CHAPTER


DOI :10.26650/B/LS32.2023.002.11   IUP :10.26650/B/LS32.2023.002.11    Full Text (PDF)

Piksel Tabanlı Evrişimsel Sinir Ağları Kullanılarak Müsilaj Oluşumlarının Tespiti ve İzlenmesi: İzmit Körfezi Örneği

Taşkın KavzoğluElif Özlem Yılmazİsmail ÇölkesenUmut Güneş SefercikCem Gazioğlu

Kentleşme ve sanayileşmedeki hızlı artış, çevre kirliliğini artırıcı bir etki yaratarak biyolojik çeşitliliğin azalmasına ve ekolojik dengenin bozulmasına neden olmaktadır. Buna bağlı olarak, çevre felaketlerinin sayısı her yıl önemli ölçüde artmaktadır. Bu afetlerin en önemlilerinden biri, Türkiye'nin Marmara Denizi'nde yakın zamanda meydana gelen müsilaj olayıdır. Müsilaj oluşumlarının kapladığı alanları tespit etmek, izlemek ve tahmin etmek, karar vericilerin, afetin boyutunu anlaması ve azaltma/temizleme faaliyetleri için acil durum stratejileri geliştirmesi noktasında esastır. Bu kapsamda, uzaktan algılama teknolojileri, geniş kapsama alanlarında düşük maliyetle müsilaj oluşumlarının periyodik olarak izlenmesine olanak sağlamaktadır. Son yıllarda, derin öğrenme modellerinden özellikle Evrişimsel Sinir Ağlarının (ESA), filtre yardımıyla özellik ayıklama stratejilerini kullanarak söz konusu verilere ait zengin içerikli temsil özellikleri çıkartarak yüksek performans sağladığı vurgulanmaktadır. Bu çalışmada, 14, 19 ve 24 Mayıs 2021 tarihlerinde elde edilen İzmit Körfezi'nin bulutsuz Sentinel-2 (Level 2A) görüntülerine piksel tabanlı ESA modelleri uygulanarak müsilaj oluşumları belirlenmiştir. Oluşturulan ESA modelleri kullanılarak üç tarih için sırasıyla %99,49, %99,06 ve %98,70’lik genel sınıflandırma doğruluğu elde edilmiştir. Müsilaj kaplı alan, 14-19 Mayıs tarihleri arasındaki ilk 5 günlük dönemde 7,75 km2 'den 18,51 km2 'ye yükselirken, 24 Mayıs'ta İzmit Körfezinin toplam alanının %7,26’sına karşılık gelen 21,79 km2 ’ye kadar ulaşmıştır. Üretilen tematik haritalar, çalışma alanında müsilaj oluşumlarının İzmit kıyı şeridinden İzmit Körfezi'ne doğru kademeli olarak yayıldığını ve müsilaj kaplı alanların 10 günde yaklaşık üç kat arttığını göstermiştir. Müsilaj oluşumlarının hareketleri ve şekillerinin, Marmara Denizi'nde etkili olan rüzgâr ve akıntılarla yüksek oranda ilişkili olduğu ortaya konmuştur.



References

  • Acar, U., Yılmaz, O. S., Meltem, Ç., Ateş, A. M., Gülgen, F., & Balık Şanlı, F. (2021). Determination of mucilage in the sea of Marmara using remote sensing techniques with Google Earth Engine. International Journal of Environment and Geoinformatics, 8(4), 423-434. https://www.doi.org/10.30897/ijegeo.957284 google scholar
  • Aktan, Y., Dede, A., & Ciftci, P. S. (2008). Mucilage event associated with diatoms and dinoflagellates in Sea of Marmara, Turkey. Harmful Algae News, 36, 1-7. google scholar
  • Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaria, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal ofBig Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8 google scholar
  • Azam, F., Fonda Umani, S., & Funari, E. (1999). Significance of bacteria in the mucilage phenomenon in the northern Adriatic Sea. Ann Ist Super Sanita, 35(3), 411-419. google scholar
  • Berisha, S., Shahraki, F. F., Mayerich, D., & Prasad, S. (2020). Deep Learning for Hyperspectral Image Analysis, Part I: Theory and Algorithms. In. Prasad, S., Chanussot, J. (eds) Hyperspectral Image Analysis. Advances in Computer Vision and Pattern Recognition. https://doi.org/10.1007/978-3-030-38617-7_3 google scholar
  • Bjorck, J., Gomes, C., Selman, B., & Weinberger, K. Q. (2018). Understanding batch normalization. Advances in Neural Information Processing Systems, 7694-7705. google scholar
  • Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S., & Miao, Y. (2021). Review of image classification algorithms based on Convolutional Neural Networks. Remote Sensing, 13(22), 4712. https://doi.org/10.3390/rs13224712 google scholar
  • Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep feature extraction and classification of hyperspectral images based on Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232-6251. https://doi.org/10.1109/TGRS.2016.2584107 google scholar
  • Colkesen, I., Ozturk, M.Y., Kavzoglu, T., & Sefercik, U.G. (2021). Determination of sea surface mucilage formations using multitemporal Sentinel-2 imagery. 42nd Asian Conference on Remote Sensing, 22-24 November, Can Tho, Vietnam. google scholar
  • Danovaro, R., Umani, S. F., & Pusceddu, A. (2009). Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. PLoS One, 4(9), e7006. google scholar
  • Del Negro, P., Crevatin, E., Larato, C., Ferrari, C., Totti, C., Pompei, M., & Umani, S. F. (2005). Mucilage microcosms. Science of the Total Environment, 353(1-3), 258-269. google scholar
  • Dileep, P., Das, D., & Bora, P. K. (2020). Dense layer dropout based CNN architecture for automatic modulation classification. 26th National Conference on Communications, Kharagpur, India. https://doi.org/10.1109/ NCC48 643.2020.9055989 google scholar
  • Fukao, T., Kimoto, K., Yamatogi, T., Yamamoto, K., Yoshida, Y., & Kotani, Y. (2009). Marine mucilage in Ariake Sound, Japan, is composed of transparent exopolymer particles produced by the diatom Coscinodiscus granii. Fisheries Science, 75, 1007-1014. https://doi.org/10.1007/s12562-009-0122-0 google scholar
  • Ghaderizadeh, S., Abbasi-Moghadam, D., Sharifi, A., Zhao, N., & Tariq, A. (2021). Hyperspectral Image classification using a hybrid 3D-2D Convolutional Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7570-7588. https://doi.org/10.1109/ JSTARS.2021.3099118 google scholar
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Genetic Programming and Evolvable Machines, 19, 305-307. doi:10.1007/s10710-017-9314-z google scholar
  • Gotsis-Skretas, O. (1995). Mucilage appearances in Greek waters during 1982-1994. Science of the Total Environment, 165, 229-230. google scholar
  • Heryadi, Y., & Miranda, E. (2020). Land Cover Classification Based on Sentinel-2 Satellite Imagery Using Convolutional Neural Network Model: A Case Study in Semarang Area, Indonesia. In. Huk, M., Maleszka, M., Szczerbicki, E. (eds.) Intelligent Information and Database Systems: Recent Developments. Studies in Computational Intelligence, 830. https://doi.org/10.1007/978-3-030-14132-5_15 google scholar
  • Hu, C., Qi, L., Xie, Y., Zhang, S., & Barnes, B. B. (2022). Spectral characteristics of sea snot reflectance observed from satellites: Implications for remote sensing of marine debris. Remote Sensing of Environment, 269, 112842. https://doi.org/10.1016/j.rse.2021.112842 google scholar
  • Innamorati, M., Nuccio, C., Massi, L., Mori, G., & Melley, A. (2001). Mucilages and climatic changes in the Tyrrhenian Sea. Aquatic Conservation, Marine and Freshwater Ecosystems, 11, 289-298. https://doi. org/10.1002/aqc.448 google scholar
  • Kavzoglu, T. (2008). Determination of environmental degradation due to urbanization and industrialization in Gebze, Turkey. Environmental Engineering Science, 25(3), 429-438. https://doi.org/10.1089/ees.2006.0271 google scholar
  • Kavzoglu, T., & Colkesen, I. (2013). An assessment of the effectiveness of a rotation forest ensemble for landuse and land-cover mapping. International Journal of Remote Sensing, 34(12), 4224-4241. https://doi.or g/10.1080/01431161.2013.774099 google scholar
  • Kavzoglu, T., & Goral, M. (2022). Google Earth Engine for Monitoring Marine Mucilage: Izmit Bay in Spring 2021. Hydrology, 9(8), 135. https://doi.org/10.3390/hydrology9080135 google scholar
  • Kavzoglu, T., Teke, A., & Yilmaz, E. O. (2021a). Shared blocks-based ensemble deep learning for shallow landslide susceptibility mapping. Remote Sensing, 13(23), 4776. https://doi.org/10.3390/rs13234776 google scholar
  • Kavzoglu, T., Tonbul, H., Colkesen, I., & Sefercik, U.G. (2021b). The use of object-based image analysis for monitoring 2021 marine mucilage bloom in the sea of Marmara. International Journal of Environment and Geoinformatics, 8(4), 529-536. https://doi.org/10.30897/ijegeo.990875 google scholar
  • Kavzoğlu, T., Çölkesen, I., Sefercik U. G., & Öztürk, M. Y. (2021). Marmara Denizi’ndeki müsilaj oluşumlarının çok zamanlı optik ve termal uydu görüntülerinden makine öğrenme algoritması ile tespiti ve analizi. Harita Dergisi, 87(166), 1-9. google scholar
  • Khan, A., Sohail, A., Zahoora, U., & Qureshi, A.S. (2020). A survey of the recent architectures of Deep Convolutional Neural Networks. Artificial Intelligence Review, 53(8), 5455-5516. https://doi.org/10.1007/ s10462-020-09825-6 google scholar
  • Koumoutsou, D., & Charou, E. (2020). A deep learning approach to hyperspectral image classification using an improved hybrid 3D-2D Convolutional Neural Network. 11th Hellenic Conference on Artificial Intelligence (SETN 2020), Athens, Greece. https://doi.org/10.1145/3411408.3411462 google scholar
  • Laban, N., Abdellatif, B. Ebied, H. M., Shedeed, H. A., & Tolba, M. F. (2020). Multiscale satellite image classification using deep learning approach. In: Hassanien, A., Darwish, A., El-Askary, H. (eds) Machine Learning and Data Mining in Aerospace Technology. Studies in Computational Intelligence, 836. https:// doi.org/10.1007/978-3-030-20212-5_9 google scholar
  • Lancelot, C. (1995). The mucilage phenomenon in the continental coastal waters of the North Sea. Science of the Total Environment, 165, 83-102. https://doi.org/10.1016/0048-9697(95)04545-C google scholar
  • Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/0.1038/n ature14539 google scholar
  • Li, Y., Zhang, H., Xue, X., Jiang, Y., & Shen, Q. (2018). Deep learning for remote sensing image classification: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6), 1264. https://doi. org/10.1002 /widm.1264 google scholar
  • Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42(December 2012), 60-88. https://doi.org/10.1016/j.media.2017.07.005 google scholar
  • Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166-177. https:// doi.org/10.1016/j.isprsjprs.2019.04.015 google scholar
  • MacKenzie, L., Sims, I., Beuzenberg, V., & Gillespie, P. (2002). Mass accumulation of mucilage caused by dinoflagellate polysaccharide exudates in Tasman Bay, New Zealand. Harmful Algae, 1, 69-83. https://doi. org/10.1016/S1568-9883(02)00006-9. google scholar
  • Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 645657. https://doi.org/10.1109/TGRS.2016.2612821 google scholar
  • Maxwell, A. E., Warner, T. A., & Guillén, L. A. (2021a). Accuracy assessment in Convolutional Neural Networkbased deep learning remote sensing studies- Part 2: Recommendations and best practices. Remote Sensing, 13(13), 2591. https://doi.org/10.3390/rs13132591 google scholar
  • Maxwell, A. E., Warner, T. A., & Guillén, L. A. (2021b). Accuracy assessment in convolutional neural networkbased deep learning remote sensing studies- Part 1: Literature review. Remote Sensing, 13(13), 2450. https:// doi.org /10.3390/rs13132450 google scholar
  • Medvedeva, A.V., & Stanichny, S. V. (2021). Marine mucilage: Manifestation in satellite remote sensing data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa, 18(3), 314-319. https://doi. org/10.21046/2070-7401-2021-18-3-314-319 google scholar
  • Moskolaı, W.R., Abdou, W., & Dipanda, A. (2021). Application of deep learning architectures for satellite image time series prediction: A review. Remote Sensing, 13(23), 4822. https://doi.org/10.3390/rs13234822 google scholar
  • Öztürk, İ., (2021). Bilimsel Veriler Işığında Marmara Denizi ve Türk Boğazlar Sistemi: Güncel 3D Hidrodinamik Modelleme, Su Bütçesi ve Kalitesi, İklim Değişimi ve Kanal İstanbul Etkileri. Ankara: Turkish Academy of Sciences. google scholar
  • Prakash, N., Manconi, A., & Loew, S. (2020). Mapping landslides on EO data: Performance of deep learning models vs. traditional machine learning models. Remote Sensing, 12(3), 346. https://doi.org/10.3390/ rs12030346 google scholar
  • Precali, R., Giani, M., Marini, M., Grilli, E, Ferrari, C. R., Pecar, O., & Paschini, E. (2005). Mucilaginous aggregates in the Northern Adriatic in the period 1999-2002: typology and distribution. Science of the Total Environment, 353(1-3), 10-23. google scholar
  • Rinaldi, A., Vollenweider, R. A., Montanari, G., Ferrari, C. R., & Ghetti, A. (1995). Mucilages in Italian seas: the Adriatic and Tyrrhenian Seas, 1988-1991. Science of the Total Environment, 165(1-3), 165-183. https:// doi.org/10.1016/0048-9697(95)04550-K google scholar
  • Savun-Hekimoğlu, B., & Gazioğlu, C. (2021). Mucilage Problem in the Semi-Enclosed Seas: Recent Outbreak in the Sea of Marmara. International Journal of Environment and Geoinformatics, 8(4), 402-413. https:// doi.org/10.308 97/ijegeo.955739 google scholar
  • Savun-Hekimoğlu, B., Erbay, B., Burak, Z. S., & Gazioğlu, C. (2021). A comparative MCDM analysis of potential short-term measures for dealing with mucilage problem in the Sea of Marmara. International Journal of Environment and Geoinformatics, 8(4), 572-580. https://doi.org/10.30897/ijegeo.1026107 google scholar
  • Scoullos, M., Mata Plavsic, M., Karavoltsos, S., & Sakellari, A. (2006). Partitioning and distribution of dissolved copper, cadmium and organic matter in Mediterranean marine coastal areas: The case of a mucilage event, Estuarine. Coastal and Shelf Science, 67, 484-490. https://doi.org/10.1016/j.ecss.2005.12.007 google scholar
  • Sildir, H., Aydin, E., & Kavzoglu, T. (2020). Design of feedforward neural networks in the classification of hyperspectral imagery using superstructural optimization. Remote Sensing, 12(6), 956. https://doi. org/10.3390/rs12060956 google scholar
  • Song, J., Gao, S., Zhu, Y., & Ma, C. (2019). A survey of remote sensing image classification based on CNNs. Big Earth Data, 3(3), 232-254. https://doi.org/10.1080/20964471.2019.1657720 google scholar
  • Tas, S., Kus, D., & Yılmaz, I. N. (2020). Temporal variations in phytoplankton composition in the northeastern Sea of Marmara: potentially toxic species and mucilage event. Mediterranean Marine Science, 21(3), 668683. https://doi.org/0.12681/mms.22562 google scholar
  • Tassan, S. (1993). An algorithm for the detection of the white-tide (“mucilage”) phenomenon in the Adriatic sea using AVHRR data. Remote Sensing of Environment, 45(1), 29-42. https://doi.org/10.1016/0034-4257(93)90079-D google scholar
  • Teke, A., Yilmaz, E. O., & Kavzoglu, T. (2021) Comparative assessment of deep learning and machine learning learning models in shallow landslide susceptibility, International Symposium on Applied Geoinformatics, Riga, Latvia. https://doi.org/10.15659/isag2021.12315 google scholar
  • Tsagkatakis, G., Aidini, A., Fotiadou, K., Giannopoulos, M., Pentari, A., & Tsakalides, P. (2019). Survey of deep-learning approaches for remote sensing observation enhancement. Sensors, 19(18), 3929. https://doi. org/10.3390/s19183929 google scholar
  • Wambugu, N., Chen, Y., Xiao, Z., Tan, K., Wei, M., Liu, X., & Li, J. (2021). Hyperspectral image classification on insufficient-sample and feature learning using deep neural networks: A review. International Journal of Applied Earth Observation and Geoinformation, 105, 102603. https://doi.org/10.1016/j.jag.2021.102603 google scholar
  • Yagci, A.L., Colkesen, I., Kavzoglu, T., & Sefercik, U. G. (2022). Daily monitoring of marine mucilage using the MODIS products: a case study of 2021 mucilage bloom in the Sea of Marmara, Turkey. Environmental Monitoring and Assessment, 194(3), 170. https://doi.org/0.1007/s10661-022-09831-x google scholar
  • Yentür, R.E., Büyükateş, Y., Özen, Ö., & Altin, A. (2013). The environmental and socio-economical effects of a biologic problem: mucilage. Marine Science and Technology Bulletin, 2(2), 13-15. google scholar
  • Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J., Gao, J., & Zhang, L. (2020). Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 241(March 2019), 111716. https://doi.org/10.1016/j.rse.2020.111716 google scholar
  • Zambianchi, E., Calvitti, C., Cecamore, P., D’Amico, F., Ferulano, E., & Lanciano, P. (1992). The mucilage phenomenon in the Northern Adriatic Sea, summer 1989: A study carried out with remote sensing techniques. Marine Coastal Eutrophication, 126, 581-598. https://doi.org/10.1016/B978-0-444- 89990-3.50053-5 google scholar
  • Zandalinas, S.I., Fritschi, F. B., & Mittler, R. (2021). Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster trends in plant science. Trends in Plant Science, 26(6), 588-599. https://doi.org/10.1016/j.tplants.2021.02.011 google scholar
  • Zhang, L., Zhang, L., & Du, B. (2016). Deep Learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4(2), 22-40. https://doi.org/10.1109/ MGRS.2016.2540798 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.