CHAPTER


DOI :10.26650/B/LSB23LSB24.2024.026.018   IUP :10.26650/B/LSB23LSB24.2024.026.018    Full Text (PDF)

Edible Films and Coatings

Seda OğurYusuf Pilavcı

Since a significant portion of global petroleum production is used in plastic production, non-renewable energy resources are decreasing, and plastic packaging materials cause intense environmental pollution. Apart from the disposal of plastic waste, public health problems (such as microplastics contaminating food products, migration of the monomers that make up plastic into food, or mixing of water-soluble plastic residues into drinking water etc.) caused by pollution also result in significant economic losses. Plastic pollution in water also threatens the health and safety of aquatic creatures. As an alternative to petroleum-based plastic packaging materials, edible films & coatings obtained from natural biopolymers are intensively studied because they do not create waste problems. Although it is not new, it is an ever-developing sustainable packaging technology. The unique features that make edible films & coatings are their environmentally friendly structure, biocompatibility, non-toxic effect, low cost, renewable and biodegradable. In addition to these characteristics, some biopolymers have superior properties, such as antibacterial, antifungal, antiviral, antioxidant, etc. It is also possible to add natural or artificial ingredients with the mentioned properties into edible films & coatings. However, since biopolymers forming edible films & coatings have disadvantages such as low thermal stability, low mechanical properties, and gas and vapour permeability, causing brittleness, they must be combined with other related materials or modified before application. This book chapter mentions the emergence and development of edible films & coatings, their chemical structure, how they are obtained and applied, their ingredients, production methods, their properties as packaging materials and their applications in aquatic-sourced foods.


DOI :10.26650/B/LSB23LSB24.2024.026.018   IUP :10.26650/B/LSB23LSB24.2024.026.018    Full Text (PDF)

Yeni̇lebi̇li̇r Fi̇lmler ve Kaplamalar

Seda OğurYusuf Pilavcı

Küresel petrol üretiminin önemli bir kısmının plastik üretiminde kullanılması sebebiyle hem yenilenemeyen enerji kaynakları azalmakta hem de plastik ambalaj malzemeleri yoğun bir çevresel kirliliğe sebep olmaktadır. Plastik atıkların bertarafının dışında kirliliğin sebep olduğu halk sağlığı sorunları (gıda ürünlerine bulaşan mikroplastikler, plastiği oluşturan monomerlerin migrasyonla gıdaya geçişi veya suda çözünen plastik kalıntılarının içme sularına karışması vb. sebeplerle) dikkate değer ekonomik kayıpları ortaya çıkarmaktadır. Sulardaki plastik kirliliği aynı zamanda akuatik canlıların sağlığını ve güvenliğini de tehdit etmektedir. Petrol bazlı plastik ambalaj malzemelerinin alternatifi olarak doğal biyopolimerlerden elde edilen yenilebilir filmler ve kaplamalar atık sorunu oluşturmamaları sebebiyle üzerinde yoğun şekilde çalışılan, yeni olmasa da sürekli gelişen sürdürülebilir bir paketleme teknolojisidir. Yenilebilir filmleri & kaplamaları eşsiz yapan özellikleri çevre dostu yapıları, biyouyumlulukları, toksik etki göstermemeleri, düşük maliyetli, yenilenebilir ve biyobozunur olmalarıdır. Bu karakteristiklere ek olarak antibakteriyel, antifungal, antiviral, antioksidan vb. üstün niteliklere sahip bazı biyopolimerler de bulunmaktadır. Aynı zamanda bahsedilen özelliklere sahip doğal veya yapay bileşenlerin yenilebilir filmlere ve kaplamalara ilave edilmesi de söz konusudur. Ancak, yenilebilir filmleri ve kaplamaları oluşturan biyopolimerlerin düşük termal kararlılık, düşük mekanik özellikler, gaz ve buhar geçirgenliği, kırılganlığa sebep olma gibi dezavantajları olduğundan, genellikle diğer ilgili malzemelerle birleştirilmek veya uygulamadan önce değişikliğe tabi tutulmak zorundadırlar. Bu kitap bölümünde yenilebilir filmlerin ve kaplamaların ortaya çıkışı ve gelişiminden, kimyasal yapısından, nasıl elde edildikleri ve ne şekilde uygulandıklarından, içeriğindeki bileşenlerden, üretim metotlarından, ambalaj materyali olarak özelliklerinden ve akuatik kaynaklı gıdalardaki uygulamalarından bahsedilmektedir.



References

  • Abdin, M., El-Beltagy, A.E., El-Sayed, M.E., & Naeem, M.A. (2021). Production and characterization of sodium alginate/gum arabic based films enriched with Syzygium cumini seeds extracts for food application. Journal of Polymers and the Environment, 1-12. https://doi.org/10.1007/s10924-021-02306-z google scholar
  • Abdollahzadeh, E., Nematollahi, A., & Hosseini, H. (2021). Composition of antimicrobial edible films and met-hods for assessing their antimicrobial activity: A review. Trends in Food Science & Technology, 110, 291-303. https://doi.org/10.1016/j.tifs.2021.01.084 google scholar
  • Abral, H., Basri, A., Muhammad, F., Fernando, Y., Hafizulhaq, F., Mahardika, M., ... & Stephane, I. (2019). A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocolloids, 93, 276-283. https://doi.org/10.1016/j.foodhyd.2019.02.012 google scholar
  • Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M.A., & Martm-Belloso, O. (2015). Edible films from es-sential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids, 47, 168-177. https://doi.org/10.1016/j.foodhyd.2015.01.032 google scholar
  • Afrin, F., Islam, M.M., Rasul, M.G., Sarkar, M.S.I., Yuan, C., & Shah, A.K.M.A. (2023). Effects of seaweed extracts on the quality and shelf life of Nile tilapia (Oreochromis niloticus) fillets during frozen storage. Food Chemistry Advances, 3, 100388. https://doi.org/10.1016/j.focha.2023.100388 google scholar
  • Agriopoulou, S., Stamatelopoulou, E., Sachadyn-Krol, M., & Varzakas, T. (2020). Lactic acid bacteria as anti-bacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms, 8(6), 952. https://doi.org/10.3390/microorganisms8060952 google scholar
  • Ahmad, A.S., Sae-leaw, T., Zhang, B., & Benjakul, S. (2023). Antioxidant and antimicrobial activities of Et-hanolic Jik (Barringtonia acutangula) leaf extract and its application for shelf-life extension of Pacific white shrimp meat during refrigerated storage to be submitted to food control. Food Control, 110037. https://doi.org/10.1016/j.foodcont.2023.110037 google scholar
  • Ahmad, M., Benjakul, S., Sumpavapol, P., & Nirmal, N. P. (2012). Quality changes of sea bass slices wrapped with ge-latin film incorporated with lemongrass essential oil. International Journal of Food Microbiology, 155(3), 171-178. https://doi.org/10.1016/j.ijfoodmicro.2012.01.027 google scholar
  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Science and Technology, 43(6), 837-842. https://doi.org/10.1016/j.lwt.2010.01.021 google scholar
  • Akhila, V., & Badwaik, L.S. (2022). Recent advancement in improvement of properties of polysaccharides and proteins based packaging film with added nanoparticles: A review. International Journal of Biological Macromolecules, 203, 515-525. https://doi.org/10.1016/j.ijbiomac.2022.01.181 google scholar
  • Akoh, C.C., & Min, D.B. (Eds.). (2008). Food lipids: Chemistry, nutrition, and biotechnology (third ed.). Florida, ABD: CRC Press. https://doi.org/10.1201/9781420046649 google scholar
  • Albertos, I., Avena-Bustillos, R.J., Martm-Diana, A.B., Du, W.X., Rico, D., & McHugh, T.H. (2017). Antimicrobial oliveleafgelatinfilmsforenhancingthequalityofcold-smokedSalmon.FoodPackagingandShelfLife,13,49-55. https://doi.org/10.1016/j.fpsl.2017.07.004 google scholar
  • Albertos, I., Martin-Diana, A.B., Buron, M., & Rico, D. (2019). Development of functional bio-based seaweed (Himanthalia elongata and Palmaria palmata) edible films for extending the shelflife of fresh fish burgers. Food Packaging and Shelf Life, 22, 100382. https://doi.org/10.1016/j.fpsl.2019.100382 google scholar
  • Alexandre, E.M.C., Lourenço, R.V., Bittante, A.M.Q.B., Moraes, I.C.F., & do Amaral Sobral, P.J. (2016). Ge-latin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packaging and Shelf Life, 10, 87-96. https://doi.org/10.1016/j. fpsl.2016.10.004 google scholar
  • Aliakbarian, B., Paini, M., Casazza, A.A., & Perego, P. (2015). Effect of encapsulating agent on physical-chemical characteristics of olive pomace polyphenols-rich extracts. Chemical Engineering Transactions, 43, 97-102. google scholar
  • Alizadeh-Sani, M., Rhim, J.W., Azizi-Lalabadi, M., Hemmati-Dinarvand, M., & Ehsani, A. (2020). Prepara-tion and characterization of functional sodium caseinate/guar gum/TiO2/cumin essential oil composite film. International Journal of Biological Macromolecules, 145, 835-844. https://doi.org/10.1016/j.ijbio-mac.2019.11.004 google scholar
  • Alotaibi, S., & Tahergorabi, R. (2018). Development of a sweet potato starch-based coating and its effect on quality attributes of shrimp during refrigerated storage. LWT-Food Science and Technology, 88, 203-209. https://doi.org/10.1016/j.lwt.2017.10.022 google scholar
  • Alparslan, Y., Yapıcı, H.H., Metin, C., Baygar, T., Günlü, A., & Baygar, T. (2016). Quality assessment of shrimps preserved with orange leaf essential oil incorporated gelatin. LWT-Food Science and Technology, 72, 457-466. https://doi.org/10.1016/j.lwt.2016.04.066 google scholar
  • Alsaggaf, M.S., Moussa, S.H., & Tayel, A.A. (2017). Application of fungal chitosan incorporated with pomegranate peel extract as edible coating for microbiological, chemical and sensorial quality en-hancement of Nile tilapia fillets. International Journal of Biological Macromolecules, 99, 499-505. https://doi.org/10.1016/j.ijbiomac.2017.03.017 google scholar
  • Alves, A.C.R.S., Lima, A.M.F., Tiera, M.J., & Aparecida de Oliveira Tiera, V. (2019). Biopolymeric films of amphiphilic derivatives of chitosan: A physicochemical characterization and antifungal study. International Journal of Molecular Sciences, 20(17), 4173. https://doi.org/10.3390/ijms20174173 google scholar
  • Alves, V.L., Rico, B.P., Cruz, R.M., Vicente, A.A., Khmelinskii, I., & Vieira, M.C. (2018). Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated salmon (Salmo salar). LWT-Food Science and Technology, 89, 525-534. https://doi.org/10.1016/j.lwt.2017.11.013 google scholar
  • Alzate, P., Miramont, S., Flores, S., & Gerschenson, L.N. (2017). Effect of the potassium sorbate and carvacrol addition on the properties and antimicrobial activity of tapioca starch-Hydroxypropyl methylcellulose edible fılms. Starch-Starke, 69(5-6), 1600261. https://doi.org/10.1002/star.201600261 google scholar
  • Andevari, G.T., & Rezaei, M. (2011). Effect of gelatin coating incorporated with cinnamon oil on the quality of fresh rainbow trout in cold storage. International Journal of Food Science & Technology, 46(11), 2305-2311. https://doi.org/10.1111/j.1365-2621.2011.02750.x google scholar
  • Andreuccetti, C., Carvalho, R.A., Galicia-Garda, T., Martmez-Bustos, F., & Grosso, C.R. (2011). Effect of surfac-tants on the functional properties of gelatin-based edible films. Journal of Food Engineering, 103(2), 129-136. https://doi.org/10.1016/j.jfoodeng.2010.10.007 google scholar
  • Anastasi, E., Riviere, G., & Teste, B. (2019). Nanomaterials in food-prioritisation & assessment. European Food Safety Authority Journal, 17(Suppl 2), e170909-e170909. https://doi.org/10.2903/j.efsa.2019.e170909 google scholar
  • Ansorena, M.R., Zubeldı'a, F., & Marcovich, N.E. (2016). Active wheat gluten films obtained by thermoplastic processing. LWT-Food Science and Technology, 69, 47-54. https://doi.org/10.1016/j.lwt.2016.01.020 google scholar
  • Antoshin, A.A., Shpichka, A. I., Huang, G., Chen, K., Lu, P., Svistunov, A.A., ... & Timashev, P. S. (2021). La-ctoferrin as a regenerative agent: The old-new panacea?. Pharmacological Research, 167, 105564. https:// doi.org/10.1016/j.phrs.2021.105564 google scholar
  • Araujo, C.S., Rodrigues, A.M.C., Joele, M.P., Araujo, E.A.F., & Lourenço, L.F.H. (2018). Optimizing process parameters to obtain a bioplastic using proteins from fish byproducts through the response surface metho-dology. Food Packaging and Shelf Life, 16, 23-30. https://doi.org/10.1016/j.fpsl.2018.01.009 google scholar
  • Arfat, Y.A., Benjakul, S., Vongkamjan, K., Sumpavapol, P., & Yarnpakdee, S. (2015). Shelf-life extension of refrigerated sea bass slices wrapped with fish protein isolate/fish skin gelatin-ZnO nanocomposite film incorporated with basil leaf essential oil. Journal of Food Science and Technology, 52, 6182-6193. https:// doi.org/10.1007/s13197-014-1706-y google scholar
  • Ariaii, P., Tavakolipour, H., Rezaei, M., Elhami Rad, A.H., & Bahram, S. (2015). Effect of methylcellulose coating enriched with Pimpinella affinis oil on the quality of silver carp fillet during refrigerator storage con-dition. Journal of Food Processing and Preservation, 39(6), 1647-1655. https://doi.org/10.1111/jfpp.12394 google scholar
  • Armenteros, M., Dalvit, P., Leyva, V., Ponce, P., & Alfonso, P. (2007). Risk analysis of the exacerbation of foodborne pathogens in raw milk activated with the lactoperoxidase system. Revista de Salud Animal, 29(3), 176-181. google scholar
  • Arshad, M., Huang, L., & Ullah, A. (2016). Lipid-derived monomer and corresponding bio-based nanocompo-sites. Polymer International, 65(6), 653-660. https://doi.org/10.1002/pi.5107 google scholar
  • Arvanitoyannis, I., Psomiadou, E., Nakayama, A., Aiba, S., & Yamamoto, N. (1997). Edible films made from gelatin, soluble starch and polyols, Part 3. Food Chemistry, 60(4), 593-604. https://doi.org/10.1016/S0308-8146(97)00038-1 google scholar
  • Ashooriyan, P., Mohammadi, M., Darzi, G.N., & Nikzad, M. (2023). Development of Plantago ovata seed mucilage and xanthan gum-based edible coating with prominent optical and barrier properties. International Journal of Biological Macromolecules, 248, 125938. https://doi.org/10.1016/j.ijbiomac.2023.125938 google scholar
  • Aşik, E., & Candoğan, K. (2014). Effects of chitosan coatings incorporated with garlic oil on quality characte-ristics of shrimp. Journal of Food Quality, 37(4), 237-246. https://doi.org/10.1111/jfq.12088 google scholar
  • Athanasopoulou, E., Michailidi, A., Ladakis, D., Kalliampakou, K.I., Flemetakis, E., Koutinas, A., & Tsironi, T. (2023). Extraction of fish protein concentrates from discards and combined application with gelatin for the development of biodegradable food packaging. Sustainability, 15(15), 12062. https://doi.org/10.3390/ su151512062 google scholar
  • Avila-Sosa, R., Palou, E., Mungma, M.T.J., Nevârez-Moorillon, G.V., Cruz, A.R.N., & Lopez-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible fil-ms. International Journal of Food Microbiology, 153(1-2), 66-72. https://doi.org/10.1016/j.ijfoodmic-ro.2011.10.017 google scholar
  • Aydogdu, A., Radke, C.J., Bezci, S., & Kirtil, E. (2020). Characterization of curcumin incorporated guar gum/ orange oil antimicrobial emulsion films. International Journal of Biological Macromolecules, 148, 110-120. https://doi.org/10.1016/j.ijbiomac.2019.12.255 google scholar
  • Bagheri, F., Radi, M., & Amiri, S. (2019). Drying conditions highly influence the characteristics of glycerol-plas-ticized alginate films. Food Hydrocolloids, 90, 162-171. https://doi.org/10.1016/j.foodhyd.2018.12.001 google scholar
  • Baghi, F., Gharsallaoui, A., Dumas, E., & Ghnimi, S. (2022). Advancements in biodegradable active films for food packaging: Effects of nano/microcapsule incorporation. Foods, 11(5), 760. https://doi.org/10.3390/ foods11050760 google scholar
  • Bahrami, A., Mokarram, R.R., Khiabani, M.S., Ghanbarzadeh, B., & Salehi, R. (2019). Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films rein-forced with silver nanoparticles. International Journal of Biological Macromolecules, 129, 1103-1112. https://doi.org/10.1016/j.ijbiomac.2018.09.045 google scholar
  • Bamdad, F., Goli, A.H., & Kadivar, M. (2006). Preparation and characterization of proteinous film from lentil (Lens culinaris): Edible film from lentil (Lens culinaris). Food Research International, 39(1), 106-111. https://doi.org/10.1016/j.foodres.2005.06.006 google scholar
  • Barkhori-Mehni, S., Khanzadi, S., Hashemi, M., & Azizzadeh, M. (2019). The effect of sodium alginate coating incorporated with lactoperoxidase system and Zataria multiflora Boiss essential oil on shelf life extension of rainbow trout fillets during refrigeration. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(1), 163-172. google scholar
  • Bastos, L.P.H., Vicente, J., dos Santos, C.H.C., de Carvalho, M.G., & Garcia-Rojas, E.E. (2020). Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids, 102, 105605. https://doi.org/10.1016/j.foodhyd.2019.105605 google scholar
  • Baştürk, A., Ceylan, M.M., Çavuş, M., Boran, G., & Javidipour, I. (2018). Effects of some herbal extracts on oxi-dative stability of corn oil under accelerated oxidation conditions in comparison with some commonly used antioxidants. LWT-Food Science and Technology, 89, 358-364. https://doi.org/10.1016/j.lwt.2017.11.005 google scholar
  • Bazargani-Gilani, B. (2018). Activating sodium alginate-based edible coating using a dietary supplement for increa-sing theshelflife ofrainbowtrout fillet during refrigerated storage (4±1°C). Journal ofFoodSafety,38(1), e12395. https://doi.org/10.1111/jfs.12395 google scholar
  • Belyamani, I., Prochazka, F., & Assezat, G. (2014). Production and characterization of sodium ca-seinate edible films made by blown-film extrusion. Journal of Food Engineering, 121, 39-47. https://doi.org/10.1016/j.jfoodeng.2013.08.019 google scholar
  • Ben Arfa, A., Combes, S., Preziosi-Belloy, L., Gontard, N., & Chalier, P. (2006). Antimicrobial acti-vity of carvacrol related to its chemical structure. Letters in Applied Microbiology, 43(2), 149-154. https://doi.org/10.1111/j.1472-765X.2006.01938.x google scholar
  • Bera, D., Lahiri, D., & Nag, A. (2006). Studies on a natural antioxidant for stabilization of edible oil and com-parison with synthetic antioxidants. Journal of Food Engineering, 74(4), 542-545. https://doi.org/10.1016/j. jfoodeng.2005.03.042 google scholar
  • Bertan, L.C., Tanada-Palmu, P.S., Siani, A.C., & Grosso, C.R.F. (2005). Effect of fatty acids and ‘Brazilian elemi’on composite films based on gelatin. Food Hydrocolloids, 19(1), 73-82. https://doi.org/10.1016/j. foodhyd.2004.04.017 google scholar
  • Bi, F., Qin, Y., Chen, D., Kan, J., & Liu, J. (2021). Development of active packaging films based on chito-san and nano-encapsulated luteolin. International Journal of Biological Macromolecules, 182, 545-553. https://doi.org/10.1016/j.ijbiomac.2021.04.063 google scholar
  • Bodoira, R.M., Penci, M.C., Ribotta, P.D., & Martmez, M.L. (2017). Chia (Salvia hispanica L.) oil stabi-lity: Study of the effect of natural antioxidants. LWT-Food Science and Technology, 75, 107-113. https://doi.org/10.1016/j.lwt.2016.08.031 google scholar
  • Boots, J.W., & Floris, R. (2006). Lactoperoxidase: From catalytic mechanism to practical applications. Interna-tional Dairy Journal, 16(11), 1272-1276. https://doi.org/10.1016/j.idairyj.2006.06.019 google scholar
  • Bornet, A., & Teissedre, P.L. (2010). Biological activities and applications (pp. 519-529). Florida, ABD: CRC Press. https://doi.org/10.1201/EBK1439816035-c36 google scholar
  • Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3), 237-248. google scholar
  • Braccini, I., & Perez, S. (2001). Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules, 2(4), 1089-1096. https://doi.org/10.1021/bm010008g google scholar
  • Bravin, B., Peressini, D., & Sensidoni, A. (2004). Influence of emulsifier type and content on functional properties of polysaccharide lipid-based edible films. Journal of Agricultural and Food Chemistry, 52(21), 6448-6455. https://doi.org/10.1021/jf040065b google scholar
  • Bravin, B., Peressini, D., & Sensidoni, A. (2006). Development and application of polysaccharide-lipid edib-le coating to extend shelf-life of dry bakery products. Journal of Food Engineering, 76(3), 280-290. https://doi.org/10.1016/j.jfoodeng.2005.05.021 google scholar
  • Bruno, S.F., Ekorong, F.J.A.A., Karkal, S.S., Cathrine, M.S.B., & Kudre, T.G. (2019). Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends in Food Science & Technology, 85, 10-22. https://doi.org/10.1016/j.tifs.2018.12.004 google scholar
  • Buonocore, G.G., Del Nobile, M.A., Panizza, A., Bove, S., Battaglia, G., & Nicolais, L. (2003). Modeling the lysozyme release kinetics from antimicrobial films intended for food packaging applications. Journal of Food Science, 68(4), 1365-1370. https://doi.org/10.1111/j.1365-2621.2003.tb09651.x google scholar
  • Burrowes, O.J., Hadjicharalambous, C., Diamond, G., & Lee, T.C. (2004). Evaluation of antimicrobial spectrum and cytotoxic activity of pleurocidin for food applications. Journal of Food Science, 69(3), FMS66-FMS71. https://doi.org/10.1111/j.1365-2621.2004.tb13373.x google scholar
  • Cai, L., Cao, A., Bai, F., & Li, J. (2015). Effect of s-polylysine in combination with alginate coating treatment on physicochemical and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) during refrigerated storage. LWT-Food Science and Technology, 62(2), 1053-1059. https://doi.org/10.1016/j. lwt.2015.02.002 google scholar
  • Cai, L., Li, X., Wu, X., Lv, Y., Liu, X., & Li, J. (2014b). Effect of chitosan coating enriched with ergothioneine on quality changes of Japanese sea bass (Lateolabrax japonicas). Food and Bioprocess Technology, 7, 22812290. https://doi.org/10.1007/s11947-013-1215-4 google scholar
  • Cai, L., Wang, Y., & Cao, A. (2020). The physiochemical and preservation properties of fish sarcoplasmic prote-in/chitosan composite films containing ginger essential oil emulsions. Journal of Food Process Engineering, 43(10), e13495. https://doi.org/10.1111/jfpe.13495 google scholar
  • Cai, L., Wu, X., Dong, Z., Li, X., Yi, S., & Li, J. (2014a). Physicochemical responses and quality changes of red sea bream (Pagrosomus major) to gum arabic coating enriched with ergothioneine treatment during refrigerated storage. Food Chemistry, 160, 82-89. https://doi.org/10.1016/j.foodchem.2014.03.093 google scholar
  • Calva-Estrada, S.J., Jimenez-Fernandez, M., & Lugo-Cervantes, E. (2019). Protein-based films: Advances in the development of biomaterials applicable to food packaging. Food Engineering Reviews, 11, 78-92. https:// doi.org/10.1007/s12393-019-09189-w google scholar
  • Campos, C.A., Gerschenson, L.N., & Flores, S.K. (2011). Development of edible films and coatings with anti-microbial activity. Food Bioprocess Technology, 4 (6): 849-875. https://doi.org/10.1007/s11947-010-0434-1 google scholar
  • Cardenas, G., D^az, J., Melendrez, M.F., & Cruzat, C. (2008). Physicochemical properties of edible films from chitosan composites obtained by microwave heating. Polymer Bulletin, 61, 737-748. https://doi.org/10.1007/ s00289-008-0994-7 google scholar
  • Cardoso, L.G., Santos, J.C.P., Camilloto, G.P., Miranda, A.L., Druzian, J.I., & Guimarâes, A.G. (2017). Deve-lopment of active films poly (butylene adipate co-terephthalate)-PBAT incorporated with oregano essential oil and application in fish fillet preservation. Industrial Crops and Products, 108, 388-397. https://doi. org/10.1016/j.indcrop.2017.06.058 google scholar
  • Carissimi, M., Flores, S.H., & Rech, R. (2018). Effect of microalgae addition on active biodegradable starch film. Algal Research, 32, 201-209. https://doi.org/10.1016/j.algal.2018.04.001 google scholar
  • Carpine, D., Dagostin, J.L.A., Bertan, L.C., & Mafra, M.R. (2015). Development and characterization of soy protein isolate emulsion-based edible films with added coconut oil for olive oil packaging: Barrier, mec-hanical, and thermal properties. Food and Bioprocess Technology, 8, 1811-1823. https://doi.org/10.1007/ s11947-015-1538-4 google scholar
  • Casariego, A.B.W.S., Souza, B.W.S., Cerqueira, M.A., Teixeira, J.A., Cruz, L., D^az, R., & Vicente, A.A. (2009). Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23(7), 1895-1902. https://doi.org/10.1016/j.foodhyd.2009.02.007 google scholar
  • Castro, F.V., Andrade, M.A., Sanches Silva, A., Vaz, M.F., & Vilarinho, F. (2019). The contribution of a whey protein film incorporated with green tea extract to minimize the lipid oxidation of salmon (Salmo salar L.). Foods, 8(8), 327. https://doi.org/10.3390/foods8080327 google scholar
  • Celano, R., Piccinelli, A.L., Pagano, I., Roscigno, G., Campone, L., De Falco, E., ... & Rastrelli, L. (2017). Oil distillation wastewaters from aromatic herbs as new natural source of antioxidant compounds. Food Rese-arch International, 99, 298-307. https://doi.org/10.1016/j.foodres.2017.05.036 google scholar
  • Cerqueira, M.A.P.R., Pereira, R.N.C., da Silva Ramos, O.L., Teixeira, J.A.C., & Vicente, A.A. (Eds.). (2017). Edible food packaging: Materials and processing technologies. Florida, ABD: CRC Press. google scholar
  • Chamanara, V., Shabanpour, B., Gorgin, S., & Khomeiri, M. (2012). An investigation on characteristics of rainbow trout coated using chitosan assisted with thyme essential oil. International Journal of Biological Macromolecules, 50(3), 540-544. https://doi.org/10.1016/j.ijbiomac.2012.01.016 google scholar
  • Chavoshizadeh, S., Pirsa, S., & Mohtarami, F. (2020). Conducting/smart color film based on wheat gluten/chlo-rophyll/polypyrrole nanocomposite. Food Packaging and Shelf Life, 24, 100501. https://doi.org/10.1016/j. fpsl.2020.100501 google scholar
  • Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements-a review. Carbohydrate Polymer Technologies and Applicati-ons, 2, 100024. https://doi.org/10.1016/j.carpta.2020.100024 google scholar
  • Chen, Y., Ye, R., & Liu, J. (2014). Effects of different concentrations of ethanol and isopropanol on physicoche-mical properties of zein-based films. Industrial Crops and Products, 53, 140-147. https://doi.org/10.1016/j. indcrop.2013.12.034 google scholar
  • Cheng, H., Mou, Z., Wang, W., Zhang, W., Wang, Z., Zhang, M., ... & Sun, D. (2019). Chitosan-catechin coating as an antifungal and preservable agent for postharvest satsuma oranges. Journal of Food Biochemistry, 43(4), e12779. https://doi.org/10.1111/jfbc.12779 google scholar
  • Cheng, S.Y., Wang, B.J., & Weng, Y.M. (2015). Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids. LWT-Food Science and Technology, 63(1), 115-121. https://doi.org/10.1016/j.lwt.2015.03.030 google scholar
  • Cheng, Y., Gao, S., Wang, W., Hou, H., & Lim, L.T. (2022). Low temperature extrusion blown e-polylysins hydrochloride-loaded starch/gelatin edible antimicrobial films. Carbohydrate Polymers, 278, 118990. https:// doi.org/10.1016/j.carbpol.2021.118990 google scholar
  • Chevalier, E., Chaabani, A., Assezat, G., Prochazka, F., & Oulahal, N. (2018). Casein/wax blend extrusion for production of edible films as carriers of potassium sorbate-A comparative study of waxes and potassium sorbate effect. Food Packaging and Shelf Life, 16, 41-50. https://doi.org/10.1016/j.fpsl.2018.01.005 google scholar
  • Chhikara, S., & Kumar, D. (2021). Edible coating and edible film as food packaging material: A review. Journal of Packaging Technology and Research, 1-10. https://doi.org/10.1007/s41783-021-00129-w google scholar
  • Chiralt, A., Menzel, C., Hernandez-Garaa, E., Collazo, S., & Gonzalez-Martinez, C. (2020). Use of by-products in edible coatings and biodegradable packaging materials for food preservation. In Sustainability of the food sys-tem (pp. 101-127). Massachusetts, ABD: Academic Press. https://doi.org/10.1016/B978-0-12-818293-2.00006-9 google scholar
  • Cho, S.W., Gallstedt, M., & Hedenqvist, M.S. (2010). Properties of wheat gluten/poly (lactic acid) laminates. Journal of Agricultural and Food Chemistry, 58(12), 7344-7350. https://doi.org/10.1021/jf1003144 google scholar
  • Cho, S.W., Gallstedt, M., Johansson, E., & Hedenqvist, M.S. (2011). Injection-molded nanocomposites and ma-terials based on wheat gluten. International Journal of Biological Macromolecules, 48(1), 146-152. https:// doi.org/10.1016/j.ijbiomac.2010.10.012 google scholar
  • Chodijah, S., Husaini, A., & Zaman, M. (2019, February). Extraction of pectin from banana peels (musa paradi-asica fomatypica) for biodegradable plastic films. In Journal of Physics: Conference Series (Vol. 1167, No. 1, p. 012061). IOP Publishing. https://doi.org/10.1088/1742-6596/1167/1/012061 google scholar
  • Choe, E., & Min, D.B. (2009). Mechanisms of antioxidants in the oxidation of foods. Comprehensive Reviews in Food Science and Food Safety, 8(4), 345-358. https://doi.org/10.1111/j.1541-4337.2009.00085.x google scholar
  • Cisneros-Zevallos, L., & Krochta, J.M. (2003). Dependence of coating thickness on viscosity of coating solution applied to fruits and vegetables by dipping method. Journal of Food Science, 68(2), 503-510. https://doi. org/10.1111/j.1365-2621.2003.tb05702.x google scholar
  • Concha-Meyer, A., Schöbitz, R., Brito, C., & Fuentes, R. (2011). Lactic acid bacteria in an alginate film in-hibit Listeria monocytogenes growth on smoked salmon. Food Control, 22(3-4), 485-489. https://doi.or-g/10.1016/j.foodcont.2010.09.032 google scholar
  • Condes, M. C., Anon, M.C., & Mauri, A.N. (2015). Amaranth protein films prepared with high-pressure treated proteins. Journal of Food Engineering, 166, 38-44. https://doi.org/10.1016/j.jfoodeng.2015.05.005 google scholar
  • Coppola, D., Oliviero, M., Vitale, G.A., Lauritano, C., D’Ambra, I., Iannace, S., & de Pascale, D. (2020). Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Marine Drugs, 18(4), 214. https://doi.org/10.3390/md18040214 google scholar
  • Costa, C., Conte, A., & Del Nobile, M.A. (2014). Effective preservation techniques to prolong the shelf life of ready-to-eat oysters. Journal of the Science of Food and Agriculture, 94(13), 2661-2667. https://doi. org/10.1002/jsfa.6605 google scholar
  • Cutter, C.N. (2006). Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Science, 74(1), 131-142. https://doi.org/10.1016/j.meats-ci.2006.04.023 google scholar
  • Da Rocha, M., Aleman, A., Romani, V.P., Lopez-Caballero, M.E., Gomez-Guillen, M.C., Montero, P., & Prentice, C. (2018). Effects of agar films incorporated with fish protein hydrolysate or clove essential oil on flounder (Paralichthys orbignyanus) fillets shelf-life. Food Hydrocolloids, 81, 351-363. https://doi.org/10.1016/j. foodhyd.2018.03.017 google scholar
  • Daba, G.M., & Elkhateeb, W.A. (2020). Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. Biocatalysis and Agricultural Biotechnology, 28, 101750. https://doi.org/10.1016/j.bcab.2020.101750 google scholar
  • Danalache, F., Carvalho, C.Y., Alves, V.D., Moldâo-Martins, M., & Mata, P. (2016). Optimisation of gellan gum edible coating for ready-to-eat mango (Mangifera indica L.) bars. International Journal of Biological Macromolecules, 84, 43-53. https://doi.org/10.1016/j.ijbiomac.2015.11.079 google scholar
  • Dang, K.M., & Yoksan, R. (2015). Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575-581. https://doi.org/10.1016/j.carbpol.2014.09.005 google scholar
  • Dastidar, T.G., & Netravali, A.N. (2012). Improving resin and film forming properties of native starches by chemical and physical modification. Journal of Biobased Materials and Bioenergy, 6(1), 1-24 https://doi. org/10.1166/jbmb.2012.1196 google scholar
  • de Azeredo, H.M. (2012). Edible coatings. In S. Rodrigues, & F.A.N. Fernandes (Eds.), Advances in Fruit Pro-cessing Technologies (pp. 345-361). Florida, ABD: CRC Press. https://doi.org/10.1201/b12088-15 google scholar
  • de Dicastillo, C.L., Bustos, F., Guarda, A., & Galotto, M.J. (2016). Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocolloids, 60, 335344. https://doi.org/10.1016/j.foodhyd.2016.03.020 google scholar
  • de Lacey, A.L., Lopez-Caballero, M.E., & Montero, P. (2014). Agar films containing green tea extract and probiotic bacteria for extending fish shelf-life. LWT-Food Science and Technology, 55(2), 559-564. https://doi.org/10.1016/j.lwt.2013.09.028 google scholar
  • de Moraes, J.O., Scheibe, A.S., Sereno, A., & Laurindo, J.B. (2013). Scale-up of the production of cassava starch based films using tape-casting. Journal of Food Engineering, 119(4), 800-808. https://doi.org/10.1016/j. jfoodeng.2013.07.009 google scholar
  • de Souza, K.C., Correa, L.G., da Silva, T.B.V., Moreira, T.F.M., de Oliveira, A., Sakanaka, L.S., ... & Shirai, M.A. (2020). Soy protein isolate films incorporated with Pinhâo (Araucaria angustifolia (Bertol.) Kuntze) extract for potential use as edible oil active packaging. Food and Bioprocess Technology, 13, 998-1008. https://doi.org/10.1007/s11947-020-02454-5 google scholar
  • Debeaufort, F., & Voilley, A. (1995). Effect of surfactants and drying rate on barrier properties of emulsi-fied edible films. International Journal of Food Science & Technology, 30(2), 183-190. https://doi.or-g/10.1111/j.1365-2621.1995.tb01370.x google scholar
  • Debeaufort, F., Quezada-Gallo, J.A., & Voilley, A. (1998). Edible films and coatings: Tomorrow’s packagings: A review. Critical Reviews in Food Science, 38(4), 299-313. https://doi.org/10.1080/10408699891274219 google scholar
  • Dehghani, S., Hosseini, S.V., & Regenstein, J.M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505-513. https://doi.org/10.1016/j.foodchem.2017.07.034 google scholar
  • Devi, K.P., Suganthy, N., Kesika, P., & Pandian, S.K. (2008). Bioprotective properties of seaweeds: In vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to poly-phenolic content. BMC Complementary and Alternative Medicine, 8(1), 1-11. https://doi.org/10.1186/1472-6882-8-38 google scholar
  • Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21(6), 703-714 https://doi.org/10.1016/j.fm.2004.02.008 google scholar
  • Dhanapal, A., Rajamani, L., & Banu, M. (2012). Edible films from polysaccharides. Food Science and Quality Management, 3(1), 9-18 . google scholar
  • Dhumal, C.V., & Sarkar, P. (2018). Composite edible films and coatings from food-grade biopolymers. Journal of Food Science and Technology, 55, 4369-4383. https://doi.org/10.1007/s13197-018-3402-9 google scholar
  • Di Giuseppe, F.A., Volpe, S., Cavella, S., Masi, P., & Torrieri, E. (2022). Physical properties of active biopolymer films based on chitosan, sodium caseinate, and rosemary essential oil. Food Packaging and Shelf Life, 32, 100817. https://doi.org/10.1016/j.fpsl.2022.100817 google scholar
  • Diab, T., Biliaderis, C.G., Gerasopoulos, D., & Sfakiotakis, E. (2001). Physicochemical properties and applicati-on of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture, 81(10), 988-1000. https://doi.org/10.1002/jsfa.883 google scholar
  • Dickey, L.C., Parris, N., Craig, J.C., & Kurantz, M.J. (2001). Ethanolic extraction of zein from maize. Industrial Crops and Products, 13(1), 67-76. https://doi.org/10.1016/S0926-6690(00)00054-6 google scholar
  • Dommguez, R., Barba, F.J., Gomez, B., Putnik, P., Kovacevic, D.B., Pateiro, M., ... & Lorenzo, J.M. (2018). Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International, 113, 93-101. https://doi.org/10.1016/j.foodres.2018.06.073 google scholar
  • Dong, Y., Wei, Z., & Xue, C. (2021). Recent advances in carrageenan-based delivery systems for bioactive ingredients: A review. Trends in Food Science & Technology, 112, 348-361. https://doi.org/10.1016/j. tifs.2021.04.012 google scholar
  • Donhowe, I.G., & Fennema, O. (1993). The effects of plasticizers on crystallinity, permeability, and mechanical properties of methylcellulose films. Journal of Food Processing and Preservation, 17(4), 247-257. https:// doi.org/10.1111/j.1745-4549.1993.tb00729.x google scholar
  • Draget, K.I., 0stgaard, K., & Smidsr0d, O. (1990). Homogeneous alginate gels: A technical approach. Carbo-hydrate Polymers, 14(2), 159-178. https://doi.org/10.1016/0144-8617(90)90028-Q google scholar
  • Draget, K.I., Smidsrod, O., & Skjâk-Br^k, G. (2005). Alginates from algae. Polysaccharides and polyamides in the food industry: Properties, production, and patents, 1-30. google scholar
  • Duan, J., Cherian, G., & Zhao, Y. (2010a). Quality enhancement in fresh and frozen lingcod (Ophiodon elon-gates) fillets by employment of fish oil incorporated chitosan coatings. Food Chemistry, 119(2), 524-532. https://doi.org/10.1016/j.foodchem.2009.06.055 google scholar
  • Duan, J., Jiang, Y., Cherian, G., & Zhao, Y. (2010b). Effect of combined chitosan-krill oil coating and modified atmosphere packaging on the storability of cold-stored lingcod (Ophiodon elongates) fillets. Food Che-mistry, 122(4), 1035-1042. https://doi.org/10.1016/j.foodchem.2010.03.065 google scholar
  • Dursun, S., & Erkan, N. (2014). The effect of edible coating on the quality of smoked fish. Italian Journal of Food Science, 26(4), 370-382. google scholar
  • Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A. M., Shojaee-Aliabadi, S., & Koushki, M. R. (2018). Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality para-meters. LWT-Food Science and Technology, 87, 54-60. https://doi.org/10.1016/j.lwt.2017.08.066 google scholar
  • Eltabakh, M., Kassab, H., Badawy, W., Abdin, M., & Abdelhady, S. (2021). Active bio-composite sodium algi-nate/maltodextrin packaging films for food containing Azolla pinnata leaves extract as natural antioxidant. Journal of Polymers and the Environment, 1-11. https://doi.org/10.1007/s10924-021-02287-z google scholar
  • Embuscado, M.E., & Huber, K.C. (2009). Edible films and coatings for food applications (Vol. 9). New York, USA: Springer. google scholar
  • Enujiugha, V.N., & Oyinloye, A.M. (2019). Protein-lipid interactions and the formation of edible films and coa-tings. Encyclopedia of Food Chemstry, 2019, 478-482. https://doi.org/10.1016/B978-0-08-100596-5.21477-7 google scholar
  • Erkan, N., & Yesiltas, M. (2014). Effects of sodium alginate coating and vacuum packaging on the extension of the shelf life of hot smoked rainbow trout fillets. Fleischwirtschaft International: Journal for Meat Production and Meat Processing, (6), 52-56. google scholar
  • Erkan, N., Dursun, S., Ulusoy, Ş., Akçay, S., & Yeşiltaş, M. (2013). Combined effects of protein based edible film coatings and vacuum packaging on the quality of fresh sea bass fillets. Fleischwirtschaft International: Journal for Meat Production and Meat Processing, 28, 61-68. google scholar
  • Escamilla-Garria, M., Calderon-Dominguez, G., Chanona-Perez, J.J., Farrera-Rebollo, R.R., Andraca-Adame, J. A., Arzate-Vazquez, I., ... & Moreno-Ruiz, L. A. (2013). Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. International Journal of Biological Macromolecules, 61, 196-203. https://doi.org/10.1016/j.ijbiomac.2013.06.051 google scholar
  • Espitia, P.J.P., Du, W.X., de Jesus Avena-Bustillos, R., Soares, N.D.F.F., & McHugh, T.H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties-A review. Food Hydrocolloids, 35, 287-296. https://doi.org/10.1016/j.foodhyd.2013.06.005 google scholar
  • Estevinho, B.N., Rocha, F., Santos, L., & Alves, A. (2013). Microencapsulation with chitosan by spray drying for industry applications-A review. Trends in Food Science & Technology, 31(2), 138-155. https://doi. org/10.1016/j.tifs.2013.04.001 google scholar
  • Fabra, M.J., Martmez-Sanz, M., Gomez-Mascaraque, L. G., Gavara, R., & Lopez-Rubio, A. (2018). Structural and physicochemical characterization ofthermoplastic corn starch films containing microalgae. Carbohyd-rate Polymers, 186, 184-191. https://doi.org/10.1016/j.carbpol.2018.01.039 google scholar
  • Fabra, M.J., Perez-Masia, R., Talens, P., & Chiralt, A. (2011). Influence of the homogenization conditions and lipid self-association on properties of sodium caseinate based films containing oleic and stearic acids. Food Hydrocolloids, 25(5), 1112-1121. https://doi.org/10.1016/j.foodhyd.2010.10.008 google scholar
  • Fakhouri, F.M., Martelli, S.M., Caon, T., Velasco, J.I., Buontempo, R.C., Bilck, A.P., & Mei, L.H.I. (2018). The effect of fatty acids on the physicochemical properties of edible films composed of gelatin and gluten proteins. LWT-Food Science and Technology, 87, 293-300. https://doi.org/10.1016/j.lwt.2017.08.056 google scholar
  • Falguera, V., Quintero, J.P., Jimenez, A., Munoz, J.A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. https://doi. org/10.1016/j.tifs.2011.02.004 google scholar
  • Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y., & Chi, Y. (2009). Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chemistry, 115(1), 66-70. https://doi.org/10.1016/j.foodc-hem.2008.11.060 google scholar
  • Fangfang, Z., Xinpeng, B., Wei, G., Wang, G., Shi, Z., & Jun, C. (2020). Effects of virgin coconut oil on the physicochemical, morphological and antibacterial properties of potato starch-based biodegradable films. International Journal of Food Science & Technology, 55(1), 192-200. https://doi.org/10.1111/ijfs.14262 google scholar
  • FAO. (2018). The state of world fisheries and aquaculture 2018-Meeting the sustainable development goals. Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, Rome. Erişim Adresi: https://www.fao.org/3/i9540en/i9540en.pdf google scholar
  • Farshidi, M., Yousefi, M., & Ehsani, A. (2018). The combined effects of lactoperoxidase system and whey protein coating on microbial, chemical, textural, and sensory quality of shrimp (Penaeus merguiensis) during cold storage (4±1 °C). Food Science & Nutrition, 6(6), 1378-1386. https://doi.org/10.1002/fsn3.669 google scholar
  • Fasihnia, S.H., Peighambardoust, S. H., & Peighambardoust, S. J. (2018). Nanocomposite films containing organoclay nanoparticles as an antimicrobial (active) packaging for potential food application. Journal of Food Processing and Preservation, 42(2), e13488. https://doi.org/10.1111/jfpp.13488 google scholar
  • FDA. (2013). Food additives permitted for direct addition to food for human consumption. Code of Federal Regulations, Title 21 Food and Drugs, Section 172. Erişim Adresi: https://www.ecfr.gov/current/title-21/ chapter-I/subchapter-B/part-172 google scholar
  • Feketea, G., Vassilopoulou, E., Geropanta, F., Berghea, E. C., & Bocsan, I. C. (2021). Alternative fish species for nutritional management of children with fish-FPIES-A clinical approach. Nutrients, 14(1), 19. https:// doi.org/10.3390/nu14010019 google scholar
  • Feng, L., Jiang, T., Wang, Y., & Li, J. (2012). Effects of tea polyphenol coating combined with ozone water washing on the storage quality of black sea bream (Sparus macrocephalus). Food Chemistry, 135(4), 29152921. https://doi.org/10.1016/j.foodchem.2012.07.078 google scholar
  • Feng, X., Bansal, N., & Yang, H. (2016). Fish gelatin combined with chitosan coating inhibits myofibril deg-radation of golden pomfret (Trachinotus blochii) fillet during cold storage. Food Chemistry, 200, 283-292. https://doi.org/10.1016/j.foodchem.2016.01.030 google scholar
  • Fernandes, L.M., Guimarâes, J.T., Pimentel, T.C., Esmerino, E.A., Freitas, M.Q., Carvalho, C.W.P., ... & Silva, M.C. (2020). Edible whey protein films and coatings added with prebiotic ingredients. In Agri-food industry strategies for healthy diets and sustainability (pp. 177-193). Massachusetts, ABD: Academic Press. https:// doi.org/10.1016/B978-0-12-817226-1.00007-2 google scholar
  • Fernândez, L., de Apodaca, E.D., Cebriân, M., Villarân, M.C., & Mate, J.I. (2007). Effect of the unsaturation degree and concentration of fatty acids on the properties of WPI-based edible films. European Food Rese-arch and Technology, 224, 415-420. https://doi.org/10.1007/s00217-006-0305-1 google scholar
  • Friesen, K., Chang, C., & Nickerson, M. (2015). Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: Mechanical, barrier and cross-linking properties. Food Chemistry, 172, 18-23. https://doi.org/10.1016/j.foodchem.2014.08.128 google scholar
  • Fritz, K.L., Seppanen, C.M., Kurzer, M.S., & Csallany, A.S. (2003). The in vivo antioxidant activity of soy-bean isoflavones in human subjects. Nutrition Research, 23(4), 479-487. https://doi.org/10.1016/S0271-5317(03)00005-8 google scholar
  • Gabrielsen, C., Brede, D.A., Nes, I.F., & Diep, D.B. (2014). Circular bacteriocins: Biosynthesis and mode of ac-tion. Applied and Environmental Microbiology, 80(22), 6854-6862. https://doi.org/10.1128/AEM.02284-14 google scholar
  • Gahruie, H.H.,Ziaee,E.,Eskandari, M.H., & Hosseini,S.M.H. (2017). Characterizationofbasil seedgum-based edib-le films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydrate Polymers, 166, 93-103. https://doi.org/10.1016/j.carbpol.2017.02.103 google scholar
  • Galus, S., & Kadzinska, J. (2015). Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology, 45(2), 273-283. https://doi.org/10.1016/j.tifs.2015.07.011 google scholar
  • Galus, S., Lenart, A., Voilley, A., & Debeaufort, F. (2013). Effect of oxidized potato starch on the physicochemi-cal properties of soy protein isolate-based edible films. Food Technology and Biotechnology, 51(3), 403-409. google scholar
  • Ganiari, S., Choulitoudi, E., & Oreopoulou, V. (2017). Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends in Food Science & Technology, 68, 70-82. https://doi.org/10.1016/j. tifs.2017.08.009 google scholar
  • Gao, Z.H., Zhang, Y.H., Fang, B., Zhang, L.P., & Shi, J. (2015). The effects of thermal-acid treatment and cross-linking on the water resistance of soybean protein. Industrial Crops and Products, 74, 122-131. https://doi. org/10.1016/j.indcrop.2015.04.026 google scholar
  • Garaa-Soto, B., Miranda, J.M., Rodriguez-Bernaldo de Quiros, A., Sendon, R., Rodriguez-Martmez, A. V., Barros-Velâzquez, J., & Aubourg, S. P. (2015). Effect of biodegradable film (lyophilised alga Fucus spiralis and sorbic acid) on quality properties of refrigerated megrim (Lepidorhombus whiffiagonis). International Journal of Food Science & Technology, 50(8), 1891-1900. https://doi.org/10.1111/ijfs.12821 google scholar
  • Ge, L., Zhu, M., Xu, Y., Li, X., Li, D., & Mu, C. (2017). Development of antimicrobial and controlled biodeg-radable gelatin-based edible films containing nisin and amino-functionalized montmorillonite. Food and Bioprocess Technology, 10, 1727-1736. https://doi.org/10.1007/s11947-017-1941-0 google scholar
  • Gennadios, A., & Weller, C.L. (1990). Edible films and coatings from wheat and corn proteins. Food Technology (Chicago), 44(10), 63-69. google scholar
  • Gennadios, A., Weller, C. L., & Gooding, C. H. (1994). Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering, 21(4), 395-409. https://doi. org/10.1016/0260-8774(94)90062-0 google scholar
  • Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Rheological and structural characterisation of film-for-ming solutions and biodegradable edible film made from kefiran as affected by various plasticizer ty-pes. International Journal of Biological Macromolecules, 49(4), 814-821. https://doi.org/10.1016/j.ijbio-mac.2011.07.018 google scholar
  • Gomez-Estaca, J., De Lacey, A.L., Lopez-Caballero, M.E., Gomez-Guillen, M.C., & Montero, P. (2010). Biodeg-radable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27(7), 889-896. https://doi.org/10.1016/j.fm.2010.05.012 google scholar
  • Gomez-Estaca, J., Montero, P., Gimenez, B., & Gomez-Guillen, M.C. (2007). Effect of functional edible films and high pressure processing on microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchar-dus). Food Chemistry, 105(2), 511-520. https://doi.org/10.1016/j.foodchem.2007.04.006 google scholar
  • Gontard, N., Guilbert, S., & Cuq, J.L. (1992). Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. Journal of Food Science, 57(1), 190-195. https:// doi.org/10.1111/j.1365-2621.1992.tb05453.x google scholar
  • Grand View Research. (2020). Edible films and coating market size, share & trends analysis report by material type (protein, polysaccharides, lipids, composites), by application, by region, and segment forecasts, 20222028. Report ID: GVR-4-68039-926-2. google scholar
  • Greener, I.K., & Fennema, O. (1989). Evaluation of edible, bilayer films for use as moisture barriers for food. Journal of Food Science, 54(6), 1400-1406. https://doi.org/10.1111/j.1365-2621.1989.tb05121.x google scholar
  • Guilbert, S., & Gontard, N. (2005). In J. H. Han (Eds.), Innovations in Food Packaging (pp. 263-276). Massac-husetts, ABD: Academic Press. https://doi.org/10.1016/B978-012311632-1/50048-6 google scholar
  • Guo, M., Jin, T.Z., Scullen, O.J., & Sommers, C.H. (2013). Effects of antimicrobial coatings and cryogenic freezing on survival and growth of Listeria innocua on frozen ready-to-eat shrimp during thawing. Journal of Food Science, 78(8), M1195-M1200. https://doi.org/10.1111/1750-3841.12180 google scholar
  • Guz, L., Fama, L., Candal, R., & Goyanes, S. (2017). Size effect of ZnO nanorods on physicochemical proper-ties of plasticized starch composites. Carbohydrate Polymers, 157, 1611-1619. https://doi.org/10.1016/j. carbpol.2016.11.041 google scholar
  • Günlü, A., & Koyun, E. (2013). Effects of vacuum packaging and wrapping with chitosan-based edible film on the extension of the shelf life of sea bass (Dicentrarchus labrax) fillets in cold storage (4 °C). Food and Bioprocess Technology, 6, 1713-1719. https://doi.org/10.1007/s11947-012-0833-6 google scholar
  • Haakensen, M., Dobson, C.M., Hill, J.E., & Ziola, B. (2009). Reclassification of Pediococcus dextrinicus (Coster and White 1964) Back 1978 (Approved Lists 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus. International Journal of Systematic and Evolutionary Microbiology, 59(3), 615-621. https://doi.org/10.1099/ijs.0.65779-0 google scholar
  • Habibi, H., & Khosravi-Darani, K. (2017). Effective variables on production and structure of xanthan gum and its food applications: A review. Biocatalysis and Agricultural Biotechnology, 10, 130-140. https://doi. org/10.1016/j.bcab.2017.02.013 google scholar
  • Hagenmaier, R.D., & Shaw, P.E. (1990). Moisture permeability of edible films made with fatty acid and hyd-roxypropyl methyl cellulose. Journal of Agricultural and Food Chemistry, 38(9), 1799-1803. https://doi. org/10.1021/jf00099a004 google scholar
  • Hamed, I., Jakobsen, A.N., & Lerfall, J. (2022). Sustainable edible packaging systems based on active compoun-ds from food processing byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 21(1), 198-226. https://doi.org/10.1111/1541-4337.12870 google scholar
  • Hamilton, A., Scheer, R., Stakes, T., & Allan, S. (2019). Solving plastic pollution through accountability. World Wildlife Fund Report, Gland, Switzerland. google scholar
  • Hamzeh, A., & Rezaei, M. (2012). The effects of sodium alginate on quality of rainbow trout (Oncorhynchus mykiss) fillets stored at 4±2 °C. Journal of Aquatic Food Product Technology, 21(1), 14-21. https://doi.org /10.1080/10498850.2011.579384 google scholar
  • Han, J.H., & Gennadios, A. (2005). Edible films and coatings: A review, Innovations in food packaging. In Food science and technology international series (pp. 239-259). London, UK: Elsevier. https://doi.org/10.1016/ B978-012311632-1/50047-4 google scholar
  • Han, K., Liu, Y., Liu, Y., Huang, X., & Sheng, L. (2020). Characterization and film-forming mechanism of egg white/pullulan blend film. Food Chemistry, 315, 126201. https://doi.org/10.1016/j.foodchem.2020.126201 google scholar
  • Hanani, Z.N., Beatty, E., Roos, Y.H., Morris, M.A., & Kerry, J.P. (2012). Manufacture and characterization of gelatin films derived from beef, pork and fish sources using twin screw extrusion. Journal of Food Engineering, 113(4), 606-614. https://doi.org/10.1016/j.jfoodeng.2012.07.002 google scholar
  • Hanani, Z.N., McNamara, J., Roos, Y.H., & Kerry, J.P. (2013). Effect of plasticizer content on the functional properties of extruded gelatin-based composite films. Food Hydrocolloids, 31(2), 264-269. https://doi. org/10.1016/j.foodhyd.2012.10.009 google scholar
  • Hashemi, S.M.B., & Khaneghah, A.M. (2017). Characterization of novel basil-seed gum active edible films and coatings containing oregano essential oil. Progress in Organic Coatings, 110, 35-41. https://doi. org/10.1016/j.porgcoat.2017.04.041 google scholar
  • Hashim, S.B., Tahir, H.E., Lui, L., Zhang, J., Zhai, X., Mahdi, A.A., ... & Jiyong, S. (2023a). Smart films of carbohydrate-based/sunflower wax/purple Chinese cabbage anthocyanins: A biomarker of chicken freshness. Food Chemistry, 399, 133824. https://doi.org/10.1016/j.foodchem.2022.133824 google scholar
  • Hashim, S.B., Tahir, H.E., Mahdi, A.A., Zhang, J., Zhai, X., Al-Maqtari, Q.A., ... & Jiyong, S. (2023b). En-hancement of a hybrid colorimetric film incorporating Origanum compactum essential oil as antibacterial and monitor chicken breast and shrimp freshness. Food Chemistry, 137203. https://doi.org/10.1016/j.foo-dchem.2023.137203 google scholar
  • Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromo-lecules, 109, 1095-1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097 google scholar
  • Helinski, O.K., Poor, C.J., & Wolfand, J.M. (2021). Ridding our rivers of plastic: A framework for plastic pol-lution capture device selection. Marine Pollution Bulletin, 165, 112095. https://doi.org/10.1016/j.marpol-bul.2021.112095 google scholar
  • Heralp, T.J., Gnanasambandam, R., McGuire, B.H., & Hachmeister, K.A. (1995). Degradable wheat gluten films: Preparation, properties and applications. Journal of Food Science, 60(5), 1147-1150. https://doi. org/10.1111/j.1365-2621.1995.tb06311.x google scholar
  • Hernandez-Izquierdo, V.M., & Krochta, J.M. (2008). Thermoplastic processing of proteins for film formation-A review. Journal of Food Science, 73(2), R30-R39. https://doi.org/10.1111/j.1750-3841.2007.00636.x google scholar
  • Heydari, R., Bavandi, S., & Javadian, S.R. (2015). Effect of sodium alginate coating enriched with horsemint (Mentha longifolia) essential oil on the quality of bighead carp fillets during storage at 4 °C. Food Science & Nutrition, 3(3), 188-194. https://doi.org/10.1002/fsn3.202 google scholar
  • Heydari-Majd, M., Ghanbarzadeh, B., Shahidi-Noghabi, M., Najafi, M.A., & Hosseini, M. (2019). A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Oto-lithes ruber fillets. Food Packaging and Shelf Life, 19, 94-103. https://doi.org/10.1016/j.fpsl.2018.12.002 google scholar
  • Horodytska, O., Cabanes, A., & Fullana, A. (2019). Plastic waste management: current status and weaknesses. In Plastics in the Aquatic Environment-Part I: Current Status and Challenges (pp. 289-306). Cham, SW: Springer International Publishing. https://doi.org/10.1007/698_2019_408 google scholar
  • Hoskin, D.W., & Ramamoorthy, A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778(2), 357-375. https://doi.org/10.1016/j.bbamem.2007.11.008 google scholar
  • Hosseini, S.F., Rezaei, M., Zandi, M., & Ghavi, F.F. (2016). Effect of fish gelatin coating enriched with oregano essential oil on the quality of refrigerated rainbow trout fillet. Journal of Aquatic Food Product Technology, 25(6), 835-842. https://doi.org/10.1080/10498850.2014.943917 google scholar
  • Hou, X., Xue, Z., Xia, Y., Qin, Y., Zhang, G., Liu, H., & Li, K. (2019). Effect of SiO2 nanoparticle on the physical and chemical properties of eco-friendly agar/sodium alginate nanocomposite film. International Journal of Biological Macromolecules, 125, 1289-1298. https://doi.org/10.1016/j.ijbiomac.2018.09.109 google scholar
  • Huang, X., Luo, X., Liu, L., Dong, K., Yang, R., Lin, C., ... & Huang, Q. (2020). Formation mechanism of egg white protein/K-carrageenan composite film and its application to oil packaging. Food Hydrocolloids, 105, 105780. https://doi.org/10.1016/j.foodhyd.2020.105780 google scholar
  • Huang, X., Xu, F., Yun, D., Li, C., Kan, J., & Liu, J. (2023). Development and application of intelligent pa-ckaging films based on guar gum, polyvinyl alcohol and hyacinth bean (Lablab purpureus (L.) sweet) anthocyanins. International Journal of Biological Macromolecules, 126369. https://doi.org/10.1016/j.ijbi-omac.2023.126369 google scholar
  • Huber, K.C., & Embuscado, M.E. (Eds.). (2009). Edible films and coatings for food applications (Vol. 9). New York, USA: Springer. https://doi.org/10.1007/978-0-387-92824-1 google scholar
  • Huntrakul, K., Yoksan, R., Sane, A., & Harnkarnsujarit, N. (2020). Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packaging and Shelf Life, 24, 100480. https://doi.org/10.1016/j.fpsl.2020.100480 google scholar
  • Igoe, R.S. (2011). Dictionary of Food Ingredients (fifth ed.). Berlin, GR: Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-9713-5 google scholar
  • Iturriaga, L., Olabarrieta, I., & de Maranon, I.M. (2012). Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films. International Journal of Food Microbiology, 158(1), 58-64. https://doi.org/10.1016/j.ijfood-micro.2012.07.001 google scholar
  • Janjarasskul, T., & Krochta, J.M. (2010). Edible packaging materials. Annual Review of Food Science and Technology, 1, 415-448. https://doi.org/10.1146/annurev.food.080708.100836 google scholar
  • Janjarasskul, T., Rauch, D.J., McCarthy, K.L., & Krochta, J.M. (2014). Barrier and tensile properties of whey protein-candelilla wax film/sheet. LWT-Food Science and Technology, 56(2), 377-382. https://doi.or-g/10.1016/j.lwt.2013.11.034 google scholar
  • Jasour, M.S., Ehsani, A., Mehryar, L., & Naghibi, S.S. (2015). Chitosan coating incorporated with the lactope-roxidase system: An active edible coating for fish preservation. Journal of the Science of Food and Agricul-ture, 95(6), 1373-1378. https://doi.org/10.1002/jsfa.6838 google scholar
  • Javanmard, M., & Golestan, L. (2008). Effect of olive oil and glycerol on physical properties of whey protein concentrate films. Journal of Food Process Engineering, 31(5), 628-639. https://doi.org/10.1111/j.1745-4530.2007.00179.x google scholar
  • Javidi, Z., Hosseini, S.F., & Rezaei, M. (2016). Development of flexible bactericidal films based on poly (lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT-Food Science and Technology, 72, 251-260. https://doi.org/10.1016/j.lwt.2016.04.052 google scholar
  • Jayakody, M.M., Vanniarachchy, M.P.G., & Wijesekara, I. (2022). Seaweed derived alginate, agar, and carra-geenan based edible coatings and films for the food industry: A review. Journal of Food Measurement and Characterization, 16(2), 1195-1227. https://doi.org/10.1007/s11694-021-01277-y google scholar
  • Jeevahan, J., & Chandrasekaran, M. (2019). Nanoedible films for food packaging: A review. Journal of Materials Science, 54(19), 12290-12318. https://doi.org/10.1007/s10853-019-03742-y google scholar
  • Jeon, Y.J., Kamil, J.Y., & Shahidi, F. (2002). Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. Journal of Agricultural and Food Chemistry, 50(18), 5167-5178. https://doi. org/10.1021/jf011693l google scholar
  • Jiang, M., Liu, S., & Wang, Y. (2011a). Effects of antimicrobial coating from catfish skin gelatin on quality and shelf life of fresh white shrimp (Penaeus vannamei). Journal of Food Science, 76(3), 204-209. https://doi. org/10.1111/j.1750-3841.2011.02056.x google scholar
  • Jiang, Z., Neetoo, H., & Chen, H. (2011b). Control of Listeria monocytogenes on cold-smoked salmon using chitosan-based antimicrobial coatings and films. Journal of Food Science, 76(1), 22-26. https://doi.or-g/10.1111/j.1750-3841.2010.01925.x google scholar
  • Jooyandeh, H., Aberoumand, A., & Nasehi, B. (2011). Application of lactoperoxidase system in fish and food products: A review. American-Eurasian Journal of Agricultural & Environmental Sciences, 10, 89-96. google scholar
  • Jouki, M., Khazaei, N., Ghasemlou, M., & HadiNezhad, M. (2013). Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydrate Polymers, 96(1), 39-46. https://doi.or-g/10.1016/j.carbpol.2013.03.077 google scholar
  • Kaewprachu, P., Osako, K., Benjakul, S., & Rawdkuen, S. (2015). Quality attributes of minced pork wrapped with catechin-lysozyme incorporated gelatin film. Food Packaging and Shelf Life, 3, 88-96. https://doi. org/10.1016/j.fpsl.2014.11.002 google scholar
  • Kaewprachu, P., Osako, K., Benjakul, S., & Rawdkuen, S. (2016). Effect of protein concentrations on the properties of fish myofibrillar protein based film compared with PVC film. Journal of Food Science and Technology, 53, 2083-2091. https://doi.org/10.1007/s13197-016-2170-7 google scholar
  • Kakaei, S., & Shahbazi, Y. (2016). Effect of chitosan-gelatin film incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil on survival of Listeria monocytogenes and chemical, microbial and sensory properties of minced trout fillet. LWT-Food Science and Technology, 72, 432-438. https://doi.org/10.1016/j.lwt.2016.05.021 google scholar
  • Karami, N., Kamkar, A., Shahbazi, Y., & Misaghi, A. (2019). Edible films based on chitosan-flaxseed mucilage: in vitro antimicrobial and antioxidant properties and their application on survival of food-borne pathogenic bacteria in raw minced trout fillets. Pharmaceutical and Biomedical Research, 5(2), 10-16. https://doi. org/10.18502/pbr.v5i2.1580 google scholar
  • Kaya, S., & Kaya, A. (2000). Microwave drying effects on properties of whey protein isolate edible films. Journal of Food Engineering, 43(2), 91-96. https://doi.org/10.1016/S0260-8774(99)00136-3 google scholar
  • Kester, J.J., & Fennema, O. R. (1986). Edible films and coatings: A review. Food Technology (Chicago), 40(12), 47-59. google scholar
  • Khan, M.I., Dowarha, D., Katte, R., Chou, R.H., Filipek, A., & Yu, C. (2019). Lysozyme as the anti-proliferative agent to block the interaction between S100A6 and the RAGE V domain. PLoS One, 14(5), e0216427. https://doi.org/10.1371/journal.pone.0216427 google scholar
  • Khemir, M., Besbes, N., Khemis, I. B., Di Bella, C., Lo Monaco, D., & Sadok, S. (2020). Determination of shelf-life of vacuum-packed sea bream (Sparus aurata) fillets using chitosan-microparticles-coating. Cy-TA-Journal of Food, 18(1), 51-60. https://doi.org/10.1080/19476337.2019.1696893 google scholar
  • Khezerlou, A., Tavassoli, M., Alizadeh-Sani, M., Hashemi, M., Ehsani, A., & Bangar, S.P. (2023). Multifun-ctional food packaging materials: Lactoferrin loaded Cr-MOF in films-based gelatin/K-carrageenan for food packaging applications. International Journal of Biological Macromolecules, 126334. https://doi.or-g/10.1016/j.ijbiomac.2023.126334 google scholar
  • Khodaei, D., Âlvarez, C., & Mullen, A.M. (2021). Biodegradable packaging materials from animal processing co-products and wastes: An overview. Polymers, 13(15), 2561. https://doi.org/10.3390/polym13152561 google scholar
  • Khotimchenko, M., Tiasto, V., Kalitnik, A., Begun, M., Khotimchenko, R., Leonteva, E., ... & Khotimchenko, Y. (2020). Antitumor potential of carrageenans from marine red algae. Carbohydrate Polymers, 246, 116568 https://doi.org/10.1016/j.carbpol.2020.116568 google scholar
  • Kilincceker, O., Dogan, İ.S., & Kucukoner, E. (2009). Effect of edible coatings on the quality of frozen fish fillets. LWT-Food Science and Technology, 42(4), 868-873. https://doi.org/10.1016/j.lwt.2008.11.003 google scholar
  • Kim, D., & Min, S.C. (2012). Trout skin gelatin-based edible film development. Journal of Food Science, 77(9), E240-E246. https://doi.org/10.1111/j.1750-3841.2012.02880.x google scholar
  • Kim, I.H., Yang, H.J., Noh, B.S., Chung, S.J., & Min, S.C. (2012). Development of a defatted mustard meal-ba-sed composite film and its application to smoked salmon to retard lipid oxidation. Food Chemistry, 133(4), 1501-1509. https://doi.org/10.1016/j.foodchem.2012.02.040 google scholar
  • Kim, S.H., No, H.K., & Prinyawiwatkul, W. (2008). Plasticizer types and coating methods affect quality and shelf life of eggs coated with chitosan. Journal of Food Science, 73(3), 111-117. https://doi.org/10.1111/j.1750-3841.2007.00650.x google scholar
  • Klöck, G., Pfeffermann, A., Ryser, C., Gröhn, P., Kuttler, B., Hahn, H.J., & Zimmermann, U. (1997). Bio-compatibility of mannuronic acid-rich alginates. Biomaterials, 18(10), 707-713. https://doi.org/10.1016/ S0142-9612(96)00204-9 google scholar
  • Koelsch, C.M., & Labuza, T.P. (1992). Functional, physical and morphological properties of methyl cellulose and fatty acid-based edible barriers. LWT-Food Science and Technology, 25(5), 404-411. google scholar
  • Kokoszka, S., Debeaufort, F., Lenart, A., & Voilley, A. (2010). Liquid and vapour water transfer through whey protein/lipid emulsion films. Journal of the Science of Food and Agriculture, 90(10), 1673-1680. https:// doi.org/10.1002/jsfa.4001 google scholar
  • Krochta, M. (1997). Edible and biodegradable polymer films: Challenges and opportunities. Food Technology, 51, 61-74. google scholar
  • Kuai, L., Liu, F., Chiou, B.S., Avena-Bustillos, R.J., McHugh, T.H., & Zhong, F. (2021). Controlled release of antioxidants from active food packaging: A review. Food Hydrocolloids, 120, 106992. https://doi.or-g/10.1016/j.foodhyd.2021.106992 google scholar
  • Kulawik, P., Jamroz, E., Zaj^c, M., Guzik, P., & Tkaczewska, J. (2019). The effect of furcellaran-gelatin edible coatings with green and pu-erh tea extracts on the microbiological, physicochemical and sensory changes of salmon sushi stored at 4 °C. Food Control, 100, 83-91. https://doi.org/10.1016/j.foodcont.2019.01.004 google scholar
  • Kulisic, T., Radonic, A., Katalinic, V., & Milos, M. (2004). Use of different methods for testing antioxida-tive activity of oregano essential oil. Food Chemistry, 85(4), 633-640. https://doi.org/10.1016/j.foodc-hem.2003.07.024 google scholar
  • Kumar, L., Ramakanth, D., Akhila, K., & Gaikwad, K.K. (2022). Edible films and coatings for food packaging applications: A review. Environmental Chemistry Letters, 1-26. https://doi.org/10.1007/s10311-021-01339-z google scholar
  • Kumar, S., Mukherjee, A., & Dutta, J. (2020). Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology, 97, 196-209. https://doi. org/10.1016/j.tifs.2020.01.002 google scholar
  • Kumari, M., Mahajan, H., Joshi, R., & Gupta, M. (2017). Development and structural characterization of edib-le films for improving fruit quality. Food Packaging and Shelf Life, 12, 42-50. https://doi.org/10.1016/j. fpsl.2017.02.003 google scholar
  • Kuorwel, K.K., Cran, M.J., Orbell, J.D., Buddhadasa, S., & Bigger, S.W. (2015). Review of mechanical pro-perties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Comprehensive Reviews in Food Science and Food Safety, 14(4), 411-430. https://doi. org/10.1111/1541-4337.12139 google scholar
  • Kurek, M., Galus, S., & Debeaufort, F. (2014). Surface, mechanical and barrier properties of bio-based com-posite films based on chitosan and whey protein. Food Packaging and Shelf Life, 1(1), 56-67. https://doi. org/10.1016/j.fpsl.2014.01.001 google scholar
  • LaCoste, A., Schaich, K.M., Zumbrunnen, D., & Yam, K.L. (2005). Advancing controlled release packaging through smart blending. Packaging Technology and Science: An International Journal, 18(2), 77-87. https:// doi.org/10.1002/pts.675 google scholar
  • Lahteenmaki-Uutela, A., Rahikainen, M., Camarena-Gomez, M.T., Piiparinen, J., Spilling, K., & Yang, B. (2021). European Union legislation on macroalgae products. Aquaculture International, 29, 487-509. https:// doi.org/10.1007/s10499-020-00633-x google scholar
  • Lalnunthari, C., Devi, L.M., & Badwaik, L. S. (2020). Extraction of protein and pectin from pumpkin industry by-products and their utilization for developing edible film. Journal of Food Science and Technology, 57, 1807-1816. https://doi.org/10.1007/s13197-019-04214-6 google scholar
  • Landry, J. (1997). Comparison of extraction methods for evaluating zein content of maize grain. Cereal Che-mistry, 74(2), 188-189. https://doi.org/10.1094/CCHEM.1997.74.2.188 google scholar
  • Lee, K.Y., Shim, J., & Lee, H.G. (2004). Mechanical properties of gellan and gelatin composite films. Carbo-hydrate Polymers, 56(2), 251-254. https://doi.org/10.1016/j.carbpol.2003.04.001 google scholar
  • Lei, Y., Wu, H., Jiao, C., Jiang, Y., Liu, R., Xiao, D., ... & Li, S. (2019). Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloids, 94, 128-135. https://doi.org/10.1016/j.foo-dhyd.2019.03.011 google scholar
  • Lesnierowski, G., & Yang, T. (2021). Lysozyme and its modified forms: A critical appraisal of selected pro-perties and potential. Trends in Food Science & Technology, 107, 333-342. https://doi.org/10.1016/j. tifs.2020.11.004 google scholar
  • Li, N., Xiong, X., Ha, X., & Wei, X. (2019). Comparative preservation effect of water-soluble and insoluble chitosan from Tenebrio molitor waste. International Journal of Biological Macromolecules, 133, 165-171. https://doi.org/10.1016/j.ijbiomac.2019.04.094 google scholar
  • Li, T., Li, J., Hu, W., & Li, X. (2013). Quality enhancement in refrigerated red drum (Sciaenops ocellatus) fillets using chitosan coatings containing natural preservatives. Food Chemistry, 138(2-3), 821-826. https://doi. org/10.1016/j.foodchem.2012.11.092 google scholar
  • Li, X., He, Z., Xu, J., Zhang, L., Liang, Y., Yang, S., ... & Li, H. (2021). Effect of nanoprocessing on the phy-sicochemical properties of bovine, porcine, chicken, and rabbit bone powders. Food Science & Nutrition, 9(7), 3580-3592. https://doi.org/10.1002/fsn3.2312 google scholar
  • Liang, C., Jia, M., Tian, D., Tang, Y., Ju, W., Ding, S., ... & Wang, X. (2017). Edible sturgeon skin gelatine films: Tensile strength and UV light-barrier as enhanced by blending with esculine. Journal of Functional Foods, 37, 219-228. https://doi.org/10.1016/j.jff.2017.07.051 google scholar
  • Lin, H.C., Wang, B.J., & Weng, Y.M. (2020). Development and characterization of sodium caseinate edible films cross-linked with genipin. LWT-Food Science and Technology, 118, 108813. https://doi.org/10.1016/j. lwt.2019.108813 google scholar
  • Lin, L.S., Wang, B.J., & Weng, Y.M. (2011). Quality preservation of commercial fish balls with antimicrobial zein coatings. Journal of Food Quality, 34(2), 81-87. https://doi.org/10.1111/j.1745-4557.2011.00370.x google scholar
  • Lin, L.S., Wang, B., & Weng, Y.M. (2009). Preservation of commercial fish ball quality with edible antioxi-dant-incorporated zein coatings. Journal of Food Processing and Preservation, 33(5), 605-617. https://doi. org/10.1111/j.1745-4549.2008.00274.x google scholar
  • Lindström, T., & Österberg, F. (2020). Evolution of biobased and nanotechnology packaging-A review. Nordic Pulp & Paper Research Journal, 35(4), 491-515. https://doi.org/10.1515/npprj-2020-0042 google scholar
  • Liu, L., Liu, C.K., Fishman, M.L., & Hicks, K.B. (2007). Composite films from pectin and fish skin gela-tin or soybean flour protein. Journal of Agricultural and Food Chemistry, 55(6), 2349-2355. https://doi. org/10.1021/jf062612u google scholar
  • Liu, Y., Qin, Y., Bai, R., Zhang, X., Yuan, L., & Liu, J. (2019). Preparation of pH-sensitive and antioxidant packaging films based on K-carrageenan and mulberry polyphenolic extract. International Journal of Biological Macromolecules, 134, 993-1001. https://doi.org/10.1016/j.ijbiomac.2019.05.175 google scholar
  • Lopez, D., Mârquez, A., Gutierrez-Cutino, M., Venegas-Yazigi, D., Bustos, R., & Matiacevich, S. (2017). Edible film with antioxidant capacity based on salmon gelatin and boldine. LWT-Food Science and Technology, 77, 160-169. https://doi.org/10.1016/j.lwt.2016.11.039 google scholar
  • Lopez-Caballero, M.E., Gomez-Guillen, M.C., Perez-Mateos, M., & Montero, P. (2005). A chitosan-gelatin blend as a coating for fish patties. Food Hydrocolloids, 19(2), 303-311. https://doi.org/10.1016/j.foo-dhyd.2004.06.006 google scholar
  • Lopez-Cordoba, A., Medina-Jaramillo, C., Pineros-Hernandez, D., & Goyanes, S. (2017). Cassava starch films containing rosemary nanoparticles produced by solvent displacement method. Food Hydrocolloids, 71, 2634. https://doi.org/10.1016/j.foodhyd.2017.04.028 google scholar
  • Lorenzo, J.M., Pateiro, M., Dommguez, R., Barba, F.J., Putnik, P., Kovacevic, D.B., ... & Franco, D. (2018). Berries extracts as natural antioxidants in meat products: A review. Food Research International, 106, 10951104. https://doi.org/10.1016/j.foodres.2017.12.005 google scholar
  • Lu, F., Ding, Y., Ye, X., & Liu, D. (2010). Cinnamon and nisin in alginate-calcium coating maintain quality of fresh northern snakehead fish fillets. LWT-Food Science and Technology, 43(9), 1331-1335. https://doi. org/10.1016/j.lwt.2010.05.003 google scholar
  • Lu, F., Liu, D., Ye, X., Wei, Y., & Liu, F. (2009). Alginate-calcium coating incorporating nisin and EDTA ma-intains the quality of fresh northern snakehead (Channa argus) fillets stored at 4 °C. Journal ofthe Science of Food and Agriculture, 89(5), 848-854. https://doi.org/10.1002/jsfa.3523 google scholar
  • Ma, D., Jiang, Y., Ahmed, S., Qin, W., & Liu, Y. (2019). Physical and antimicrobial properties of edible films containing Lactococcus lactis. International Journal of Biological Macromolecules, 141, 378-386. https:// doi.org/10.1016/j.ijbiomac.2019.09.006 google scholar
  • Maghsoudlou, A., Maghsoudlou, Y., Khomeiri, M., & Ghorbani, M. (2012). Evaluation of anti-fungal activity of chitosan and its effect on the moisture absorption and organoleptic characteristics of pistachio nuts. Re-search and Innovation in Food Science and Technology, 1(2), 87-98. https://doi.org/10.18517/ijaseit.2.4.216 google scholar
  • Marcet, I., Âlvarez, C., Paredes, B., Rendueles, M., & D^az, M. (2018). Transparent and edible films from ult-rasound-treated egg yolk granules. Food and Bioprocess Technology, 11, 735-747. https://doi.org/10.1007/ s11947-017-2049-2 google scholar
  • Martelli, M.R., Barros, T.T., de Moura, M.R., Mattoso, L.H., & Assis, O.B. (2013). Effect of chitosan nanopartic-les and pectin content on mechanical properties and water vapor permeability of banana puree films. Journal of Food Science, 78(1), N98-N104. https://doi.org/10.1111/j.1750-3841.2012.03006.x google scholar
  • Martmez, O., Salmeron, J., Epelde, L., Vicente, M.S., & de Vega, C. (2018). Quality enhancement of smoked sea bass (Dicentrarchus labrax) fillets by adding resveratrol and coating with chitosan and alginate edible films. Food Control, 85, 168-176. https://doi.org/10.1016/j.foodcont.2017.10.003 google scholar
  • Martinez-Avila, G.C.G., Aguilera, A.F., Saucedo, S., Rojas, R., Rodriguez, R., & Aguilar, C.N. (2014). Fruit wastes fermentation for phenolic antioxidants production and their application in manufacture of edible coatings and films. Critical Reviews in Food Science and Nutrition, 54(3), 303-311. https://doi.org/10.108 0/10408398.2011.584135 google scholar
  • Mehyar, G.F., Al-Qadiri, H.M., & Swanson, B.G. (2014). Edible coatings and retention of potassium sorbate on apples, tomatoes and cucumbers to improve antifungal activity during refrigerated storage. Journal of Food Processing and Preservation, 38(1), 175-182. https://doi.org/10.1111/j.1745-4549.2012.00762.x google scholar
  • Meira, S.M.M., Zehetmeyer, G., Werner, J.O., & Brandelli, A. (2017). A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocolloids, 63, 561-570. https://doi.org/10.1016/j.foodhyd.2016.10.013 google scholar
  • Mellinas, C., Valdes, A., Ramos, M., Burgos, N., Garrigos, M.D.C., & Jimenez, A. (2016). Active edible fil-ms: Current state and future trends. Journal of Applied Polymer Science, 133(2). https://doi.org/10.1002/ app.42631 google scholar
  • Melo, C.D., Garcia, P.S., Grossmann, M.V.E., Yamashita, F., Dall’Antonia, L.H., & Mali, S. (2011). Properties of extruded xanthan-starch-clay nanocomposite films. Brazilian Archives of Biology and Technology, 54, 1223-1333. https://doi.org/10.1590/S1516-89132011000600019 google scholar
  • Meral, R., Alav, A., Karakas, C., Dertli, E., Yilmaz, M.T., & Ceylan, Z. (2019). Effect of electrospun nisin and curcumin loaded nanomats on the microbial quality, hardness and sensory characteristics of rainbow trout fillet. LWT-Food Science and Technology, 113, 108292. https://doi.org/10.1016/j.lwt.2019.108292 google scholar
  • Merlo, T.C., Contreras-Castillo, C.J., Saldana, E., Barancelli, G.V., Dargelio, M.D.B., Yoshida, C.M.P., ... & Venturini, A.C. (2019). Incorporation of pink pepper residue extract into chitosan film combined with a modified atmosphere packaging: Effects on the shelf life of salmon fillets. Food Research International, 125, 108633. https://doi.org/10.1016/j.foodres.2019.108633 google scholar
  • Min, B.J., & Oh, J.H. (2009). Antimicrobial activity of catfish gelatin coating containing origanum (Thymus capitatus) oil against gram-negative pathogenic bacteria. Journal of Food Science, 74(4), 143-148. https:// doi.org/10.1111/j.1750-3841.2009.01115.x google scholar
  • Min, S., Harris, L.J., & Krochta, J. M. (2005). Listeria monocytogenes inhibition by whey protein films and coatings incorporating the lactoperoxidase system. Journal of Food Science, 70(7), 317-324. https://doi. org/10.1111/j.1365-2621.2005.tb11474.x google scholar
  • Misra, S., Trinavee, K., Gunda, N.S.K., & Mitra, S.K. (2020). Encapsulation with an interfacial liquid layer: Robust and efficient liquid-liquid wrapping. Journal of Colloid and Interface Science, 558, 334-344. https:// doi.org/10.1016/j.jcis.2019.09.099 google scholar
  • Mkandawire, M., & Aryee, A.N. (2018). Resurfacing and modernization of edible packaging material technology. Current Opinion in Food Science, 19, 104-112. https://doi.org/10.1016/j.cofs.2018.03.010 google scholar
  • Mlynarczyk, K., Walkowiak-Tomczak, D., & Lysiak, G.P. (2018). Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. Journal of Functional Foods, 40, 377-390. https://doi.org/10.1016/j.jff.2017.11.025 google scholar
  • Moalla, S., Ammar, I., Fauconnier, M.L., Danthine, S., Blecker, C., Besbes, S., & Attia, H. (2021). Development and characterization of chitosan films carrying Artemisia campestris antioxidants for potential use as active food packaging materials. International Journal of Biological Macromolecules, 183, 254-266. https://doi. org/10.1016/j.ijbiomac.2021.04.113 google scholar
  • Mohamed, S.A., El-Sakhawy, M., & El-Sakhawy, M.A.M. (2020). Polysaccharides, protein and lipid-based natu-ral edible films in food packaging: A review. Carbohydrate Polymers, 238, 116178. https://doi.org/10.1016/j. carbpol.2020.116178 google scholar
  • Mohan, C.O., Ravishankar, C.N., Lalitha, K.V., & Gopal, T.S. (2012). Effect of chitosan edible coating on the quality of double filleted Indian oil sardine (Sardinella longiceps) during chilled storage. Food Hydrocol-loids, 26(1), 167-174. https://doi.org/10.1016/j.foodhyd.2011.05.005 google scholar
  • Molinaro, S., Cruz-Romero, M., Sensidoni, A., Morris, M., Lagazio, C., & Kerry, J.P. (2015). Combination of high-pressure treatment, mild heating and holding time effects as a means of improving the barrier properties of gelatin-based packaging films using response surface modeling. Innovative Food Science & Emerging Technologies, 30, 15-23. https://doi.org/10.1016/j.ifset.2015.05.005 google scholar
  • Montes-Ramfrez, P., Montano-Leyva, B., Blancas-Benitez, F.J., Bautista-Rosales, P.U., Ruelas-Hernandez, N.D., Martmez-Robinson, K., & Gonzalez-Estrada, R.R. (2023). Active films and coatings based on commercial chitosan with natural extracts addition from coconut by-products: Physicochemical characterization and an-tifungal protection on tomato fruits. Food Control, 110077. https://doi.org/10.1016/j.foodcont.2023.110077 google scholar
  • Moreira, M.R., Cassani, L., Martm-Belloso, O., & Soliva-Fortuny, R. (2015). Effects of polysaccharide-based edible coatings enriched with dietary fiber on quality attributes of fresh-cut apples. Journal of Food Science and Technology, 52, 7795-7805. https://doi.org/10.1007/s13197-015-1907-z google scholar
  • Mostafa, H., Airouyuwaa, J.O., Hamed, F., Wang, Y., & Maqsood, S. (2023). Structural, mechanical, antioxidant and antibacterial properties of soy protein isolate (SPI)-based edible food packaging films as influenced by nanocellulose (NC) and green extracted phenolic compounds from date palm leaves. Food Packaging and Shelf Life, 38, 101124. https://doi.org/10.1016/j.fpsl.2023.101124 google scholar
  • Motalebi, A.A., & Seyfzadeh, M. (2012). Effects of whey protein edible coating on bacterial, chemical and sensory characteristics of frozen common Kilka. Iranian Journal of Fisheries Sciences, 11(1), 132-144. google scholar
  • Munsch-Alatossava, P., Gursoy, O., Lorilla, P.M., Gauchi, J.P., & Alatossava, T. (2018). Antibacterial effects and modes of action of the activated lactoperoxidase system (LPS), of CO2 and N2 gas as food-grade approaches to control bovine raw milk-associated bacteria. In Food Control and Biosecurity (pp. 519-541). Massachu-setts, ABD: Academic Press. https://doi.org/10.1016/B978-0-12-811445-2.00015-5 google scholar
  • Murrieta-Martmez, C.L., Soto-Valdez, H., Pacheco-Aguilar, R., Torres-Arreola, W., Rodriguez-Felix F., & Mârquez Rıos, E. (2018). Edible protein films: Sources and behavior. Packaging Technology and Science, 31(3), 113-122. https://doi.org/10.1002/pts.2360 google scholar
  • Nandane, A.S., & Jain, R.K. (2018). Optimization of formulation and process parameters for soy protein-based edible film using response surface methodology. Journal of Packaging Technology and Research, 2, 203-210. https://doi.org/10.1007/s41783-018-0045-2 google scholar
  • Neetoo, H., & Mahomoodally, F. (2014). Use of antimicrobial films and edible coatings incorporating chemical and biological preservatives to control growth of Listeria monocytogenes on cold smoked salmon. BioMed Research International, 2014. https://doi.org/10.1155/2014/534915 google scholar
  • Neetoo, H., Ye, M., & Chen, H. (2010). Bioactive alginate coatings to control Listeria monocytogenes on cold-smoked salmon slices and fillets. International Journal of Food Microbiology, 136(3), 326-331. https:// doi.org/10.1016/j.ijfoodmicro.2009.10.003 google scholar
  • Nerin, C., Silva, F., Manso, S., & Becerril, R. (2016). The downside of antimicrobial packaging: Migration of packaging elements into food. In Antimicrobial food packaging (pp. 81-93). Massachusetts, ABD: Academic Press. https://doi.org/10.1016/B978-0-12-800723-5.00006-1 google scholar
  • Niamah, A.K. (2018). Structure, mode of action and application of pediocin natural antimicrobi-al food preservative: A review. Basrah Journal of Agricultural Sciences, 31(1), 59-69. https://doi. org/10.37077/25200860.2018.76 google scholar
  • Niaz, B., Saeed, F., Ahmed, A., Imran, M., Maan, A.A., Khan, M.K.I., ... & Suleria, H.A.R. (2019). Lactoferrin (LF): A natural antimicrobial protein. International Journal of Food Properties, 22(1), 1626-1641. https:// doi.org/10.1080/10942912.2019.1666137 google scholar
  • Nilsuwan, K., Arnold, M., Benjakul, S., Prodpran, T., & de la Caba, K. (2021). Properties of chicken protein iso-late/fish gelatin blend film incorporated with phenolic compounds and its application as pouch for packing chicken skin oil. Food Packaging and Shelf Life, 30, 100761. https://doi.org/10.1016/j.fpsl.2021.100761 google scholar
  • Nisperos-Carriedo, M.O. (1994). Edible coatings and films based on polysaccharides. In J. M. Krochta, E. A. Baldwin, & M. O. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality (pp. 305336). Florida, ABD: CRC Press. google scholar
  • No, H.K., Meyers, S.P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of qua-lity and shelf life of foods: A review. Journal of Food Science, 72(5), 87-100. https://doi.org/10.1111/j.1750-3841.2007.00383.x google scholar
  • Nowzari, F., Shâbanpour, B., & Ojagh, S.M. (2013). Comparison of chitosan-gelatin composite and bilayer coating and film effect on the quality of refrigerated rainbow trout. Food Chemistry, 141(3), 1667-1672. https://doi.org/10.1016/j.foodchem.2013.03.022 google scholar
  • Omar-Aziz, M., Khodaiyan, F., Yarmand, M.S., Mousavi, M., Gharaghani, M., Kennedy, J.F., & Hosseini, S.S. (2021). Combined effects of octenylsuccination and beeswax on pullulan films: Water-resistant and me-chanical properties. Carbohydrate Polymers, 255, 117471. https://doi.org/10.1016/j.carbpol.2020.117471 google scholar
  • Ortiz, C.M., Vicente, A.R., & Mauri, A.N. (2014). Combined use of physical treatments and edible coatings in fresh produce: Moving beyond. Stewart Postharvest Review, 3, 5. google scholar
  • Otoni, C.G., Avena-Bustillos, R.J., Olsen, C.W., Bilbao-Sâinz, C., & McHugh, T.H. (2016). Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloids, 57, 72-79. https://doi.org/10.1016/j.foodhyd.2016.01.012 google scholar
  • Ou, C., Tsay, S., La, C., & Weng, Y (2002). Using gelatin-based antimicrobial edible coating to prolong shelf-life of tilapia fillets. Journal of Food Quality, 25(3), 213-222. https://doi.org/10.1111/j.1745-4557.2002.tb01020.x google scholar
  • Pandey, A.K., Kumar, P., Singh, P., Tripathi, N.N., & Bajpai, V.K. (2017). Essential oils: Sources of antimicro-bials and food preservatives. Frontiers in Microbiology, 7, 2161. https://doi.org/10.3389/fmicb.2016.02161 google scholar
  • Park, H.J. (1991). Edible coatings for fruits and vegetables: Determination of gas diffusivities, prediction of internal gas composition and effects of the coating on shelf life. Athens: University of Georgia. google scholar
  • Park, J.W., Testin, R.F., Vergano, P.J., Park, H.J., & Weller, C.L. (1996). Fatty acid distribution and its effect on oxygen permeability in laminated edible films. Journal of Food Science, 61(2), 401-406. https://doi. org/10.1111/j.1365-2621.1996.tb14203.x google scholar
  • Park, S.I., & Zhao, Y. (2006). Development and characterization of edible films from cranberry pomace extracts. Journal of Food Science, 71(2), E95-E101. https://doi.org/10.1111/j.1365-2621.2006.tb08902.x google scholar
  • Parreidt, T.S., Müller, K., & Schmid, M. (2018). Alginate-based edible films and coatings for food packaging applications. Foods, 7(10), 170. https://doi.org/10.3390/foods7100170 google scholar
  • Pavli, F., Argyri, A.A., Nychas, G.J., Tassou, C., & Chorianopoulos, N. (2018). Use of Fourier transform infrared spectroscopy for monitoring the shelf life of ham slices packed with probiotic supplemented edible films after treatment with high pressure processing. Food Research International, 106, 1061-1068. https://doi. org/10.1016/j.foodres.2017.12.064 google scholar
  • Perdones, Â., Escriche, I., Chiralt, A., & Vargas, M. (2016). Effect of chitosan-lemon essential oil coatings on volatile profile of strawberries during storage. Food Chemistry, 197, 979-986. https://doi.org/10.1016/j. foodchem.2015.11.054 google scholar
  • Pereda, M., Amica, G., Racz, I., & Marcovich, N.E. (2011). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering, 103(1), 76-83. https:// doi.org/10.1016/j.jfoodeng.2010.10.001 google scholar
  • Perez, V., Felix, M., Romero, A., & Guerrero, A. (2016). Characterization of pea protein-based bioplastics processed by injection moulding. Food and Bioproducts Processing, 97, 100-108. https://doi.org/10.1016/j. fbp.2015.12.004 google scholar
  • Perez-Gago, M.B., & Krochta, J.M. (2001). Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. Journal of Agricultural and Food Chemistry, 49(2), 996-1002. https://doi.org/10.1021/jf000615f google scholar
  • Perez-Gago, M.B., Rojas, C., & DelRio, M.A. (2002). Effect of lipid type and amount of edible hydroxypropyl methylcellulose-lipid composite coatings used to protect postharvest quality of mandarins cv. fortune. Jour-nal of Food Science, 67(8), 2903-2910. https://doi.org/10.1111/j.1365-2621.2002.tb08836.x google scholar
  • Phan, T.D., Debeaufort, F., Luu, D., & Voilley, A. (2005). Functional properties of edible agar-based and star-ch-based films for food quality preservation. Journal of Agricultural and Food Chemistry, 53(4), 973-981. https://doi.org/10.1021/jf040309s google scholar
  • Pineros-Hernandez, D., Medina-Jaramillo, C., Lopez-Cordoba, A., & Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488-495. https://doi.org/10.1016/j.foodhyd.2016.09.034 google scholar
  • Pisoschi, A.M., Pop, A., Georgescu, C., Turcuş, V., Olah, N.K., & Mathe, E. (2018). An overview of natural an-timicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935. https://doi.org/10.1016/j. ejmech.2017.11.095 google scholar
  • Pochat-Bohatier, C., Sanchez, J., & Gontard, N. (2006). Influence of relative humidity on carbon dioxide sorp-tion in wheat gluten films. Journal of Food Engineering, 77(4), 983-991. https://doi.org/10.1016/j.jfoo-deng.2005.08.026 google scholar
  • Priya, N.V., Vinitha, U.G., & Sundaram, M.M. (2021). Preparation of chitosan-based antimicrobial active food packaging film incorporated with Plectranthus amboinicus essential oil. Biocatalysis and Agricultural Bio-technology, 34, 102021. https://doi.org/10.1016/j.bcab.2021.102021 google scholar
  • Qiu, X., Chen, S., Liu, G., & Yang, Q. (2014). Quality enhancement in the Japanese sea bass (Lateolabrax japonicas) fillets stored at 4 °C by chitosan coating incorporated with citric acid or licorice extract. Food Chemistry, 162, 156-160. https://doi.org/10.1016/j.foodchem.2014.04.037 google scholar
  • Qiu, Y.T., Wang, B.J., & Weng, Y.M. (2020). Preparation and characterization of genipin cross-linked and lysoz-yme incorporated antimicrobial sodium caseinate edible films. Food Packaging and Shelf Life, 26, 100601. https://doi.org/10.1016/j.fpsl.2020.100601 google scholar
  • Quezada-Gallo, J.A., Debeaufort, F., Callegarin, F., & Voilley, A. (2000). Lipid hydrophobicity, physical state and distribution effects on the properties of emulsion-based edible films. Journal of Membrane Science, 180(1), 37-46. https://doi.org/10.1016/S0376-7388(00)00531-7 google scholar
  • Quintanar-Guerrero, D., Fessi, H., Allemann, E., & Doelker, E. (1996). Influence of stabilizing agents and preparative variables on the formation of poly (D, L-lactic acid) nanoparticles by an emulsification-diffu-sion technique. International Journal of Pharmaceutics, 143(2), 133-141. https://doi.org/10.1016/S0378-5173(96)04697-2 google scholar
  • Quinto, E.J., Caro, I., Villalobos-Delgado, L.H., Mateo, J., De-Mateo-Silleras, B., & Redondo-Del-Rfo, M.P. (2019). Food safety through natural antimicrobials. Antibiotics, 8(4), 208. https://doi.org/10.3390/antibi-otics8040208 google scholar
  • Radhalakshmi, V., Raman, M., & Joy, M.R. (2023). Development of active packaging film based on poly (lactic acid) incorporated with Piper betel leaf ethanolic extract and its application in the shelf-life extension of tuna meat. International Journal of Biological Macromolecules, 246, 125751. https://doi.org/10.1016/j. ijbiomac.2023.125751 google scholar
  • Raeisi, M., Tajik, H., Aliakbarlu, J., Mirhosseini, S.H., & Hosseini, S.M.H. (2015). Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT-Food Science and Technology, 64(2), 898-904. https://doi. org/10.1016/j.lwt.2015.06.010 google scholar
  • Ragland, S.A., & Criss, A.K. (2017). From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathogens, 13(9), e1006512. https://doi.org/10.1371/journal.ppat.1006512 google scholar
  • Rahman, M.S. (2007). Handbook of Food Preservation (second ed.). Florida, ABD: CRC Press. https://doi. org/10.1201/9781420017373 google scholar
  • Ramesh, S., & Radhakrishnan, P. (2019). Cellulose nanoparticles from agro-industrial waste for the development of active packaging. Applied Surface Science, 484, 1274-1281. https://doi.org/10.1016/j.apsusc.2019.04.003 google scholar
  • Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K., & Mohanty, A.K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38(10-11), 16531689. https://doi.org/10.1016/j.progpolymsci.2013.05.006 google scholar
  • Rezaei, F., & Shahbazi, Y. (2018). Shelf-life extension and quality attributes of sauced silver carp fillet: A com-parison among direct addition, edible coating and biodegradable film. LWT-Food Science and Technology, 87, 122-133. https://doi.org/10.1016/j.lwt.2017.08.068 google scholar
  • Rhim, J.W., & Shellhammer, T.H. (2005). Lipid-based edible films and coatings. In Innovations in food packaging (pp. 362-383). Massachusetts, ABD: Academic Press. https://doi.org/10.1016/B978-012311632-1/50053-X google scholar
  • Riaz, A., Lagnika, C., Luo, H., Nie, M., Dai, Z., Liu, C., ... & Song, J. (2020). Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films. Carbohydrate Polymers, 235, 115944. https://doi.org/10.1016/j.carbpol.2020.115944 google scholar
  • Ribeiro, A.M., Estevinho, B.N., & Rocha, F. (2020). Microencapsulation of polyphenols-The specific case of the microencapsulation of Sambucus nigra L. extracts-A review. Trends in Food Science & Technology, 105, 454-467. https://doi.org/10.1016/j.tifs.2019.03.011 google scholar
  • Ribeiro, A.M., Estevinho, B.N., & Rocha, F. (2021). Preparation and incorporation of functional ingredients in edible films and coatings. Food and Bioprocess Technology, 14, 209-231. https://doi.org/10.1007/s11947-020-02528-4 google scholar
  • Rico, D., Martin-Diana, A.B., Barat, J.M., & Barry-Ryan, C. (2007). Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends in Food Science & Technology, 18(7), 373-386. https://doi. org/10.1016/j.tifs.2007.03.011 google scholar
  • Rodriguez, M., Oses, J., Ziani, K., & Mate, J.I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840-846. https://doi. org/10.1016/j.foodres.2006.04.002 google scholar
  • Rodriguez-Turienzo, L., Cobos, A., & Diaz, O. (2012). Effects of edible coatings based on ultrasound-treated whey proteins in quality attributes of frozen Atlantic salmon (Salmo salar). Innovative Food Science & Emerging Technologies, 14, 92-98. https://doi.org/10.1016/j.ifset.2011.12.003 google scholar
  • Rodriguez-Turienzo, L., Cobos, A., & Diaz, O. (2013). Effects of microbial transglutaminase added edible co-atings based on heated or ultrasound-treated whey proteins in physical and chemical parameters of frozen Atlantic salmon (Salmo salar). Journal of Food Engineering, 119(3), 433-438. https://doi.org/10.1016/j. jfoodeng.2013.06.015 google scholar
  • Rodriguez-Turienzo, L., Cobos, A., Moreno, V., Caride, A., Vieites, J.M., & Diaz, O. (2011). Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation. Food Chemistry, 128(1), 187-194. https://doi.org/10.1016/j.foodchem.2011.03.026 google scholar
  • Roopa, H., Panghal, A., Kumari, A., Chhikara, N., Sehgal, E., & Rawat, K. (2023). Active packaging in food industry. Novel Technologies in Food Science, 375-404. https://doi.org/10.1002/9781119776376.ch10 google scholar
  • Rouilly, A., Meriaux, A., Geneau, C., Silvestre, F., & Rigal, L. (2006). Film extrusion of sunflower protein iso-late. Polymer Engineering & Science, 46(11), 1635-1640. https://doi.org/10.1002/pen.20634 google scholar
  • Ryu, S.Y., Rhim, J.W., Roh, H.J., & Kim, S.S. (2002). Preparation and physical properties of zein-coated hi-gh-amylose corn starch film. LWT-Food Science and Technology, 35(8), 680-686. https://doi.org/10.1006/ fstl.2002.0929 google scholar
  • Saeed, F., Afzaal, M., Tufail, T., & Ahmad, A. (2019). Use of natural antimicrobial agents: A safe preservation approach. In Active Antimicrobial Food Packaging. London, ABD: IntechOpen. https://doi.org/10.5772/ intechopen.80869 google scholar
  • Saez, M.I., Suarez, M.D., & Martmez, T.F. (2020). Effects of alginate coating enriched with tannins on shelf life of cultured rainbow trout (Oncorhynchus mykiss) fillets. LWT-Food Science and Technology, 118, 108767. https://doi.org/10.1016/j.lwt.2019.108767 google scholar
  • Salgado, P.R., Lopez-Caballero, M.E., Gomez-Guillen, M.C., Mauri, A.N., & Montero, M.P. (2013). Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocolloids, 33(1), 74-84. https://doi.org/10.1016/j.foodhyd.2013.02.008 google scholar
  • Sanchez-Ortega, I., Garda-Almendarez, B.E., Santos-Lopez, E.M., Amaro-Reyes, A., Barboza-Corona, J.E., & Regalado, C. (2014). Antimicrobial edible films and coatings for meat and meat products preservation. The Scientific World Journal, 2014, 1-18. https://doi.org/10.1155/2014/248935 google scholar
  • Santacruz, S., Rivadeneira, C., & Castro, M. (2015). Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant’s hydrophobic tail and mechanical treatment. Food Hydro-colloids, 49, 89-94. https://doi.org/10.1016/j.foodhyd.2015.03.019 google scholar
  • Savary, B.J., & Nunez, A. (2003). Gas chromatography-mass spectrometry method for determining the methanol and acetic acid contents of pectin using headspace solid-phase microextraction and stable isotope dilution. Journal of Chromatography A, 1017(1-2), 151-159. https://doi.org/10.1016/S0021-9673(03)01293-7 google scholar
  • Scartazzini, L., Tosati, J.V., Cortez, D.H.C., Rossi, M.J., Flöres, S.H., Hubinger, M.D., ... & Monteiro, A.R. (2019). Gelatin edible coatings with mint essential oil (Mentha arvensis): Film characterization and antifungal properties. Journal of Food Science and Technology, 56, 4045-4056. https://doi.org/10.1007/s13197-019-03873-9 google scholar
  • Scopes, R.K. (1993). Protein purification: principles and practice (pp. 71-101). Berlin, GR: Springer Science & Business Media. https://doi.org/10.1007/978-1-4757-2333-5_4 google scholar
  • Seifu, E., Buys, E.M., & Donkin, E.F. (2005). Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trends in Food Science & Technology, 16(4), 137-154. https://doi. org/10.1016/j.tifs.2004.11.002 google scholar
  • Settier-Ramfrez, L., Lopez-Carballo, G., Gavara, R., & Hernandez-Munoz, P. (2021). Broadening the antimic-robial spectrum of nisin-producing Lactococcus lactis subsp. lactis to Gram-negative bacteria by means of active packaging. International Journal of Food Microbiology, 339, 109007. https://doi.org/10.1016/j. ijfoodmicro.2020.109007 google scholar
  • Seyfzadeh, M., Motalebi, A.A., Kakoolaki, S., & Gholipour, H. (2013). Chemical, microbiological and sensory evaluation of gutted kilka coated with whey protein based edible film incorporated with sodium alginate during frozen storage. Iranian Journal of Fisheries Sciences, 12(1), 140-153. google scholar
  • Shah, M.A., Bosco, S.J.D., & Mir, S.A. (2014). Plant extracts as natural antioxidants in meat and meat products. Meat Science, 98(1), 21-33. https://doi.org/10.1016/j.meatsci.2014.03.020 google scholar
  • Shahbazi, Y., & Shavisi, N. (2018). Chitosan coatings containing Mentha spicata essential oil and zinc oxide nanoparticle for shelf life extension of rainbow trout fillets. Journal of Aquatic Food Product Technology, 27(9), 986-997. https://doi.org/10.1080/10498850.2018.1518945 google scholar
  • Shakila, R.J., Jeevithan, E., Arumugam, V., & Jeyasekaran, G. (2016). Suitability of antimicrobial grouper bone gelatin films as edible coatings for vacuum-packaged fish steaks. Journal of Aquatic Food Product Techno-logy, 25(5), 724-734. https://doi.org/10.1080/10498850.2014.921658 google scholar
  • Shanbhag, C., Shenoy, R., Shetty, P., Srinivasulu, M., & Nayak, R. (2023). Formulation and characterization of starch-based novel biodegradable edible films for food packaging. Journal of Food Science and Technology, 1-10. https://doi.org/10.1007/s13197-023-05803-2 google scholar
  • Shankar, S., Jaiswal, L., & Rhim, J.W. (2016). Gelatin-based nanocomposite films: Potential use in antimicrobial active packaging. In Antimicrobial food packaging (pp. 339-348). Massachusetts, ABD: Academic Press. https://doi.org/10.1016/B978-0-12-800723-5.00027-9 google scholar
  • Sharma, L., & Singh, C. (2016). Sesame protein based edible films: Development and characterization. Food Hydrocolloids, 61, 139-147. https://doi.org/10.1016/j.foodhyd.2016.05.007 google scholar
  • Sharma, S., & Rao, T.R. (2015). Xanthan gum based edible coating enriched with cinnamic acid prevents browning and extends the shelf-life of fresh-cut pears. LWT-Food Science and Technology, 62(1), 791-800. https://doi.org/10.1016/j.lwt.2014.11.050 google scholar
  • Shaw, N.B., Monahan, F.J., O’riordan, E.D., & O’sullivan, M. (2002). Effect of soya oil and glycerol on physical properties of composite WPI films. Journal of Food Engineering, 51(4), 299-304. https://doi.org/10.1016/ S0260-8774(01)00071-1 google scholar
  • Shokri, S., Ehsani, A., & Jasour, M.S. (2015). Efficacy of lactoperoxidase system-whey protein coating on shelf-life extension of rainbow trout fillets during cold storage (4 °C). Food and Bioprocess Technology, 8, 54-62. https://doi.org/10.1007/s11947-014-1378-7 google scholar
  • Shukla, R., & Cheryan, M. (2001). Zein: The industrial protein from corn. Industrial Crops and Products, 13(3), 171-192. https://doi.org/10.1016/S0926-6690(00)00064-9 google scholar
  • Sikorski, Z.Z., & Kolakowska, A. (Eds.). (2010). Chemical, biological, and functional aspects of food lipids (second ed.). Florida, ABD: CRC Press. https://doi.org/10.1201/b10272 google scholar
  • Silva, N.H., Vilela, C., Almeida, A., Marrucho, I.M., & Freire, C.S. (2018). Pullulan-based nanocomposite films for functional food packaging: Exploiting lysozyme nanofibers as antibacterial and antioxidant reinforcing additives. Food Hydrocolloids, 77, 921-930. https://doi.org/10.1016/j.foodhyd.2017.11.039 google scholar
  • Siqueiros-Cendon, T., Arevalo-Gallegos, S., Iglesias-Figueroa, B.F., Garria-Montoya, I.A., Salazar-Martmez, J., & Rascon-Cruz, Q. (2014). Immunomodulatory effects of lactoferrin. Acta Pharmacologica Sinica, 35(5), 557-566. https://doi.org/10.1038/aps.2013.200 google scholar
  • Siripatrawan, U., & Kaewklin, P. (2018). Fabrication and characterization of chitosan-titanium dioxide nano-composite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids, 84, 125-134. https://doi.org/10.1016/j.foodhyd.2018.04.049 google scholar
  • Slavin, Y.N., Asnis, J., Hnfeli, U.O., & Bach, H. (2017). Metal nanoparticles: Understanding the mechanisms be-hind antibacterial activity. Journal of Nanobiotechnology, 15, 1-20. https://doi.org/10.1186/s12951-017-0308-z google scholar
  • Soares, N.M., Fernandes, T.A., & Vicente, A.A. (2016). Effect of variables on the thickness of an edible coating applied on frozen fish-Establishment of the concept of safe dipping time. Journal of Food Engineering, 171, 111-118. https://doi.org/10.1016/j.jfoodeng.2015.10.016 google scholar
  • Soares, N.M., Mendes, T.S., & Vicente, A.A. (2013). Effect of chitosan-based solutions applied as edible coatings and water glazing on frozen salmon preservation-A pilot-scale study. Journal of Food Engineering, 119(2), 316-323. https://doi.org/10.1016/j.jfoodeng.2013.05.018 google scholar
  • Soazo, M., Perez, L.M., Rubiolo, A.C., & Verdini, R.A. (2013). Effect of freezing on physical properties of whey protein emulsion films. Food Hydrocolloids, 31(2), 256-263. https://doi.org/10.1016/j.foodhyd.2012.10.022 google scholar
  • Song, H.Y., Shin, Y.J., & Song, K.B. (2012). Preparation of a barley bran protein-gelatin composite film containing grapefruit seed extract and its application in salmon packaging. Journal of Food Engineering, 113(4), 541-547. https://doi.org/10.1016/j.jfoodeng.2012.07.010 google scholar
  • Song, Y., Liu, L., Shen, H., You, J., & Luo, Y. (2011). Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, 22(3-4), 608-615. https://doi.org/10.1016/j.foodcont.2010.10.012 google scholar
  • Sothornvit, R., & Krochta, J.M. (2005). Plasticizers in edible films and coatings. In Innovations in food packaging (pp. 403-433). Massachusetts, ABD: Academic Press. https://doi.org/10.1016/B978-012311632-1/50055-3 google scholar
  • Souza, B.W., Cerqueira, M.A., Ruiz, H.A., Martins, J.T., Casariego, A., Teixeira, J.A., Vicente, A.A. (2010). Effect of chitosan-based coatings on the shelf life of salmon (Salmo salar). Journal of Agricultural and Food Chemistry, 58(21), 11456-11462. https://doi.org/10.1021/jf102366k google scholar
  • Srinivasa, P.C., Ramesh, M.N., Kumar, K.R., & Tharanathan, R.N. (2004). Properties of chitosan films prepa-red under different drying conditions. Journal of Food Engineering, 63(1), 79-85. https://doi.org/10.1016/ S0260-8774(03)00285-1 google scholar
  • Stabler, C., Wilks, K., Sambanis, A., & Constantinidis, I. (2001). The effects of alginate composition on en-capsulated pTC3 cells. Biomaterials, 22(11), 1301-1310. https://doi.org/10.1016/S0142-9612(00)00282-9 google scholar
  • Stuchell, Y.M., & Krochta, J.M. (1995). Edible coatings on frozen king salmon: Effect of whey protein isolate and acetylated monoglycerides on moisture loss and lipid oxidation. Journal of Food Science, 60(1), 28-31. https://doi.org/10.1111/j.1365-2621.1995.tb05599.x google scholar
  • Sun, Q., Sun, C., & Xiong, L. (2013). Mechanical, barrier and morphological properties of pea starch and peanut protein isolate blend films. Carbohydrate Polymers, 98(1), 630-637. https://doi.org/10.1016/j.car-bpol.2013.06.040 google scholar
  • Surendhiran, D., Li, C., Cui, H., & Lin, L. (2021). Marine algae as efficacious bioresources housing antimicro-bial compounds for preserving foods-A review. International Journal of Food Microbiology, 358, 109416. https://doi.org/10.1016/j.ijfoodmicro.2021.109416 google scholar
  • Şen, F., Uzunsoy, İ., Baştürk, E., & Kahraman, M.V. (2017). Antimicrobial agent-free hybrid cationic starch/ sodium alginate polyelectrolyte films for food packaging materials. Carbohydrate Polymers, 170, 264-270. https://doi.org/10.1016/j.carbpol.2017.04.079 google scholar
  • Talens, P., & Krochta, J.M. (2005). Plasticizing effects of beeswax and carnauba wax on tensile and water vapor permeability properties of whey protein films. Journal of Food Science, 70(3), 239-243. https://doi. org/10.1111/j.1365-2621.2005.tb07141.x google scholar
  • Tammineni, N., Ünlü, G., & Min, S.C. (2013). Development of antimicrobial potato peel waste-based edible films with oregano essential oil to inhibit Listeria monocytogenes on cold-smoked salmon. International Journal of Food Science & Technology, 48(1), 211-214. https://doi.org/10.1111/j.1365-2621.2012.03156.x google scholar
  • Tan, Y., Xu, K., Niu, C., Liu, C., Li, Y., Wang, P., & Binks, B.P. (2014). Triglyceride-water emulsions stabilised by starch-based nanoparticles. Food Hydrocolloids, 36, 70-75. https://doi.org/10.1016/j.foodhyd.2013.08.032 google scholar
  • Tang, C.H., Jiang, Y., Wen, Q.B., & Yang, X.Q. (2005). Effect of transglutaminase treatment on the properties of cast films of soy protein isolates. Journal of Biotechnology, 120(3), 296-307. https://doi.org/10.1016/j. jbiotec.2005.06.020 google scholar
  • Tapia-Blâcido, D. R., do Amaral Sobral, P. J., & Menegalli, F. C. (2013). Effect of drying conditions and plas-ticizer type on some physical and mechanical properties of amaranth flour films. LWT-Food Science and Technology, 50(2), 392-400. https://doi.org/10.1016/j.lwt.2012.09.008 google scholar
  • Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360-374. https://doi. org/10.1016/j.carbpol.2015.10.074 google scholar
  • Thiel, S.R., De Oliveira, M.S.R., Badia, V., Ribeiro, S.R., Wagner, R., Emanuelli, T., ... & Mello, R. (2023). Development of active films with collagen fiber and polyvinyl alcohol mixture and incorporation of oregano and rosemary essential oils in their matrix. Food and Nutrition Sciences, 14(7), 601-625. https://doi.org/10.4236/fns.2023.147040 google scholar
  • Tiwari, M., Singhania, N., Dewan, A., Adhikari, R., Chhikara, N., & Panghal, A. (2021). Organoleptic accepta-bility of active packaged food products. In Active packaging for various food applications (pp. 139-178). Florida, ABD: CRC Press. https://doi.org/10.1201/9781003127789-11 google scholar
  • Trigo, M., Nozal, P., Miranda, J.M., Aubourg, S.P., & Barros-Velâzquez, J. (2022). Antimicrobial and antioxidant effect of lyophilized Fucus spiralis addition on gelatin film during refrigerated storage of mackerel. Food Control, 131, 108416. https://doi.org/10.1016/j.foodcont.2021.108416 google scholar
  • Trombetta, D., Castelli, F., Sarpietro, M.G., Venuti, V., Cristani, M., Daniele, C., ... & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy, 49(6), 2474-2478. https://doi.org/10.1128/AAC.49.6.2474-2478.2005 google scholar
  • Udayakumar, G.P., Muthusamy, S., Selvaganesh, B., Sivarajasekar, N., Rambabu, K., Banat, F., ... & Show, P.L. (2021). Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. Journal of Environmental Chemical Engineering, 9(4), 105322. https://doi. org/10.1016/j.jece.2021.105322 google scholar
  • Ullsten, N.H., Cho, S.W., Spencer, G., Gallstedt, M., Johansson, E., & Hedenqvist, M.S. (2009). Properties of extruded vital wheat gluten sheets with sodium hydroxide and salicylic acid. Biomacromolecules, 10(3), 479-488. https://doi.org/10.1021/bm800691h google scholar
  • Umaraw, P., Munekata, P.E., Verma, A.K., Barba, F.J., Singh, V.P., Kumar, P., & Lorenzo, J.M. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science & Technology, 98, 10-24. https://doi.org/10.1016/j.tifs.2020.01.032 google scholar
  • Valencia-Chamorro, S.A., Perez-Gago, M.B., Del Rfo, M.A., & Palou, L. (2010). Effect of antifungal hydroxy-propyl methylcellulose-lipid edible composite coatings on Penicillium decay development and posthar-vest quality of cold-stored “ortanique” mandarins. Journal of Food Science, 75(8), 418-426. https://doi. org/10.1111/j.1750-3841.2010.01801.x google scholar
  • Vâsconez, M.B., Flores, S.K., Campos, C.A., Alvarado, J., & Gerschenson, L.N. (2009). Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings. Food Research Interna-tional, 42(7), 762-769. https://doi.org/10.1016/j.foodres.2009.02.026 google scholar
  • Veberic, R., Jakopic, J., Stampar, F., & Schmitzer, V. (2009). European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry, 114(2), 511-515. https://doi. org/10.1016/j.foodchem.2008.09.080 google scholar
  • Vedove, T.M., Maniglia, B.C., & Tadini, C.C. (2021). Production of sustainable smart packaging based on cassava starch and anthocyanin by an extrusion process. Journal of Food Engineering, 289, 110274. https://doi.org/10.1016/j.jfoodeng.2020.110274 google scholar
  • Velasco, V., & Williams, P. (2011). Improving meat quality through natural antioxidants. Chilean Journal of Agricultural Research, 71(2), 313-322. https://doi.org/10.4067/S0718-58392011000200017 google scholar
  • Vieira, B.B., Mafra, J.F., da Rocha Bispo, A.S., Ferreira, M.A., de Lima Silva, F., Rodrigues, A.V.N., & Evange-lista-Barreto, N.S. (2019). Combination of chitosan coating and clove essential oil reduces lipid oxidation and microbial growth in frozen stored tambaqui (Colossoma macropomum) fillets. LWT-Food Science and Technology, 116, 108546. https://doi.org/10.1016/j.lwt.2019.108546 google scholar
  • Vimont, A., Fernandez, B., Ahmed, G., Fortin, H.P., & Fliss, I. (2019). Quantitative antifungal activity of reuterin against food isolates of yeasts and moulds and its potential application in yogurt. International Journal of Food Microbiology, 289, 182-188. https://doi.org/10.1016/j.ijfoodmicro.2018.09.005 google scholar
  • Vitorino, C., Carvalho, F.A., Almeida, A.J., Sousa, J.J., & Pais, A.A. (2011). The size of solid lipid nanopar-ticles: an interpretation from experimental design. Colloids and Surfaces B: Biointerfaces, 84(1), 117-130. https://doi.org/10.1016/j.colsurfb.2010.12.024 google scholar
  • Volpe, M.G., Coccia, E., Siano, F., Di Stasio, M., & Paolucci, M. (2019). Rapid evaluation methods for qu-ality of trout (Oncorhynchus mykiss) fresh fillet preserved in an active edible coating. Foods, 8(4), 113. https://doi.org/10.3390/foods8040113 google scholar
  • Volpe, M.G., Siano, F., Paolucci, M., Sacco, A., Sorrentino, A., Malinconico, M., & Varricchio, E. (2015). Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchus mykiss) fillets. LWT-Food Science and Technology, 60(1), 615-622. https://doi.org/10.1016/j.lwt.2014.08.048 google scholar
  • Wang,K.,Wu,K.,Xiao,M.,Kuang,Y.,Corke,H.,Ni,X.,&Jiang,F.(2017b).Structuralcharacterizationandpropertiesof konjac glucomannan and zein blend films. International Journal of Biological Macromolecules, 105, 1096-1104. https://doi.org/10.1016/j.ijbiomac.2017.07.127 google scholar
  • Wang, L.Z., Liu, L., Holmes, J., Kerry, J.F., & Kerry, J.P. (2007). Assessment of film-forming potential and properties of protein and polysaccharide-based biopolymer films. International Journal of Food Science & Technology, 42(9), 1128-1138. https://doi.org/10.1111/j.1365-2621.2006.01440.x google scholar
  • Wang, L., Ding, J., Fang, Y., Pan, X., Fan, F., Li, P., & Hu, Q. (2020). Effect of ultrasonic power on properties of edib-le composite films based on rice protein hydrolysates and chitosan. Ultrasonics Sonochemistry, 65, 105049. https://doi.org/10.1016/j.ultsonch.2020.105049 google scholar
  • Wang, X., Yue, T., & Lee, T.C. (2015b). Development of pleurocidin-poly (vinyl alcohol) electrospun antimic-robial nanofibers to retain antimicrobial activity in food system application. Food Control, 54, 150-157. https://doi.org/10.1016/j.foodcont.2015.02.001 google scholar
  • Wang, Y., Liu, A., Ye, R., Wang, W., & Li, X. (2015a). Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films. Food Chemistry, 166, 414-422. https://doi.org/10.1016/j.foodchem.2014.06.062 google scholar
  • Wang, Y., Xia, Y., Zhang, P., Ye, L., Wu, L., & He, S. (2017c). Physical characterization and pork packaging application of chitosan films incorporated with combined essential oils of cinnamon and ginger. Food and Bioprocess Technology, 10, 503-511. https://doi.org/10.1007/s11947-016-1833-8 google scholar
  • Wang, Z., Hu, S., Gao, Y., Ye, C., & Wang, H. (2017a). Effect of collagen-lysozyme coating on fresh-salmon fil-lets preservation. LWT-Food Science and Technology, 75, 59-64. https://doi.org/10.1016/j.lwt.2016.08.032 google scholar
  • Whitehurst, R.J. (2004). Emulsifiers in Food Technology (first ed.). Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1002/9780470995747 google scholar
  • Wong, Y.C., Ahmad-Mudzaqqir, M.Y., & Wan-Nurdiyana, W.A. (2014). Extraction of essential oil from cin-namon (Cinnamomum zeylanicum). Oriental Journal of Chemistry, 30(1), 37. https://doi.org/10.13005/ ojc/300105 google scholar
  • Woraprayote, W., Pumpuang, L., Tosukhowong, A., Zendo, T., Sonomoto, K., Benjakul, S., & Visessanguan, W. (2018). Antimicrobial biodegradable food packaging impregnated with Bacteriocin 7293 for control of pathogenic bacteria in pangasius fish fillets. LWT-Food Science and Technology, 89, 427-433. https://doi. org/10.1016/j.lwt.2017.10.026 google scholar
  • Wu, T., Jiang, Q., Wu, D., Hu, Y., Chen, S., Ding, T., ... & Chen, J. (2019). What is new in lysozyme research and its application in food industry? A review. Food Chemistry, 274, 698-709. https://doi.org/10.1016/j. foodchem.2018.09.017 google scholar
  • Xia, C., Wang, L., Dong, Y., Zhang, S., Shi, S. Q., Cai, L., & Li, J. (2015). Soy protein isolate-based films cross-linked by epoxidized soybean oil. RSC Advances, 5(101), 82765-82771. https://doi.org/10.1039/ C5RA15590H google scholar
  • Xu, H., Sheng, J., Wu, X., Zhan, K., Tao, S., Wen, X., ... & Tao, F. (2021). Moderating effects of plastic packa-ged food on association of urinary phthalate metabolites with emotional symptoms in Chinese adolescents. Ecotoxicology and Environmental Safety, 216, 112171. https://doi.org/10.1016/j.ecoenv.2021.112171 google scholar
  • Xu, X., Liu, H., Duan, S., Liu, X., Zhang, K., & Tu, J. (2020). A novel pumpkin seeds protein-pea starch edible film: Mechanical, moisture distribution, surface hydrophobicity, UV-barrier properties and potential appli-cation. Materials Research Express, 6(12), 125355. https://doi.org/10.1088/2053-1591/ab63f7 google scholar
  • Yam, K.L., & Zhu, X. (2012). Controlled release food and beverage packaging. In Emerging food packaging technologies (pp. 13-26). Sawston, UK: Woodhead Publishing. https://doi.org/10.1533/9780857095664.1.13 google scholar
  • Yang, F., Hu, S., Lu, Y., Yang, H., Zhao, Y., & Li, L. (2015). Effects of coatings of polyethyleneimine and thyme essential oil combined with chitosan on sliced fresh Channa argus during refrigerated storage. Journal of Food Process Engineering, 38(3), 225-233. https://doi.org/10.1111/jfpe.12155 google scholar
  • Yang, L., & Paulson, A.T. (2000). Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food Research International, 33(7), 571-578. https://doi.org/10.1016/S0963-9969(00)00093-4 google scholar
  • Yang, W., Owczarek, J.S., Fortunati, E., Kozanecki, M., Mazzaglia, A., Balestra, G.M., ... & Puglia, D. (2016). Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Industrial Crops and Products, 94, 800-811. https://doi.org/10.1016/j.indcrop.2016.09.061 google scholar
  • Yin, Y.C., Yin, S.W., Yang, X.Q., Tang, C.H., Wen, S.H., Chen, Z., ... & Wu, L.Y. (2014). Surface modifica-tion of sodium caseinate films by zein coatings. Food Hydrocolloids, 36, 1-8. https://doi.org/10.1016/j. foodhyd.2013.08.027 google scholar
  • Yu, W., Guo, J., Liu,Y., Xue, X., Wang, X., Wei, L., ... & Xu, D. (2023). Fabrication of novel electrospun zein/polyethy-lene oxide film incorporating nisin for antimicrobial packaging. LWT-Food Science and Technology, 115176. https://doi.org/10.1016/j.lwt.2023.115176 google scholar
  • Zambrano-Zaragoza, M.L., Mercado-Silva, E., Gutierrez-Cortez, E., Cornejo-Villegas, M.A., & Quintanar-Guer-rero, D. (2014). The effect of nano-coatings with a-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “Red Delicious” apples. Innovative Food Science & Emerging Technologies, 22, 188-196. https://doi.org/10.1016/j.ifset.2013.09.008 google scholar
  • Zhang, D., Chen, L., Cai, J., Dong, Q., Din, Z. U., Hu, Z. Z., ... & Cheng, S.Y. (2021). Starch/tea polyphenols na-nofibrous films for food packaging application: From facile construction to enhance mechanical, antioxidant and hydrophobic properties. Food Chemistry, 360, 129922. https://doi.org/10.1016/j.foodchem.2021.129922 google scholar
  • Zhang, L., Liu, A., Wang, W., Ye, R., Liu, Y., Xiao, J., & Wang, K. (2017). Characterisation of microemulsion nanofilms based on Tilapia fish skin gelatine and ZnO nanoparticles incorporated with ginger essential oil: Meat packaging application. International Journal of Food Science & Technology, 52(7), 1670-1679. https://doi.org/10.1111/ijfs.13441 google scholar
  • Zhang, L., Yu, D., Xu, Y., Jiang, Q., Xia, W., & Yu, D. (2023). Changes in quality and microbial diversity of refrigerated carp fillets treated by chitosan/zein bilayer film with curcumin/nisin-loaded pectin nanoparticles. Food Bioscience, 54, 102941. https://doi.org/10.1016/j.fbio.2023.102941 google scholar
  • Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J., & Liu, J. (2019). Development of mul-tifunctional food packaging films based on chitosan, TiO2 nanopartic- google scholar
  • les and anthocyanin-rich black plum peel extract. Food Hydrocolloids, 94, 80-92. https://doi.org/10.1016/j.foodhyd.2019.03.009 google scholar
  • Zhao, Y., Li, B., Li, C., Xu, Y., Luo, Y., Liang, D., & Huang, C. (2021). Comprehensive review of polysacchari-de-based materials in edible packaging: A sustainable approach. Foods, 10(8), 1845. https://doi.org/10.3390/ foods10081845 google scholar
  • Zhong, C., Hou, P.F., Li, Y.X., Yang, W.Y., Shu, M., & Wu, G.P. (2021). Characterization, antioxidant and antibacterial activities of gelatin film incorporated with protocatechuic acid and its application on beef preservation. LWT-Food Science and Technology, 151, 1121 https://doi.org/10.1016/j.lwt.2021.112154 google scholar
  • Zia, K.M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A., & Zuber, M. (2017). A review on synthe-sis, properties and applications of natural polymer based carrageenan blends and composites. International Journal of Biological Macromolecules, 96, 282-301. https://doi.org/10.1016/j.ijbiomac.2016.11.095 google scholar
  • Zoghi, A., Khosravi-Darani, K., & Mohammadi, R. (2020). Application of edible films containing probiotics in food products. Journal of Consumer Protection and Food Safety, 15(4), 307-320. https://doi.org/10.1007/ s00003-020-01286-x google scholar
  • Zubeldia, F., Ansorena, M.R., & Marcovich, N.E. (2015). Wheat gluten films obtained by compression molding. Polymer Testing, 43, 68-77. https://doi.org/10.1016/j.polymertesting.2015.02.001 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.