CHAPTER


DOI :10.26650/B/T3.2024.40.010   IUP :10.26650/B/T3.2024.40.010    Full Text (PDF)

Comparative Analysis of Machine Learning Methods in Disease Detection Application to Diabetes Mellitus and Heart Diseases

Cihan Çiftçi

The rapid advancement of technology and developments in computer science have brought about significant changes in the field of health, as in many other fields. Artificial intelligence and machine learning have become an important trend in early recognition of the effects that cause diseases, investigating the symptoms of the disease, making the correct diagnosis, and classifying the disease, improving health processes, early diagnosis of diseases, preventing the spread of diseases, reducing health costs, and increasing the effectiveness and quality of health services. has arrived. In this study, machine learning methods were used to detect diabetes and heart diseases, which are among the world’s deadliest diseases and threaten public health. The performances of machine learning algorithms in correctly diagnosing diseases were compared. In this study, by applying the Smote technique, better accuracy results were obtained with Gradient Boosting (GB), Random Forest Classifier (RF), Extreme Gradient Boosting (XGB) methods.


DOI :10.26650/B/T3.2024.40.010   IUP :10.26650/B/T3.2024.40.010    Full Text (PDF)

Maki̇ne Öğrenmesi̇ Yöntemleri̇ni̇n Hastalık Tespi̇ti̇nde Karşılaştırmalı Anali̇zi̇: Di̇abetes Melli̇tus ve Kalp Hastalıklarina Uyarlanması

Cihan Çiftçi

Teknolojinin hızla ilerlemesi ve bilgisayar bilimlerindeki gelişmeler birçok alanda olduğu gibi sağlık alanında da önemli değişiklikleri beraberinde getirmiştir. Yapay zeka ve makine öğrenmesi, hastalıklara neden olan etkilerin erken tanınması, hastalığın semptomlarının araştırılması, doğru tanının konulması ve hastalığın sınıflandırılması, sağlık süreçlerinin iyileştirilmesi, hastalıkların erken teşhisi, hastalıkların yayılmasının önlenmesinde önemli bir trend haline gelmiştir. Ayrıca sağlık maliyetlerinin azaltılması, sağlık hizmetlerinin etkinliğinin ve kalitesinin artırılmasında önemli faydalar sağlamaktadır. Bu çalışmada, dünyanın en ölümcül hastalıkları arasında yer alan ve halk sağlığını tehdit eden diyabet ve kalp hastalıklarının tespiti için makine öğrenmesi yöntemlerinden yararlanılmıştır. Makine öğrenmesi algoritmalarının hastalıkların doğru teşhis edilmesindeki performansları karşılaştırıldı. Bu çalışmada Smote tekniği uygulanarak Gradient Boosting (GB), Random Forest Classifier (RF), Extreme Gradient Boosting (XGB) yöntemleriyle daha iyi doğrulukta sonuçlar elde edilmiştir.



References

  • Ahmed, H., Younis, E. M., Hendawi, A., & Ali, A. A. (2020). Heart disease identification from patients’ social posts, machine learning solution on Spark. Future Generation Computer Systems, 111, 714-722. google scholar
  • Ali, O., Abdelbaki, W., Shrestha, A., Elbasi, E., Alryalat, M. A. A., & Dwivedi, Y. K. (2023). A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge, 8(1), 100333. google scholar
  • Amin, M. S., Chiam, Y. K., & Varathan, K. D. (2019). Identification of significant features and data mining techniques in predicting heart disease. Telematics and Informatics, 36, 82-93. google scholar
  • Bhoi, S. K. (2021). Prediction of diabetes in females of pima Indian heritage: a complete supervised learning approach. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(10), 3074-3084. google scholar
  • Chang, H. K., Wu, C. T., Liu, J. H., Lim, W. S., Wang, H. C., Chiu, S. I., & Jang, J. S. R. (2019, June). Early detecting in-hospital cardiac arrest based on machine learning on imbalanced data. In 2019 IEEE Interna-tional Conference on Healthcare Informatics (ICHI) (pp. 1-10). IEEE. google scholar
  • Chang, V., Bailey, J., Xu, Q. A., & Sun, Z. (2023). Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms. Neural Computing and Applications, 35(22), 16157-16173. google scholar
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-samp-ling technique. Journal of Artificial Intelligence Research, 16, 321-357. google scholar
  • Febrian, M. E., Ferdinan, F. X., Sendani, G. P., Suryanigrum, K. M., & Yunanda, R. (2023). Diabetes prediction using supervised machine learning. Procedia Computer Science, 216, 21-30. google scholar
  • Hirano, Y., Kondo, Y., Sueyoshi, K., Okamoto, K., & Tanaka, H. (2021). Early outcome prediction for out-of-hos-pital cardiac arrest with initial shockable rhythm using machine learning models. Resuscitation, 158, 49-56. google scholar
  • Javan, S. L., Sepehri, M. M., Javan, M. L., & Khatibi, T. (2019). An intelligent warning model for early pre-diction of cardiac arrest in sepsis patients. Computer methods and programs in biomedicine, 178, 47-58. google scholar
  • Kadhim, M. A., & Radhi, A. M. (2023). Heart disease classification using optimized Machine learning algorit-hms. Iraqi Journal For Computer Science and Mathematics, 4(2), 31-42. google scholar
  • Ketu, S., & Mishra, P. K. (2022). Empirical analysis of machine learning algorithms on imbalance electrocar-diogram based arrhythmia dataset for heart disease detection. Arabian Journal for Science and Enginee-ring, 47(2), 1447-1469. google scholar
  • Krishnamoorthi, R., Joshi, S., Almarzouki, H. Z., Shukla, P. K., Rizwan, A., Kalpana, C., & Tiwari, B. (2022). [Retracted] A Novel Diabetes Healthcare Disease Prediction Framework Using Machine Learning Tech-niques. Journal of Healthcare Engineering, 2022(1), 1684017. google scholar
  • Li,J. P., Haq, A. U., Din, S. U., Khan,J., Khan, A., &Saboor, A. (2020). Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare. IEEE Access, 8(Ml), 107562-107582. google scholar
  • Lukmanto, R. B., Nugroho, A., & Akbar, H. (2019). Early detection of diabetes mellitus using feature selection and fuzzy support vector machine. Procedia Computer Science, 157, 46-54. google scholar
  • Plati, D. K., Tripoliti, E. E., Bechlioulis, A., Rammos, A., Dimou, I., Lakkas, L., ... & Fotiadis, D. I. (2021). A machine learning approach for chronic heart failure diagnosis. Diagnostics, 11(10), 1863. google scholar
  • Polatlı, L. Ö., & Karadayı, M. A. Sağlık Hizmetlerinde Güncel Makine Öğrenmesi Algoritmaları. Eurasian Journal of Health Technology Assessment, 6(2), 117-143. google scholar
  • Reddy, D. J., Mounika, B., Sindhu, S., Reddy, T. P., Reddy, N. S., Sri, G. J., ... & Kora, P. (2020). WITHDRAWN: Predictive machine learning model for early detection and analysis of diabetes. google scholar
  • Safa, M., & Pandian, A. (2021). WITHDRAWN: Applying machine learning algorithm to sensor coupled IoT devices in prediction of cardiac stress-An integrated approach. google scholar
  • Thakkar, H. K., Shukla, H., & Patil, S. (2020, December). A comparative analysis of machine learning classifiers for robust heart disease prediction. In 2020 IEEE 17th India Council International Conference (INDI-CON) (pp. 1-6). IEEE. google scholar
  • Thilagavathi, G., Priyanka, S., Roopa, V., & Shri, J. S. (2022). Heart disease prediction using machine lear-ning algorithms. In 2022 International Conference on Applied Artificial Intelligence and Computing (ICA-AIC) (pp. 494-501). IEEE. google scholar
  • Viloria, A., Herazo-Beltran, Y., Cabrera, D., & Pineda, O. B. (2020). Diabetes diagnostic prediction using vector support machines. Procedia Computer Science, 170, 376-381. google scholar
  • Yuvaraj, N., & SriPreethaa, K. R. (2019). Diabetes prediction in healthcare systems using machine learning algorithms on Hadoop cluster. Cluster Computing, 22(Suppl 1), 1-9. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.