CHAPTER


DOI :10.26650/B/T3.2024.40.005   IUP :10.26650/B/T3.2024.40.005    Full Text (PDF)

Detection of Biomarkers Affecting Mortality: An Emergency Department Study

Büşra ÇelikM. Fevzi EsenAhmet Fatih Deveci

In this study, data mining techniques were employed to evaluate a dataset of 1106 patients between 15-84 ages who were admitted to the emergency department of a hospital, between February 1, 2021 - May 1, 2021. All patients experienced mortality within 24 hours or after 24 hours following the admission of the emergency department. The aim was to identify significant biomarkers affecting mortality. Accordingly, the focus was on various tests providing essential information about the patient’s metabolic functions and general health status, such as Be, Hbg, HCO3, Htc, Inr, Lac, Mean Arterial Pressure (MAP), pCO2, pH, heart rate, and pulse pressure. Furthermore, variables related to the Injury Severity Score (ISS) used for classifying injuries in trauma patients and the Glasgow Coma Scale (GCS) to assess the overall level of consciousness were included into the dataset. Supervised machine learning algorithms, including Support Vector Machines (SVM), Decision Trees (DT), Naive Bayes (NB), Logistic Regression (LR), and Multi-Layer Perceptrons (MLP) were performed to classify cases. As a result, the highest accuracy rate for mortality prediction was achieved with SVM. MAP, Lac, ISS, and GCS were determined to be the significant variables for separating the classes.


DOI :10.26650/B/T3.2024.40.005   IUP :10.26650/B/T3.2024.40.005    Full Text (PDF)

Mortali̇teyi̇ Etki̇leyen Bi̇yobeli̇rteçleri̇n Tespi̇ti̇: Bi̇r Aci̇l Servi̇s Çalışması

Büşra ÇelikM. Fevzi EsenAhmet Fatih Deveci

Bu çalışmada, 1 Şubat 2021 - 1 Mayıs 2021 tarihleri arasında bir hastanenin acil servisine başvuran 15-84 yaş arası 1106 hastadan oluşan bir veri kümesini veri madenciliği teknikleriyle analiz edilerek, mortaliteye etki eden önemli değişkenlerin belirlenmesi amaçlanmıştır. Bu doğrultuda, Be, Hbg, Hco3, Htc, Inr, Lac, Ortalama Arter Basıncı (MAP), PCO2, pH, kalp hızı ve nabız basıncı gibi hastanın metabolik işlevleri ve genel sağlık durumu hakkındaki çeşitli değişkenler ele alınmıştır. Ayrıca, travma sınıflandırılmasında kullanılan Yaralanma Şiddeti Skoru (ISS) ve genel bilinç düzeyini değerlendirmek için kullanılan Glasgow Koma Skalası (GCS) veri setine dahil edilmiştir. Vakaları sınıflandırmak için Destek Vektör Makineleri (SVM), Karar Ağaçları (DT), Naive Bayes (NB), Lojistik Regresyon (LR) ve Çok Katmanlı Algılayıcılar (MLP) dahil olmak üzere denetimli makine öğrenimi algoritmaları kullanılmıştır. Sonuç olarak, mortalite tahmini için en yüksek doğruluk oranının SVM ile elde edildiği tespit edilmiş olup, MAP, Lac, ISS ve GCS değişkenlerinin sınıfları ayırmada kullanılabilecek önemli değişkenler olduğu belirlenmiştir.



References

  • Babic, A. (1999). Knowledge discovery for advanced clinical data management and analysis. Stud Health Te-chnol Inform, 68, 409-413. google scholar
  • Berikol, G. B., & Berikol, G. (2020). Use of artificial intelligence in emergency medicine. Artificial Intelligence in Precision Health, 405-413. google scholar
  • Carne, B., Kennedy, M., & Gray, T. (2012). Review article: Crisis resource management in emergency medici-ne. Emergency Medicine Australasia: EMA, 24(1), 7-13. google scholar
  • Christmann, A. & Steinwart, I. (2008). Support Vector Machines, Springer, New York: USA. google scholar
  • Edelson, M., & Kuo, T. T. (2022). Generalizable prediction of COVID-19 mortality on worldwide patient data. JAMIA Open, 5(2), ooac036. google scholar
  • Goldman-Mellor, S., Olfson, M., Lidon-Moyano, C., & Schoenbaum, M. (2019). Association of suicide and other mortality with emergency department presentation. JAMA Network Open, 2(12), e1917571-e1917571. google scholar
  • Graham, B., Bond, R., Quinn, M., & Mulvenna, M. (2018). Using data mining to predict hospital admissions from the emergency department. IEEE Access, 6, 10458-10469. google scholar
  • Hadzikadic, M., Hakenewerth, A., Bohren, B., Norton, J., Mehta, B., & Andrews, C. (1996). Concept formation vs. logistic regression: predicting death in trauma patients. Artificial Intelligence in Medicine, 8(5), 493-504. google scholar
  • Hamidi, O. M. I. D., Poorolajal, J., Farhadian, M., & Tapak, L. (2016). Identifying important risk factors for sur-vival in kidney graft failure patients using random survival forests. Iranian Journal of Public Health, 45(1), 27. google scholar
  • Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan Kaufmann. google scholar
  • He, H., & Ma, Y. (Eds.) (2013). Imbalanced learning: foundations, algorithms, and applications. Wiley. google scholar
  • Javan, S. L., Sepehri, M. M., Javan, M. L., & Khatibi, T. (2019). An intelligent warning model for early pre-diction of cardiac arrest in sepsis patients. Computer Methods and Programs in Biomedicine, 178, 47-58. google scholar
  • Jayasri, N. P., & Aruna, R. (2022). Big data analytics in health care by data mining and classification techniqu-es. ICT Express, 8(2), 250-257. google scholar
  • Kantardzic, M. (2003). Data Mining: concepts, models, methods, and algorithms. Technometrics, 45(3), 277. google scholar
  • Khazaei, S., Najafi-GhOBADI, S., & Ramezani-Doroh, V. (2021). Construction data mining methods in the pre-diction of death in hemodialysis patients using support vector machine, neural network, logistic regression and decision tree. Journal of Preventive Medicine and Hygiene, 62(1), E222. google scholar
  • Kotsiantis, S. B., Kanellopoulos, D. & Pintelas, P. (2006). Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering, 30, 1-12. google scholar
  • Küçük, M., Özlü, T., Küçük, A.O., Kaya, A., Kıraklı, C., Şengören Dikiş, Ö., et. al. (2020). Türkiye’de yoğun bakım ünitelerinde hekimin mortaliteyi öngörebilme gücü. Tuberk Toraks, 68(3), 205-217. google scholar
  • Laatifi, M., Douzi, S., Bouklouz, A., Ezzine, H., Jaafari, J., Zaid, Y., ... & Naciri, M. (2022). Machine learning approaches in COVID-19 severity risk prediction in Morocco. Journal of Big Data, 9(1), 5. google scholar
  • Momenyan, S., Baghestani, A. R., Momenyan, N., Naseri, P., & Akbari, M. E. (2018). Survival prediction of patients with breast cancer: comparisons of decision tree and logistic regression analysis. International Journal of Cancer Management, 11(7). google scholar
  • Parva, E., Boostani, R., Ghahramani, Z., & Paydar, S. (2017). The Necessity of Data Mining in Clinical Emergen-cy Medicine; A Narrative Review of the Current Literatrue. Bulletin of Emergency and Trauma, 5(2), 90-95. google scholar
  • Rahman, M. A., Moayedikia, A., & Wiil, U. K. (2023). Editorial: Data-driven technologies for future healthcare systems. Frontiers in Medical Technology, 5, 1183687. google scholar
  • Santos-Pereira, J., Gruenwald, L., & Bernardino, J. (2022). Top data mining tools for the healthcare industry. Journal of King Saud University-Computer and Information Sciences, 34(8), 4968-4982. google scholar
  • Shanbehzadeh, M., Orooji, A., & Kazemi-Arpanahi, H. (2021). Comparing of data mining techniques for predi-cting in-hospital mortality among patients with COVID-19. Journal of Biostatistics and Epidemiology, 7(2), 154-173. google scholar
  • Tapak, L., Shirmohammadi-Khorram, N., Amini, P., Alafchi, B., Hamidi, O., & Poorolajal, J. (2019). Prediction of survival and metastasis in breast cancer patients using machine learning classifiers. Clinical Epidemiology and Global Health, 7(3), 293-299. google scholar
  • Taylor, R. A., Pare, J. R., Venkatesh, A. K., Mowafi, H., Melnick, E. R., Fleischman, W., & Hall, M. K. (2016). Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach. Academic Emergency Medicine, 23(3), 269-278. google scholar
  • Tucker, A., Wang, Z., Rotalinti, Y. et al. (2020). Generating high-fidelity synthetic patient data for assessing machine learning healthcare software. npj Digit. Med., 3, 147. google scholar
  • Turban, E., Aronson, J. E., Liang, T. P., & Sharda, R. (2007). Decision Support and Business Intelligence Systems (Eighth Ed.). New Jersey: Pearson Prentice Hall. google scholar
  • Wu, W. T., Li, Y. J., Feng, A. Z., Li, L., Huang, T., Xu, A. D., & Lyu, J. (2021). Data mining in clinical big data: the frequently used databases, steps, and methodological models. Military Medical Research, 8, 1-12. google scholar
  • Wu, W., Yang, J., Li, D., Huang, Q., Zhao, F., Feng, X., ... & Lyu, J. (2021). Competitive risk analysis of prog-nosis in patients with cecum cancer: a population-based study. Cancer Control, 28, 1073274821989316. google scholar
  • Yang, H., Luo, Y., Ren, X., Wu, M., He, X., Peng, B., ... & Lin, H. (2021). Risk prediction of diabetes: big data mining with fusion of multifarious physical examination indicators. Information Fusion, 75, 140-149. google scholar
  • Zhang, X., Tang, F., Ji, J., Han, W., & Lu, P. (2019). Risk prediction of dyslipidemia for Chinese Han adults using random Forest survival model. Clinical Epidemiology, 1047-1055. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.