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nano graphene. Polymer-Plastics Technology and Engineering, 53(3), 312-318. https:// doi.org/10.1080/03602559.2013.866246 google scholar
- Azeredo, H.M., Mattoso, L.H.C., Wood, D., Williams, T.G., Avena-Bustillos, R.J. & McHugh, T.H. (2009). Na-nocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science, 74(5), N31-N35. https://doi.org/10.1111/j.1750-3841.2009.01186.x google scholar
- Bahramian, G., Golestan, L. & Khosravi-Darani, K. (2018). Antimicrobial and antioxidant effect of nanolipo-somes containing Zataria multiflora Boiss essential oil on the rainbow trout fillets during refrigeration. Biointerface Research in Applied Chemistry, 8(5), 3505-3513. google scholar
- Beurton, J., Clarot, I., Stein, J., Creusot, B., Marcic, C., Marchioni, E. & Boudier, A. (2019). Long-lasting and controlled antioxidant property of immobilized gold nanoparticles for intelligent packaging. Colloids and Surfaces B: Biointerfaces, 176, 439-448. https://doi.org/10.1016/j.colsurfb.2019.01.030 google scholar
- Bratovcic, A., Odobasic, A., Catic, S. & Sestan, I. (2015). Application of polymer nanocomposite materials in food packaging. Croatian Journal of Food Science and Technology, 7(2), 86-94. https://doi.org/10.17508/ CJFST.2015.7.2.06 google scholar
- Budhijanto, B., Nugraheni, P.S. & Budhijanto, W. (2015). Inhibition of microbial growth by nano-chitosan for fresh tilapia (Oreochromissp) preservation. Procedia Chemistry, 16, 663-672. https://doi.org/10.1016/j. proche.2015.12.006 google scholar
- Carbone, M., Donia, D.T., Sabbatella, G. & Antiochia, R. (2016). Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University-Science, 28(4), 273-279. https://doi.org/10.1016/j. jksus.2016.05.004 google scholar
- Cerisuelo, J.P., Alonso, J., Aucejo, S., Gavara, R. & Hernandez-Munoz, P. (2012). Modifications induced by the addition of a nanoclay in the functional and active properties of an EVOH film containing carvacrol for food packaging. Journal of Membrane Science, 423, 247-256. https://doi.org/10.1016/j.memsci.2012.08.021 google scholar
- Cerisuelo, J.P., Bermudez, J.M., Aucejo, S., Catala, R., Gavara, R. & Hernandez-Munoz, P. (2013). Describing and modeling the release of an antimicrobial agent from an active PP/EVOH/PP package for salmon. Journal of Food Engineering, 116(2), 352-361. https://doi.org/10.1016/j.jfoodeng.2012.12.028 google scholar
- Ceylan, Z. (2019). A new cost-effective process for limitation of microbial growth in fish fleshes: Wrapping by aluminum foil coated with electrospun nanofibers. Journal of Food Safety, 39(5), e12697. https://doi. org/10.1111/jfs.12697 google scholar
- Ceylan, Z., Sengor, G.F.U. & Yilmaz, M.T. (2018b). Nanoencapsulation of liquid smoke/thymol combination in chitosan nanofibers to delay microbiological spoilage of sea bass (Dicentrarchus labrax) fillets. Journal of Food Engineering, 229, 43-49. https://doi.org/10.1016/j.jfoodeng.2017.11.038 google scholar
- Chang, X., Wang, X., Li, J., Shang, M., Niu, S., Zhang, W., ... & Xue, Y. (2021). Silver nanoparticles induced cytotoxicity in HT22 cells through autophagy and apoptosis via PI3K/AKT/mTOR signaling pathway. Eco-toxicology and Environmental Safety, 208, 111696. https://doi.org/10.1016/j.ecoenv.2020.111696 google scholar
- Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., ... & Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants, 25(3), 241-258. https://doi.org/10.1080/02652030701744538 google scholar
- Chen, M., Yan, T., Huang, J., Zhou, Y. & Hu, Y. (2021). Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. International Journal of Biological Macromolecules, 179, 90-100. https://doi. org/10.1016/j.ijbiomac.2021.02.170 google scholar
- Chen, Q., Zhang, L. & Chen, G. (2012). Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates. Analytical Chemistry, 84(1), 171-178. https://doi.org/10.1021/ac2022772 google scholar
- Cheng, H., Chen, L., McClements, D.J., Xu, H., Long, J., Zhao, J., ... & Jin, Z. (2022a). Recent advances in the application of nanotechnology to create antioxidant active food packaging materials. Critical Reviews in Food Science and Nutrition, 1-16. https://doi.org/10.1080/10408398.2022.2128035 google scholar
- Cheng, H., Xu, H., McClements, D.J., Chen, L., Jiao, A., Tian, Y., ... & Jin, Z. (2022b). Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chemistry, 375, 131738. https://doi.org/10.1016/j.foodchem.2021.131738 google scholar
- Chuesiang, P., Sanguandeekul, R. & Siripatrawan, U. (2020). Phase inversion temperature-fabricated cinnamon oil nanoemulsion as a natural preservative for prolonging shelf-life of chilled Asian seabass (Lates calcari-fer) fillets. LWT, 125, 109122. https://doi.org/10.1016/j.lwt.2020.109122 google scholar
- Dai, L., Zhang, J. & Cheng, F. (2020). Cross-linked starch-based edible coating reinforced by starch nanoc-rystals and its preservation effect on graded Huangguan pears. Food Chemistry, 311, 125891. https://doi. org/10.1016/j.foodchem.2019.125891 google scholar
- Dar, A.H., Rashid, N., Majid, I., Hussain, S. & Dar, M.A. (2020). Nanotechnology interventions in aquaculture and seafood preservation. Critical Reviews in Food Science and Nutrition, 60(11), 1912-1921. https://doi. org/10.1080/10408398.2019.1617232 google scholar
- Darder, M., Aranda, P. & Ruiz-Hitzky, E. (2007). Bionanocomposites: a new concept of ecological, bioins-pired, and functional hybrid materials. Advanced Materials, 19(10), 1309-1319. https://doi.org/10.1002/ adma.200602328 google scholar
- de Oliveira, A.D. & Beatrice, C.A.G. (2018). Polymer nanocomposites with different types of nanofiller. Nano-composites-Recent Evolutions, 103-104. google scholar
- De Silva, R.T., Mantilaka, M.M.M.G.P.G., Ratnayake, S.P., Amaratunga, G.A.J., & de Silva, K.N. (2017). Na-no-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydrate Polymers, 157, 739-747. https://doi.org/10.1016/j. carbpol.2016.10.038 google scholar
- Dervisevic, M., Custiuc, E., Çevik, E. & Şenel, M. (2015a). Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chemistry, 181, 277283. https://doi.org/10.1016/j.foodchem.2015.02.104 google scholar
- Dervisevic, M., Custiuc, E., Çevik, E., Durmus, Z., Şenel, M. & Durmus, A. (2015b). Electrochemical biosensor based on REGO/Fe3O4 bionanocomposite interface for xanthine detection in fish sample. Food Control, 57, 402-410. https://doi.org/10.1016/j.foodcont.2015.05.001 google scholar
- D^ez-Pascual, A.M. & D^ez -Vicente, A.L. (2014). ZnO-reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalera-te) bionanocomposites with antimicrobial function for food packaging. ACS Applied Materials & Interfaces, 6(12), 9822-9834. https://doi.org/10.1021/am502261e google scholar
- Drusch, S. & Berg, S. (2008). Extractable oil in microcapsules prepared by spray-drying: Localisation, de-termination and impact on oxidative stability. Food Chemistry, 109(1), 17-24. https://doi.org/10.1016/j. foodchem.2007.12.016 google scholar
- Durmus, M. (2020). The effects of nanoemulsions based on citrus essential oils (orange, mandarin, grapefruit, and lemon) on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets at 4±2 °C. Journal of Food Safety, 40(1), e12718. https://doi.org/10.1111/jfs.12718 google scholar
- Durmus, M., Ozogul, Y., Küley Boga, E., Uçar, Y., Kosker, A.R., Balikci, E. & Gökdogan, S. (2019). The effects of edible oil nanoemulsions on the chemical, sensory, and microbiological changes of vacuum packed and refrigerated sea bass fillets during storage period at 2±2 °C. Journal of Food Processing and Preservation, 43(12), e14282. https://doi.org/10.1111/jfpp.14282 google scholar
- Echeverria, I., Lopez-Caballero, M.E., Gomez-Guillen, M.C., Mauri, A.N. & Montero, M.P. (2018). Active nanocomposite films based on soy proteins-montmorillonite-clove essential oil for the preservation of ref-rigerated bluefin tuna (Thunnus thynnus) fillets. International Journal of Food Microbiology, 266, 142-149. https://doi.org/10.1016/j.ijfoodmicro.2017.10.003 google scholar
- Efatian, H., Ahari, H., Shahbazzadeh, D., Nowruzi, B. & Yousefi, S. (2021). Fabrication and characterization of LDPE/silver-copper/titanium dioxide nanocomposite films for application in Nile Tilapia (Oreochro-mis niloticus) packaging. Journal of Food Measurement and Characterization, 15, 2430-2439. https://doi. org/10.1007/s11694-021-00836-7 google scholar
- Ejaz, M., Arfat, Y.A., Mulla, M. & Ahmed, J. (2018). Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging. Food Packaging and Shelf Life, 15, 113-121. https://doi.org/10.1016/j.fpsl.2017.12.004 google scholar
- El-Wakil, N.A., Hassan, E.A., Abou-Zeid, R.E., & Dufresne, A. (2015). Development of wheat gluten/nanocel-lulose/titanium dioxide nanocomposites for active food packaging. Carbohydrate Polymers, 124, 337-346. https://doi.org/10.1016/j.carbpol.2015.01.076 google scholar
- Erbay, E.A., Dağtekin, B.B.G., Türe, M., Yeşilsu, A.F. & Torres-Giner, S. (2017). Quality improvement of rain-bow trout fillets by whey protein isolate coatings containing electrospun poly (e-caprolactone) nanofibers with Urtica dioica L. extract during storage. LWT, 78, 340-351. https://doi.org/10.1016/j.lwt.2017.01.002 google scholar
- Ezati, P., Priyadarshi, R., Bang, Y.J. & Rhim, J.W. (2021). CMC and CNF-based intelligent pH-responsive color indicator films integrated with shikonin to monitor fish freshness. Food Control, 126, 108046. https://doi. org/10.1016/j.foodcont.2021.108046 google scholar
- Fernandes, E.M., Pires, R.A., Mano, J.F. & Reis, R.L. (2013). Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Progress in Polymer Science, 38(10-11), 1415-1441. https://doi.org/10.1016/j.progpolymsci.2013.05.013 google scholar
- Frankel, E.N. (2005). Lipid oxidation. Oily Press Lipid Library Series, Dundee. https://doi. org/10.1533/9780857097927 google scholar
- Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jimenez, A. & Kenny, J.M. (2012). Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 90(2), 948-956. https://doi.org/10.1016/j.carbpol.2012.06.025 google scholar
- Fu, B., Liu, Q., Liu, M., Chen, X., Lin, H., Zheng, Z., ... & Yang, D.P. (2022). Carbon dots enhanced gelatin/ chitosan bio-nanocomposite packaging film for perishable foods. Chinese Chemical Letters, 33(10), 45774582. https://doi.org/10.1016/j.cclet.2022.03.048 google scholar
- Gallocchio, F., Belluco, S. & Ricci, A. (2015). Nanotechnology and food: brief overview of the current scenario. Procedia Food Science, 5, 85-88. https://doi.org/10.1016/j.profoo.2015.09.022 google scholar
- Garland, A. (2004). Commercial applications in nanotechnology. In Nanotechnology in plastics packaging (PIRA on packaging) (pp. 14-63). Pira International Limited, UK. google scholar
- Ge, Y., Li, Y., Bai, Y., Yuan, C., Wu, C. & Hu, Y. (2020). Intelligent gelatin/oxidized chitin nanocrystals nano-composite films containing black rice bran anthocyanins for fish freshness monitorings. International Journal of Biological Macromolecules, 155, 1296-1306. https://doi.org/10.1016/j.ijbiomac.2019.11.101 google scholar
- George, J. (2012). High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydrate Polymers, 87(3), 2031-2037. https://doi.org/10.1016/j.carbpol.2011.10.019 google scholar
- Gharibzahedi, S.M.T. & Mohammadnabi, S. (2017). Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. International Journal of Biological Macromolecules, 95, 769-777. https://doi.org/10.1016/j.ijbiomac.2016.11.119 google scholar
- Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107-1121. htt-ps://doi.org/10.1016/j.foodres.2007.07.004 google scholar
- Gomez-Estaca, J., Lopez-de-Dicastillo, C., Hernandez-Munoz, P., Catala, R. & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51. https://doi. org/10.1016/j.tifs.2013.10.008 google scholar
- Goudarzi, V., Shahabi-Ghahfarrokhi, I. & Babaei-Ghazvini, A. (2017). Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: Characterization. International Journal of Bio-logical Macromolecules, 95, 306-313. https://doi.org/10.1016/j.ijbiomac.2016.11.065 google scholar
- Gu, R., Yun, H., Chen, L., Wang, Q. & Huang, X. (2019). Regenerated cellulose films with amino-terminated hyperbranched polyamic anchored nanosilver for active food packaging. ACS Applied Bio Materials, 3(1), 602-610. https://doi.org/10.1021/acsabm.9b00992 google scholar
- Guan, R., Luo, X., Lyu, F., Tao, M., Liu, M. & Wang, Y. (2016). Preparation and evaluation of epigallocate-chin-3-gallate nanoliposomes in cod fish (Gadus macrocephalus) preservation and anticancer studies in NCI-N87 gastric carcinoma cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2(12), 541-542. https://doi.org/10.1016/j.nano.2015.12.265 google scholar
- Gutierrez, T.J. (2021). In vitro and in vivo digestibility from bionanocomposite edible films based on native pumpkin flour/plum flour. Food Hydrocolloids, 112, 106272. https://doi.org/10.1016/j.foodhyd.2020.106272 google scholar
- Hashemabad, Z.N., Shabanpour, B., Azizi, H., Ojagh, S. M. & Alireza, A. (2018). Effects of TiO2 nanocomposite packaging and gamma irradiation on the shelf-life of rainbow trout stored at (+4 °C). Turkish Journal of Fisheries and Aquatic Sciences, 18(12), 1387-1397. https://doi.org/10.4194/1303-2712-v18_12_07 google scholar
- Hassoun, A. & Çoban, Ö.E. (2017). Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends in Food Science & Technology, 68, 26-36. https://doi.org/10.1016/j. tifs.2017.07.016 google scholar
- He, X., Deng, H., Aker, W.G. & Hwang, H. M. (2019). Regulation and safety of nanotechnology in the food and agriculture industry. In Food Applications of Nanotechnology (pp. 525-536). CRC Press. https://doi. org/10.1201/9780429297038-23 google scholar
- Homayonpour, P., Jalali, H., Shariatifar, N. & Amanlou, M. (2021). Effects of nano-chitosan coatings incorpo-rating with free/nano-encapsulated cumin (Cuminum cyminum L.) essential oil on quality characteristics of sardine fillet. International Journal of Food Microbiology, 341, 109047. https://doi.org/10.1016/j.ijfood-micro.2021.109047 google scholar
- Hosseini, S.F., Ghaderi, J. & Gomez-Guillen, M.C. (2022). Tailoring physico-mechanical and antimicrobial/ antioxidant properties of biopolymeric films by cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging of fresh rainbow trout fillets. Food Hydrocolloids, 124, 107249. https://doi.or-g/10.1016/j.foodhyd.2021.107249 google scholar
- Huang, M., Wang, H., Xu, X., Lu, X., Song, X. & Zhou, G. (2020). Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and e-poly-L-lysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocolloids, 102, 105576. https://doi.org/10.1016/j.foodhyd.2019.105576 google scholar
- Ibrahim, S., Fahmy, H. & Salah, S. (2021). Application of interactive and intelligent packaging for fresh fish shelf-life monitoring. Frontiers in Nutrition, 8, 677884. https://doi.org/10.3389/fnut.2021.677884 google scholar
- Jamroz, E., Kulawik, P. & Kopel, P. (2019). The effect of nanofillers on the functional properties of biopoly-mer-based films: A review. Polymers, 11(4), 675. https://doi.org/10.3390/polym11040675 google scholar
- Jayakumar, A., Radoor, S., Kim, J.T., Rhim, J.W., Nandi, D., Parameswaranpillai, J. & Siengchin, S. (2022). Recent innovations in bionanocomposites-based food packaging films-A comprehensive review. Food Pa-ckaging and Shelf Life, 33, 100877. https://doi.org/10.1016/j.fpsl.2022.100877 google scholar
- Jiang, Y., Sun, D.W., Pu, H. & Wei, Q. (2019). Ultrasensitive analysis of kanamycin residue in milk by SERS-ba-sed aptasensor. Talanta, 197, 151-158. https://doi.org/10.1016/j.talanta.2019.01.015 google scholar
- Jin, M., Li, N., Sheng, W., Ji, X., Liang, X., Kong, B., ... & Liu, K. (2021). Toxicity of different zinc oxide na-nomaterials and dose-dependent onset and development of Parkinson’s disease-like symptoms induced by zinc oxide nanorods. Environment International, 146, 106179. https://doi.org/10.1016/j.envint.2020.106179 google scholar
- Joe, M.M., Chauhan, P.S., Bradeeba, K., Shagol, C., Sivakumaar, P.K. & Sa, T. (2012). Influence of sunflower oil based nanoemulsion (AUSN-4) on the shelf life and quality of Indo-Pacific king mackerel (Scomberomorus guttatus) steaks stored at 20 °C. Food Control, 23(2), 564-570. https://doi.org/10.1016/j.foodcont.2011.08.032 google scholar
- Joseph, T. & Morrison, M. (2006). Nanotechnology in agriculture and food. Nanoforum Report, 2(2), 3. google scholar
- Kamani, J., Motalbei Moghanjoghi, A.A., Razavilar, V. & Rokni, N. (2020). Effects of nanochitosan with and without sodium acetate coating on Pseudomonas fluorescens and the quality of refrigerated rainbow trout filets. Iranian Journal of Fisheries Sciences, 19(3), 1479-1499. google scholar
- Khanipour, A., Bahmani, Z.A., Oromiehie, A. & Motalebi, A. (2020). Effect of packaging with nano-composite clay/LDPE film on the quality of rainbow trout (Oncorhynchus mykiss) fillet at refrigerated storage. Iranian Journal of Fisheries Sciences, 19(2), 698-714. google scholar
- Kaouri, R. & Hassoun, A. (2017). Efficiency of rosemary and basil essential oils on the shelf-life extension of Atlantic mackerel (Scomber scombrus) fillets stored at 2 °C. Journal of AOAC International, 100, 335-344. https://doi.org/10.5740/jaoacint.16-0410 google scholar
- Kargozar, S., & Mozafari, M. (2018). Nanotechnology and nanomedicine: Start small, think big. Materials Today: Proceedings, 5(7), 15492-15500. https://doi.org/10.1016/j.matpr.2018.04.155 google scholar
- Kavakebi, E., Anvar, A.A., Ahari, H. & Motalebi, A.A. (2021). Green biosynthesized Satureja rechingeri Jam-zad-Ag/poly vinyl alcohol film: Quality improvement of Oncorhynchus mykiss fillet during refrigerated storage. Food Science and Technology, 41, 267-278. https://doi.org/10.1590/fst.62720 google scholar
- Kazemeini, H., Azizian, A. & Shahavi, M.H. (2019). Effect of chitosan nano-gel/emulsion containing bunium persicum essential oil and nisin as an edible biodegradable coating on Escherichia coli O157: H7 in rainbow trout fillet. Journal of Water and Environmental Nanotechnology, 4(4), 343-349. google scholar
- Khanzadi, S., Keykhosravy, K., Hashemi, M. & Azizzadeh, M. (2020). Alginate coarse/nanoemulsions conta-ining Zataria multiflora Boiss essential oil as edible coatings and the impact on microbial quality of trout fillet. Aquaculture Research, 51(3), 873-881. https://doi.org/10.1111/are.14418 google scholar
- Khezerlou, A., Tavassoli, M., Alizadeh Sani, M., Mohammadi, K., Ehsani, A. & McClements, D.J. (2021). Application of nanotechnology to improve the performance of biodegradable biopolymer-based packaging materials. Polymers, 13(24), 4399. https://doi.org/10.3390/polym13244399 google scholar
- Kim, H.J., Roy, S. & Rhim, J.W. (2022). Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp. Food Hydrocolloids, 124, 107294. https://doi.org/10.1016/j.foodhyd.2021.107294 google scholar
- Li, D., Ye, Q., Jiang, L. & Luo, Z. (2017). Effects of nano-TiO2-LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature. Journal of the Science of Food and Agriculture, 97(4), 1116-1123. https://doi.org/10.1002/jsfa.7837 google scholar
- Liang, J., Yan, H., Zhang, J., Dai, W., Gao, X., Zhou, Y., ... & Puligundla, P. (2017). Preparation and charac-terization of antioxidant edible chitosan films incorporated with epigallocatechin gallate nanocapsules. Carbohydrate Polymers, 171, 300-306. https://doi.org/10.1016/j.carbpol.2017.04.081 google scholar
- Lin, X., Ni, Y. & Kokot, S. (2013). Glassy carbon electrodes modified with gold nanoparticles for the simultaneous deter-mination of three food antioxidants. Analytica Chimica Acta, 765, 54-62. https://doi.org/10.1016/j.aca.2012.12.036 google scholar
- Luo, Z., Xu, Y. & Ye, Q. (2015a). Effect of nano-SiO2-LDPE packaging on biochemical, sensory, and micro-biological quality of Pacific white shrimp Penaeus vannamei during chilled storage. Fisheries Science, 81, 983-993. https://doi.org/10.1007/s12562-015-0914-3 google scholar
- Luo, Z., Qin, Y. & Ye, Q. (2015b). Effect of nano-TiO2-LDPE packaging on microbiological and physicoc-hemical quality of Pacific white shrimp during chilled storage. International Journal of Food Science & Technology, 50(7), 1567-1573. https://doi.org/10.1111/ijfs.12807 google scholar
- Maghami, M., Motalebi, A.A. & Anvar, S.A.A. (2019). Influence of chitosan nanoparticles and fennel essential oils (Foeniculum vulgare) on the shelf life of Huso huso fish fillets during the storage. Food Science & Nutrition, 7(9), 3030-3041. https://doi.org/10.1002/fsn3.1161 google scholar
- Majeed, K., Jawaid, M., Hassan, A., Bakar, A.A., Khalil, H.A., Salema, A.A. & Inuwa, I. (2013). Potential ma-terials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 46, 391-410. https://doi.org/10.1016/j.matdes.2012.10.044 google scholar
- Meindrawan, B., Putri, S., Susanto, C.S., Ofe, O., Mangindaan, D., Ayman, A. & Kasih, T.P. (2020, June). Bionanocomposite of gelatin-ZnO nanoparticles as potential edible coating for broiler chicken fillet. In Macromolecular Symposia (Vol. 391, No. 1, p. 1900165). https://doi.org/10.1002/masy.201900165 google scholar
- Meral, R., Ceylan, Z. & Kose, S. (2019). Limitation of microbial spoilage of rainbow trout fillets using characterized thyme oil antibacterial nanoemulsions. Journal of Food Safety, 39(4), e12644. https://doi.org/10.1111/jfs.12644 google scholar
- Messaoud, N.B., Ghica, M.E., Dridi, C., Ali, M.B. & Brett, C.M. (2017). Electrochemical sensor based on mul-tiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sensors and Actuators B: Chemical, 253, 513-522. https://doi.org/10.1016/j.snb.2017.06.160 google scholar
- Mills, A., Lawrie, K., Bardin, J., Apedaile, A., Skinner, G.A. & O’Rourke, C. (2012). An O2 smart plastic film for packaging. Analyst, 137(1), 106-112. https://doi.org/10.1039/C1AN15774D google scholar
- Mizielinska, M., Kowalska, U., Jarosz, M. & Suminska, P. (2018). A comparison of the effects of packaging containing nano ZnO or polylysine on the microbial purity and texture of cod (Gadus morhua) fillets. Na-nomaterials, 8(3), 158-170. https://doi.org/10.3390/nano8030158 google scholar
- Mustafa, F., & Andreescu, S. (2020). Nanotechnology-based approaches for food sensing and packaging appli-cations. RSC Advances, 10(33), 19309-19336. https://doi.org/10.1039/D0RA01084G google scholar
- Mustafa, F., Othman, A. & Andreescu, S. (2021). Cerium oxide-based hypoxanthine biosensor for Fish spoilage monitoring. Sensors and Actuators B: Chemical, 332, 129435. https://doi.org/10.1016/j.snb.2021.129435 google scholar
- Naqvi, S., Samim, M., Abdin, M.Z., Ahmad, F.J., Maitra, A.N., Dinda, A.K., & Prashant, C.K. (2022). Concent-ration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress [retraction]. International Journal of Nanomedicine, 17, 1459-1460. https://doi.org/10.2147/IJN.S367448 google scholar
- Nazari, M., Majdi, H., Milani, M., Abbaspour-Ravasjani, S., Hamishehkar, H. & Lim, L.T. (2019). Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging. Food Packaging and Shelf Life, 21, 100349. https://doi.org/10.1016/j.fpsl.2019.100349 google scholar
- Oymaci, P. & Altinkaya, S.A. (2016). Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite. Food Hydrocolloids, 54, 1-9. https://doi.org/10.1016/j.foodhyd.2015.08.030 google scholar
- Ozogul, Y., Durmus, M., Uçar, Y., Köşker, A.R. & Ozogul, F. (2017a). The combined impact of nanoemulsion based on commercial oils and vacuum packing on the fatty acid profiles of sea bass fillets. Journal of Food Processing and Preservation, 41(6), e13222. https://doi.org/10.1111/jfpp.13222 google scholar
- Ozogul, Y., Yuvka, İ., Ucar, Y., Durmus, M., Kösker, A.R., Öz, M. & Ozogul, F. (2017b). Evaluation of effects of nanoemulsion based on herb essential oils (rosemary, laurel, thyme and sage) on sensory, chemical and microbiological quality of rainbow trout (Oncorhynchus mykiss) fillets during ice storage. LWT, 75, 677684. https://doi.org/10.1016/j.lwt.2016.10.009 google scholar
- Özogul, Y., Durmus, M., Ucar, Y., Özogul, F. & Regenstein, J.M. (2016). Comparative study of nanoemulsions based on commercial oils (sunflower, canola, corn, olive, soybean, and hazelnut oils): Effect on microbial, sensory, and chemical qualities of refrigerated farmed sea bass. Innovative Food Science & Emerging Te-chnologies, 33, 422-430. https://doi.org/10.1016/j.ifset.2015.12.018 google scholar
- Paidari, S. & Ahari, H. (2021). The effects of nanosilver and nanoclay nanocomposites on shrimp (Penaeus semisulcatus) samples inoculated to food pathogens. Journal of Food Measurement and Characterization, 15(4), 3195-3206. https://doi.org/10.1007/s11694-021-00905-x google scholar
- PuiggaH, J. & Katsarava, R. (2017). Bionanocomposites. In Clay-Polymer Nanocomposites (pp. 239-272). El-sevier. https://doi.org/10.1016/B978-0-323-46153-5.00007-0 google scholar
- Putri, V.J., Warsiki, E., Syamsu, K. & Iskandar, A. (2019, November). Application nano zeolite-molybdate for avocado ripeness indicator. In IOP Conference Series: Earth and Environmental Science (Vol. 347, No. 1, p. 012063), IOP Publishing. https://doi.org/10.1088/1755-1315/347/1/012063 google scholar
- Qiu, L., Zhang, M., Bhandari, B. & Yang, C. (2022). Shelf life extension of aquatic products by applying nano-technology: A review. Critical Reviews in Food Science and Nutrition, 62(6), 1521-1535. https://doi.org/1 0.1080/10408398.2020.1844139 google scholar
- Raji, F., Khanzadi, S., Hashemi, M. & Azizzadehd, M. (2019). Effect of chitosan coating nano-emulsion containing Zataria multiflora and Bunium persicum essential oils on Escherichia coli O157:H7 in vacuum-packed rainbow trout fillet. Journal of Human, Environment, and Health Promotion, 5(1), 21-25. https:// doi.org/10.29252/jhehp.5.1.4 google scholar
- Ramezani, Z., Zarei, M. & Raminnejad, N. (2015). Comparing the effectiveness of chitosan and nanochitosan coatings on the quality of refrigerated silver carp fillets. Food Control, 51, 43-48. https://doi.org/10.1016/j. foodcont.2014.11.015 google scholar
- Ranjan, S., Dasgupta, N., Chakraborty, A.R., Melvin Samuel, S., Ramalingam, C., Shanker, R., & Kumar, A. (2014). Nanoscience and nanotechnologies in food industries: opportunities and research trends. Journal of Nanoparticle Research, 16, 1-23. https://doi.org/10.1007/s11051-014-2464-5 google scholar
- Rojas-Lema, S., Nilsson, K., Trifol, J., Langton, M., Gomez-Caturla, J., Balart, R., ... & Moriana, R. (2021). Faba bean protein films reinforced with cellulose nanocrystals as edible food packaging material. Food Hydrocolloids, 121, 107019. https://doi.org/10.1016/j.foodhyd.2021.107019 google scholar
- Rouhani, M. (2019). Fluoro-functionalized graphene as a promising nanosensor in detection of fish spoilage: A theoretical study. Chemical Physics Letters, 719, 91-102. https://doi.org/10.1016/j.cplett.2019.02.001 google scholar
- Ruiz-Hitzky, E., Aranda, P. & Darder, M. (2008). Bionanocomposites. In Kirk-Othmer (Ed.), Kirk Othmer Encyclopedia of Chemical Technolog (5th ed.). Wiley. https://doi.org/10.1002/0471238961.bionruiz.a01 google scholar
- Sadeghi, S., Fooladi, E. & Malekaneh, M. (2014). A nanocomposite/crude extract enzyme-based xanthine bio-sensor. Analytical Biochemistry, 464, 51-59. https://doi.org/10.1016/j.ab.2014.07.013 google scholar
- Saeidi, Z., Ahari, H. & Anvar, S.A.A. (2021). Study of antimicrobial properties of nano chitosan with Marjoram essential oil in increasing the shelf-life of shrimp (Nephropidae) at refrigerated temperature. Journal of Food Biosciences and Technology, 11(2), 85-98. google scholar
- Saka, E. & Gülel, G.T. (2015). Gıda endüstrisinde nanoteknoloji uygulamaları. Etlik Veteriner Mikrobiyoloji Dergisi, 26(2), 52-57. https://doi.org/10.35864/evmd.513387 google scholar
- Sanuja, S., Agalya, A. & Umapathy, M.J. (2014). Studies on magnesium oxide reinforced chitosan bionanocom-posite incorporated with clove oil for active food packaging application. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(14), 733-740. https://doi.org/10.1080/00914037.2013.879445 google scholar
- Sanuja, S., Agalya, A. & Umapathy, M.J. (2015). Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. International Journal of Biological Macromolecules, 74, 76-84. https://doi.org/10.1016/j.ijbiomac.2014.11.036 google scholar
- Sawicki, K., Czajka, M., Matysiak-Kucharek, M., Fal, B., Drop, B., Mçczynska-Wielgosz, S., ... & Kapka-Skrzy-pczak, L. (2019). Toxicity of metallic nanoparticles in the central nervous system. Nanotechnology Reviews, 8(1), 175-200. https://doi.org/10.1515/ntrev-2019-0017 google scholar
- Sayyari, Z., Rabani, M., Farahmandfar, R., Esmaeilzadeh Kenari, R. & Mousavi Nadoshan, R. (2021a). The effect of nanocomposite edible coating enriched with Foeniculum vulgare essential oil on the shelf life of Oncorhynchus mykiss fish fillets during the storage. Journal of Aquatic Food Product Technology, 30(5), 579-595. https://doi.org/10.1080/10498850.2021.1901815 google scholar
- Sayyari, Z., Rabbani, M., Farahmandfar, R., Esmaeilzadeh Kenari, R. & Mousavi Nadoushan, R. (2021b). Investigation of the effect of essential oil along with nanocoatings containing gums in the development of fish fillet storage time. Journal of Food Measurement and Characterization, 15(4), 3539-3552. https://doi. org/10.1007/s11694-021-00932-8 google scholar
- Sekhon, B.S. (2010). Food nanotechnology-an overview. Nanotechnology, Science and Applications, 1-15. ht-tps://doi.org/10.2147/NSA.S8677 google scholar
- Seray, M., Hadj-Hamou, A.S., Uzunlu, S. & Benhacine, F. (2021). Development of active packaging films based on poly (butylene adipate-co-terephthalate) and silver-montmorillonite for shelf life extension of sea bream. Polymer Bulletin, 1-22. https://doi.org/10.1007/s00289-021-03671-4 google scholar
- Sessini, V., Arrieta, M.P., Kenny, J.M. & Peponi, L. (2016). Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability, 132, 157-168 https://doi.org/10.1016/j.polymdegra-dstab.2016.02.026 google scholar
- Shadman, S., Hosseini, S.E., Langroudi, H.E. & Shabani, S. (2017). Evaluation of the effect of a sunflower oil-based nanoemulsion with Zataria multiflora Boiss essential oil on the physicochemical properties of rainbow trout (Oncorhynchus mykiss) fillets during cold storage. LWT-Food Science and Technology, 79, 511-517. https://doi.org/10.1016/j.lwt.2016.01.073 google scholar
- Shaikh, S., Nazam, N., Rizvi, S.M.D., Ahmad, K., Baig, M.H., Lee, E.J. & Choi, I. (2019). Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. In-ternational Journal of Molecular Sciences, 20(10), 2468. https://doi.org/10.3390/ijms20102468 google scholar
- Sharaf Eddin, A. & Tahergorabi, R. (2017). Application of a surimi-based coating to improve the quality attribu-tes of shrimp during refrigerated storage. Foods, 6(9), 76. https://doi.org/10.3390/foods6090076 google scholar
- Sharifimehr, S., Soltanizadeh, N. & Hossein Goli, S.A. (2019). Effects of edible coating containing nano-emul-sion of Aloe vera and eugenol on the physicochemical properties of shrimp during cold storage. Journal of the Science of Food and Agriculture, 99(7), 3604-3615.https://doi.org/10.1002/jsfa.9581 google scholar
- Sharma, C., Dhiman, R., Rokana, N. & Panwar, H. (2017). Nanotechnology: An untapped resource for food packaging. Frontiers in Microbiology, 8, 1735. https://doi.org/10.3389/fmicb.2017.01735 google scholar
- Sharpe, E., Frasco, T., Andreescu, D. & Andreescu, S. (2013). Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac). Analyst, 138(1), 249-262. https://doi.org/10.1039/C2AN36205H google scholar
- Shruthy, R., Jancy, S. & Preetha, R. (2021). Cellulose nanoparticles synthesised from potato peel for the de-velopment of active packaging film for enhancement of shelf life of raw prawns (Penaeus monodon) du-ring frozen storage. International Journal of Food Science & Technology, 56(8), 3991-3999. https://doi. org/10.1111/ijfs.14551 google scholar
- Singh, S., Lee, M., Gaikwad, K.K. & Lee, Y.S. (2018). Antibacterial and amine scavenging properties of sil-ver-silica composite for post-harvest storage of fresh fish. Food and Bioproducts Processing, 107, 61-69. https://doi.org/10.1016/j.fbp.2017.10.009 google scholar
- Sun, Y., Zhang, M., Bhandari, B. & Yang, C.H. (2019). Ultrasound treatment of frozen crayfish with chitosan Nano-composite water-retaining agent: Influence on cryopreservation and storage qualities. Food Research International, 126, 108670. https://doi.org/10.1016/j.foodres.2019.108670 google scholar
- Surendhiran, D., Roy, V.C., Park, J.S. & Chun, B.S. (2022). Fabrication of chitosan-based food packaging film impregnated with turmeric essential oil (TEO)-loaded magnetic-silica nanocomposites for surimi preser-vation. International Journal of Biological Macromolecules, 203, 650-660. https://doi.org/10.1016/j.ijbio-mac.2022.01.178 google scholar
- Svagan, A.J., Âkesson, A., Cardenas, M., Bulut, S., Knudsen, J.C., Risbo, J. & Plackett, D. (2012). Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties. Biomacromolecules, 13(2), 397-405. https://doi.org/10.1021/bm201438m google scholar
- Tang, S., Wang, Z., Li, W., Li, M., Deng, Q., Wang, Y., ... & Chu, P.K. (2019). Ecofriendly and biodegradable soybean protein isolate films incorporated with ZnO nanoparticles for food packaging. ACS Applied Bio Materials, 2(5), 2202-2207. https://doi.org/10.1021/acsabm.9b00170 google scholar
- Tang, Z.P., Chen, C.W. & Xie, J. (2018). Development of antimicrobial active films based on poly (vinyl alco-hol) containing nano-T^ and its application in macrobrachium rosenbergii packaging. Journal of Food Processing and Preservation, 42(8), e13702. https://doi.org/10.1111/jfpp.13702 google scholar
- Thandavan, K., Gandhi, S., Sethuraman, S., Rayappan, J.B.B. & Krishnan, U.M. (2013). Development of electro-chemical biosensor with nano-interface for xanthine sensing-A novel approach for fish freshness estimation. Food Chemistry, 139(1-4), 963-969. https://doi.org/10.1016/j.foodchem.2013.02.008 google scholar
- Vaisocherovâ-Lasalovâ, H., V^ova, I., Ermini, M.L., Springer, T., Song, X. C., Mrazek, J., ... & Homola, J. (2016). Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors and Bioelectronics, 80, 84-90. https://doi.org/10.1016/j. bios.2016.01.040 google scholar
- Valencia, L., Nomena, E.M., Mathew, A.P. & Velikov, K.P. (2019). Biobased cellulose nanofibril-oil composite films for active edible barriers. ACS Applied Materials & Interfaces, 11(17), 16040-16047. https://doi. org/10.1021/acsami.9b02649 google scholar
- Vidhyalakshmi, R., Bhakyaraj, R., & Subhasree, R.S. (2009). Encapsulation “the future of probiotics”-a review. Advances in Biological Research, 3(3-4), 96-103. google scholar
- Vizzini, P., Beltrame, E., Zanet, V., Vidic, J. & Manzano, M. (2020). Development and evaluation of qPCR dete-ction method and Zn-MgO/alginate active packaging for controlling Listeria monocytogenes contamination in cold-smoked salmon. Foods, 9, 1353. https://doi.org/10.3390/foods9101353 google scholar
- Wang, J., Wang, Z., Liu, J., Li, H., Li, Q. X., Li, J. & Xu, T. (2013). Nanocolloidal gold-based immuno-dip strip assay for rapid detection of Sudan red I in food samples. Food Chemistry, 136(3-4), 1478-1483. https://doi. org/10.1016/j.foodchem.2012.09.047 google scholar
- Wang, L., Hu, C. & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227. https://doi.org/10.2147/IJN.S121956 google scholar
- Wang, Y. C., Lu, L. & Gunasekaran, S. (2015). Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage. Microchimica Acta, 182, 1305-1311. https://doi.org/10.1007/s00604-015-1451-6 google scholar
- Wei, J., Yang, D., Chen, H., Gao, Y. & Li, H. (2014). Stripping voltammetric determination of mercury (II) based on SWCNT-PhSH modified gold electrode. Sensors and Actuators B: Chemical, 190, 968-974. https://doi. org/10.1016/j.snb.2013.09.083 google scholar
- Wei, X.Q., Li, X.P., Wu, C.L., Yi, S.M., Zhong, K.L., Sun, T. & Li, J.R. (2018). The modification of in situ SiOx chitosan coatings by ZnO/TiO2 NPs and its preservation properties to silver carp fish balls. Journal of Food Science, 83(12), 2992-3001. https://doi.org/10.1111/1750-3841.14381 google scholar
- Wu, C., Hu, Y., Chen, S., Chen, J., Liu, D. & Ye, X. (2016b). Formation mechanism of nano-scale antibiotic and its preservation performance for silvery pomfret. Food Control, 69, 331-338. https://doi.org/10.1016/j. foodcont.2016.05.020 google scholar
- Wu, C., Sun, J., Zheng, P., Kang, X., Chen, M., Li, Y., ... & Pang, J. (2019b). Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydrate Polymers, 222, 115006. https://doi.org/10.1016/j.carbpol.2019.115006 google scholar
- Wu, C., Wang, L., Hu, Y., Chen, S., Liu, D. & Ye, X. (2016a). Edible coating from citrus essential oil-loaded nanoemulsions: physicochemical characterization and preservation performance. RSC Advances, 6(25), 20892-20900. https://doi.org/10.1039/C6RA00757K google scholar
- Wu, Z., Deng, W., Luo, J. & Deng, D. (2019a). Multifunctional nano-cellulose composite films with grape seed extracts and immobilized silver nanoparticles. Carbohydrate Polymers, 205, 447-455. https://doi.or-g/10.1016/j.carbpol.2018.10.060 google scholar
- Wyrwa, J. & Barska, A. (2017). Innovations in the food packaging market: Active packaging. European Food Research and Technology, 243, 1681-1692. https://doi.org/10.1007/s00217-017-2878-2 google scholar
- Xiao, Y., Liu, Y., Kang, S., Cui, M., & Xu, H. (2021). Development of pH-responsive antioxidant soy protein isolate films incorporated with cellulose nanocrystals and curcumin nanocapsules to monitor shrimp fresh-ness. Food Hydrocolloids, 120, 106893. https://doi.org/10.1016/j.foodhyd.2021.106893 google scholar
- Xie, Y., Pan, Y., & Cai, P. (2022). Cellulose-based antimicrobial films incroporated with ZnO nanopillars on sur-face as biodegradable and antimicrobial packaging. Food Chemistry, 368, 130784. https://doi.org/10.1016/j. foodchem.2021.130784 google scholar
- Xin, S., Xiao, L., Dong, X., Li, X., Wang, Y., Hu, X., ... & Zhu, B. (2020). Preparation of chitosan/curcumin na-noparticles based zein and potato starch composite films for Schizothorax prenati fillet preservation. Interna-tional Journal of Biological Macromolecules, 164, 211-221. https://doi.org/10.1016/j.ijbiomac.2020.07.082 google scholar
- Yazgan, H., Ozogul, Y., Durmuş, M., Balikçi, E., Gökdoğan, S., Uçar, Y., & Aksun, E.T. (2017). Effects of oil-in-water nanoemulsion based on sunflower oil on the quality of farmed sea bass and gilthead sea bream stored at chilled temperature (2±2 °C). Journal of Aquatic Food Product Technology, 26(8), 979-992. https://doi. org/10.1080/10498850.2017.1366610 google scholar
- Youssef, A.M., El-Sayed, H.S., Islam, E.N., & El-Sayed, S.M. (2021). Preparation and characterization of novel bionanocomposites based on garlic extract for preserving fresh Nile tilapia fish fillets. RSC Advances, 11(37), 22571-22584. https://doi.org/10.1039/D1RA03819B google scholar
- Yu, H., Yan, C., & Yao, J. (2014). Fully biodegradable food packaging materials based on functionalized cellu-lose nanocrystals/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Advances, 4(104), 59792-59802. https://doi.org/10.1039/C4RA12691B google scholar
- Zhang, L., Yu, D., Xu, Y., Jiang, Q., Xia, W., & Yu, D. (2023). Changes in quality and microbial diversity of refrigerated carp fillets treated by chitosan/zein bilayer film with curcumin/nisin-loaded pectin nanoparticles. Food Bioscience, 54, 102941. https://doi.org/10.1016/j.fbio.2023.102941 google scholar
- Zhang, W., & Jiang, W. (2020). Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. International Journal of Biological Macromolecu-les, 155, 1252-1261. https://doi.org/10.1016/j.ijbiomac.2019.11.093 google scholar
- Zhang, W.H., & Zhang, W.D. (2008). Fabrication of SnO2-ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes. Sensors and Actuators B: Chemical, 134(2), 403-408. https:// doi.org/10.1016/j.snb.2008.05.015 google scholar
- Zhang, X., Xiao, G., Wang, Y., Zhao, Y., Su, H., & Tan, T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydrate Polymers, 169, 101-107. https://doi.org/10.1016/j.carbpol.2017.03.073 google scholar
- Zhao, R., Guan, W., Zheng, P., Tian, F., Zhang, Z., Sun, Z., & Cai, L. (2022). Development of edible composite film based on chitosan nanoparticles and their application in packaging of fresh red sea bream fillets. Food Control, 132, 108545. https://doi.org/10.1016/j.foodcont.2021.108545 google scholar
- Zhao, R., Torley, P., & Halley, P.J. (2008). Emerging biodegradable materials: starch-and protein-based bio-na-nocomposites. Journal of Materials Science, 43, 3058-3071. https://doi.org/10.1007/s10853-007-2434-8 google scholar
- Zhu, Z., Zhang, Y., Shang, Y., & Wen, Y. (2019). Electrospun nanofibers containing TiO2 for the photocatalytic degradation of ethylene and delaying postharvest ripening of bananas. Food and Bioprocess Technology, 12, 281-287. https://doi.org/10.1007/s11947-018-2207-1 google scholar