CHAPTER


DOI :10.26650/B/T3.2024.40.023   IUP :10.26650/B/T3.2024.40.023    Full Text (PDF)

Advancement in Artificial Intelligence for Early Detection and Personalized Treatment of Breast Cancer

Murat Emeç

Breast cancer is one of the most common types of cancer in women worldwide, and early diagnosis and treatment significantly improve the chances of success and positively impact the disease course. In recent years, rapid advancements in artificial intelligence (AI) technologies have played a crucial role in breast cancer diagnosis and treatment. This article aims to comprehensively review the significant role of AI-based approaches in the early detection and personalized treatment of breast cancer in the existing literature. As a compilation of essential studies in this field, this article discusses various artificial intelligence algorithms and methods contributing to breast cancer diagnosis. Deep-learning algorithms, mainly when applied to mammography and other imaging techniques, have achieved remarkable success in providing high sensitivity and specificity for early detection. Additionally, computer-aided diagnosis systems support radiologists in the diagnostic process and enhance accuracy rates. Another key focus of this abstract is the role of AI in personalized treatment. Based on genetic analysis and molecular profiling, customization of treatment approaches for cancer patients can enhance the chances of halting disease progression and minimizing side effects. AI is integrated into personalized treatment processes by assisting with extensive data analysis, detecting genetic mutations, and predicting drug responses. However, comprehending the full potential of AI in breast cancer diagnosis and treatment and making it readily available for clinical applications present some challenges and barriers. Data privacy and security concerns, algorithm explainability, and acceptance require resolution. In conclusion, the literature reviewed in this article emphasizes the potential of AI-based approaches for breast cancer diagnosis and treatment. AI is steadily progressing as a crucial tool in early detection and personalized medicine, aiming to improve the quality of life and survival rates of patients with breast cancer. Nonetheless, further research and clinical studies are of utmost importance to establish the reliability and efficacy of these technologies.


DOI :10.26650/B/T3.2024.40.023   IUP :10.26650/B/T3.2024.40.023    Full Text (PDF)

Meme Kanseri̇ Erken Teşhi̇si̇ ve Ki̇şi̇selleşti̇ri̇lmi̇ş Tedavi̇si̇nde Yapay Zekâ Alaninda Geli̇şmeler

Murat Emeç

Meme kanseri, dünya genelinde kadınlarda en sık görülen kanser türlerinden biridir ve erken teşhis ve tedavi, başarı şansını önemli ölçüde artırmakta ve hastalığın seyrini olumlu yönde etkilemektedir. Son yıllarda, yapay zekâ (YZ) teknolojilerindeki hızlı gelişmeler meme kanseri tanı ve tedavisinde çok önemli bir rol oynamıştır. Bu makale, mevcut literatürde meme kanserinin erken teşhisi ve kişiselleştirilmiş tedavisinde YZ tabanlı yaklaşımların önemli rolünü kapsamlı bir şekilde gözden geçirmeyi amaçlamaktadır. Bu alandaki temel çalışmaların bir derlemesi olarak, bu makalede meme kanseri teşhisine katkıda bulunan çeşitli yapay zekâ algoritmaları ve yöntemleri tartışılmaktadır. Derin öğrenme algoritmaları, özellikle mamografi ve diğer görüntüleme tekniklerine uygulandığında, erken teşhis için yüksek hassasiyet ve özgüllük sağlamada kayda değer bir başarı elde edilmiştir. Ayrıca, bilgisayar destekli tanı sistemleri radyologları tanı sürecinde desteklemekte ve doğruluk oranlarını artırmaktadır. Bu çalışmanın bir diğer önemli odak noktası da yapay zekânın kişiselleştirilmiş tedavideki rolüdür. Genetik analiz ve moleküler profillemeye dayalı olarak, kanser hastaları için tedavi yaklaşımlarının özelleştirilmesi, hastalığın ilerlemesini durdurma ve yan etkileri en aza indirme şansını artırabilir. Yapay zekâ, kapsamlı veri analizine yardımcı olarak, genetic mutasyonları tespit ederek ve ilaç yanıtlarını tahmin ederek kişiselleştirilmiş tedavi süreçlerine entegre edilmektedir. Bununla birlikte, meme kanseri teşhisi ve tedavisinde yapay zekânın tam potansiyelini anlamak ve klinik uygulamalar için hazır hale getirmek bazı zorluklar ve engeller ortaya çıkarmaktadır. Veri gizliliği ve güvenlik endişeleri, algoritmanın açıklanabilirliği ve kabulü çözüm gerektirmektedir. Sonuç olarak, bu makalede incelenen literatür, meme kanseri teşhisi ve tedavis I için YZ tabanlı yaklaşımların potansiyelini vurgulamaktadır. YZ, meme kanserli hastaların yaşam kalitesini ve hayatta kalma oranlarını iyileştirmeyi amaçlayan erken teşhis ve kişiselleştirilmiş tıpta önemli bir araç olarak istikrarlı bir şekilde ilerlemektedir. Bununla birlikte, bu teknolojilerin güvenilirliğini ve etkinliğini belirlemek için daha fazla araştırma ve klinik çalışma yapılması büyük önem taşımaktadır.



References

  • Anderson, B. O., Ilbawi, A. M., Fidarova, E., Weiderpass, E., Stevens, L., Abdel-Wahab, M., & Mikkelsen, B. (2021). The Global Breast Cancer Initiative: A strategic collaboration to strengthen health care for non-com-municable diseases. The Lancet Oncology, 22(5), 578-581. google scholar
  • Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., ... & Soerjomataram, I. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast, 66, 15-23. google scholar
  • Berg, W. A., Gur, D., Bandos, A. I., Nair, B., Gizienski, T. A., Tyma, C. S., ... & Hakim, C. M. (2021). Impact of original and artificially improved artificial intelligence-based computer-aided diagnosis on breast US interpretation. Journal of Breast Imaging, 3(3), 301-311. google scholar
  • Bonnet, E. (2021). Using convolutional neural networks to classify breast cancer images. arXiv, arXiv:2108.13661. google scholar
  • BreakHis, Dataset. (n.d.). Retrieved November 1, 2023, from https://paperswithcode.com/dataset/breakhis Breast Cancer - Dataset by UCI. (n.d.). Retrieved November 1, 2023, from https://data.world/uci/breast-cancer Breast Cancer Wisconsin (Diagnostic) Data Set. (n.d.). Retrieved November 1, 2023, from https://www.kaggle. com/datasets/uciml/breast-cancer-wisconsin-data google scholar
  • Burton, H., et al. (2013). Public health implications from COGS and potential for risk stratification and screening. Nature Genetics, 45, 349-351. google scholar
  • CBIS-DDSM: Breast Cancer Image Dataset. (n.d.). Retrieved November 1, 2023, from https://www.kaggle.com/ datasets/awsaf49/cbis-ddsm-breast-cancer-image-dataset google scholar
  • Chen, W., Lu, Y., Qiu, L., & Kumar, S. (2021). Designing personalized treatment plans for breast cancer. Infor-mation Systems Research, 32(3), 932-949. google scholar
  • Cho, S. Y., Lee, J. H., Ryu, J. M., Lee, J. E., Cho, E. Y., Ahn, C. H., Paeng, K., Yoo, I., Ock, C.-Y., & Song, S. Y. (2021). Deep learning from HE slides predicts the clinical benefit from adjuvant chemotherapy in hormone receptor-positive breast cancer patients. Scientific Reports, 11, 17363. google scholar
  • DataWorld. (n.d.). Retrieved November 1, 2023, from https://data.world/datasets/breast-cancer google scholar
  • Deo, S. V. S., Sharma, J., & Kumar, S. (2022). GLOBOCAN 2020 report on global cancer burden: Challenges and opportunities for surgical oncologists. Annals of Surgical Oncology, 29(11), 6497-6500. google scholar
  • Genome. PERSPECTIVE I&I. (2020). Personalized risk assessment for prevention and early detection of breast cancer: Integration and implementation. Retrieved from http://www.genomequebec.com/211-en/project/ personalized-risk-assessment-for-preventionand-early-detection-of-breast-cancer-integration-andimplemen-tation/ google scholar
  • He, B., Bergenstrâhle, L., Stenbeck, L., Abid, A., Andersson, A., Borg, Â., Maaskola, J., Lundeberg, J., & Zou, J. (2020). Integrating spatial gene expression and breast tumor morphology via deep learning. Nature Bio-medical Engineering, 4, 827-834. google scholar
  • Heer, E., Harper, A., Escandor, N., Sung, H., McCormack, V., & Fidler-Benaoudia, M. M. (2020). Global bur-den and trends in premenopausal and postmenopausal breast cancer: A population-based study. The Lancet Global Health, 8(8), e1027-e1037. google scholar
  • Horizon 2020-1. (2020). B-CAST. Breast cancer stratification: Understanding the determinants of risk and prognosis of molecular subtypes. Retrieved from https://cordis.europa.eu/project/rcn/193256/factsheet/en google scholar
  • Horizon 2020-2. (2019). MyPeBS. International randomized study comparing personalized, risk-stratified to standard breast cancer screening in women aged 40-70. Retrieved from https://cordis.europa.eu/project/ rcn/212694/factsheet/en google scholar
  • Horizon 2020-3. (2019). EU-TOPIA. EU-TOPIA: Towards improved breast, cervical, and colorectal cancer screening in Europe. Retrieved from https://cordis.europa.eu/project/rcn/193304/factsheet/en google scholar
  • Jaume, G., Pati, P., Bozorgtabar, B., Foncubierta, A., Anniciello, A. M., Feroce, F., Rau, T., Thiran, J.-P., Gabrani, M., & Goksel, O. (2021). Quantifying explainers of graph neural networks in computational pathology. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19-25 June 2021, p. 8106-8116. google scholar
  • Liu, M., et al. (2021). Integrated analyses reveal the multi-omics and prognostic characteristics of ATP5B in breast cancer. Frontiers in Genetics, 12. Retrieved from https://www.frontiersin.org/articles/10.3389/fge-ne.2021.652474 google scholar
  • Lotter, W., Diab, A. R., Haslam, B., Kim, J. G., Grisot, G., Wu, E., Wu, K., Onieva, J. O., Boyer, Y., & Boxerman, J. L. (2021). Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nature Medicine, 27, 244-249. google scholar
  • Zwitter, M., & Soklic, M. (1998). Breast Cancer. DOI.org (Datacite). Retrieved from https://doi.org/10.24432/ C51P4M google scholar
  • Nazeri, K., Aminpour, A., & Ebrahimi, M. (2018). Two-stage convolutional neural network for breast cancer histology image classification. In Proceedings of the International Conference Image Analysis and Recog-nition, Povoa de Varzim, Portugal, 27-29 June 2018, p. 717-726. google scholar
  • Negahbani, F., Sabzi, R., Jahromi, B. P., Movahedi, F., Shirazi, M. K., Majidi, S., Firouzabadi, D., & Dehghanian, A. (2020). PathoNet: Deep learning assisted evaluation of Ki-67 and tumor-infiltrating lymphocytes (TILs) as prognostic factors in breast cancer; A large dataset and baseline. arXiv, arXiv:2010.04713. google scholar
  • Pashayan, N., Morris, S., Gilbert, F. J., & Pharoah, P. D. P. (2018). Cost-effectiveness and the benefit-to-harm ratio of risk-stratified screening for breast cancer a life-table model. JAMA Oncology, 4, 1-7. google scholar
  • Patil, A., Tamboli, D., Meena, S., Anand, D., & Sethi, A. (2019). Breast cancer histopathology image classifica-tion and localization using multiple instance learning. In Proceedings of the 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Bengaluru, India, 15-16 November 2019, p. 1-4. google scholar
  • Shareef, B., Xian, M., & Vakanski, A. S. (2020). Small tumor-aware network for breast ultrasound image seg-mentation. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3-7 April 2020, p. 1-5. google scholar
  • Shen, L., Margolies, L. R., Rothstein, J. H., Fluder, E., McBride, R., & Sieh, W. (2019). Deep learning to improve breast cancer detection on screening mammography. Scientific Reports, 9, 12495. google scholar
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer sta-tistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209-249. google scholar
  • Teng, J. (n.d.). SEER Breast Cancer Data. Retrieved November 1, 2023, from https://ieee-dataport.org/open-ac-cess/seer-breast-cancer-data google scholar
  • Trentham-Dietz, A., et al. (2016). Tailoring breast cancer screening intervals by breast density and risk for wo-men aged 50 years or older: Collaborative modeling of screening outcomes. Annals of Internal Medicine, 165, 700. google scholar
  • USF, Digital Mammography Home Page. (n.d.). Retrieved November 1, 2023, from http://www.eng.usf.edu/ cvprg/Mammography/Database.html google scholar
  • Wolberg, W. (1990). Breast Cancer Wisconsin (Original). DOI.org (Datacite). Retrieved from https://doi. org/10.24432/C5HP4Z google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.