CHAPTER


DOI :10.26650/B/T3.2024.40.030   IUP :10.26650/B/T3.2024.40.030    Full Text (PDF)

Developments in 4D Printing Technology: Usage Areas in Health Industry

Burak Kaan BirgülÜmit Begüm Güray EfesMurat Tiryaki

The literature for this paper was identified and selected by conducting a comprehensive search in electronic databases such as PubMed and Google Scholar.published between 2018 to 2023 for evaluating developments in 4D printing technology. The keywords used in the search such as ((“Bioprinting”[Mesh]) AND “Four-Dimensional Computed Tomography”[Mesh]) AND “Smart Materials”[Mesh]. The world is on the brink of a new technological era with the development of 4D printing, a revolutionary process that has significantly transformed rapid prototyping. Revolutionary 4D printers boast a multifunctional structure that empowers them to autonomously self-assemble and self-repair in a time-dependent, printer-independent, and predictable manner. Witness the next frontier in manufacturing: 4D-printed objects with the remarkable ability to execute programmed functions and dynamically alter their forms and characteristics. Products printed using smart and programmable materials in a 4D printer can adjust themselves according to environmental conditions without any external intervention. Shape memory polymers are utilized in various areas of dentistry, such as orthodontics, endodontics, prosthetics, oral surgery, and implantology. In the next 4-5 years, we can expect highly advanced programmable and printable materials from 4D printing. In this rapidly evolving landscape, the growing demand for technological innovations in various fields is expected to further propel the development of 4D printing technology. 4D printers emerge as an innovative revolution for dentistry and other domains. These printers are expected to enhance standard of living and address challenges. Extensive research is needed to enhance the potential applications of 4D printing in dentistry.


DOI :10.26650/B/T3.2024.40.030   IUP :10.26650/B/T3.2024.40.030    Full Text (PDF)

4D Baskı Teknoloji̇si̇ndeki̇ Geli̇şmeler: Sağlık Sektöründe Kullanım Alanları

Burak Kaan BirgülÜmit Begüm Güray EfesMurat Tiryaki

Bu makalenin literatürü, 4 boyutlu baskı teknolojisindeki gelişmeleri değerlendirmek için 2018-2023 yılları arasında yayınlanan PubMed ve Google Scholar gibi elektronik veri tabanlarında kapsamlı bir arama yapılarak belirlenmiş ve seçilmiştir. Taramada kullanılan anahtar kelimeler şunlardır: ((“Bioprinting”[Mesh]) AND “FourDimensional Computed Tomography”[Mesh]) AND “Smart Materials”[Mesh]. Devrim niteliğinde bir süreç olan 4B baskının geliştirilmesiyle yeni bir teknolojik çağ ortaya çıkmaktadır. Bu yenilikçi teknoloji, hızlı prototipleme alanında önemli bir dönüşümü beraberinde getirmiştir. 4B yazıcılar, zamandan bağımsız ve öngörülebilir bir şekilde kendi kendilerini bir araya getirmeleri ve kendilerini onarabilen çok işlevli bir yapıya sahiptir. 4B’de üretilen nesneler, programlanmış işleri gerçekleştirme yeteneğine sahiptir ve şekillerini ve diğer özelliklerini değiştirebilir. Bir 4B yazıcıda akıllı ve programlanabilir malzemeler kullanılarak basılan ürünler, herhangi bir dış müdahale olmaksızın çevresel koşullara göre kendilerini uyarlayabilirler. Şekil hafızalı polimerler ortodonti, endodonti, protez, ağız cerrahisi ve implantoloji dahil olmak üzere diş hekimliğinin çeşitli alanlarında uygulama alanı bulmaktadır. 4B baskı, 3B baskıya kıyasla daha dar bir sektöre sahiptir; ancak önümüzdeki 4-5 yıl içinde programlanabilir ve yazdırılabilir son derece gelişmiş malzemeler görmeyi bekleyebiliriz. Bu hızla gelişen ortamda, çeşitli alanlardaki teknolojik yeniliklere yönelik artan talebin, 4B baskı teknolojisinin gelişimini daha da hızlandırması beklenmektedir. 4B yazıcılar, diş hekimliği ve diğer sektörlerde yenilikçi bir dönüm noktası olarak ortaya çıkmaktadır. Bu tür yazıcıların yaşam kalitesini artıracağı ve karşılaşılan zorluklara etkili çözümler sunacağı öngörülüyor. 4B baskı sürecinin potansiyel uygulamalarını geliştirmek ve diş hekimliği alanında geniş çapta benimsenmesini teşvik etmek için kapsamlı araştırmalara ihtiyaç vardır.



References

  • Abdullah, T., & Okay, O. (2023). 4D printing of body temperature-responsive hydrogels based on poly (acrylic acid) with shape-memory and self-healing abilities. ACS Applied Bio Materials, 6(2), 703-711. https://doi. org/10.1021/acsabm.2c00939 google scholar
  • Ahmed, A., Arya, S., Gupta, V., Furukawa, H., & Khosla, A. (2021). 4D printing: Fundamentals, materials, applications, and challenges. Polymer, 228, Article 123926. https://doi.org/10.1016/j.polymer.2021.123926 google scholar
  • Choong, Y. Y. C., Maleksaeedi, S., Eng, H., Wei, J., & Su, P. C. (2017). 4D printing of high-performance shape memory polymer using stereolithography. Materials & Design, 126, 219-225. https://doi.org/10.1016/j. matdes.2017.04.049 google scholar
  • do Nascimento, R. O., & Chirani, N. (2015). Shape-memory polymers for dental applications. In Shape memory polymers for biomedical applications (p. 267-280), Woodhead Publishing. https://doi.org/10.1016/B978-0-85709-698-2.00013-1 google scholar
  • Gall, K., Kreiner, P., Turner, D., & Hulse, M. (2004). Shape-memory polymers for microelectromecha-nical systems. Journal of Microelectromechanical Systems, 13(3), 472-483. https://doi.org/10.1109/ JMEMS.2004.827827 google scholar
  • Gao, B., Yang, Q., Zhao, X., Jin, G., Ma, Y., & Xu, F. (2016). 4D bioprinting for biomedical applications. Trends in Biotechnology, 34(9), 746-756. https://doi.org/10.1016/j.tibtech.2016.04.008 google scholar
  • Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., ... & Zavattieri, P. D. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 69, 65-89. https://doi.org/10.1016/j.cad.2015.04.001 google scholar
  • Gonzalez-Henriquez, C. M., Sarabia-Vallejos, M. A., & Rodriguez-Hernandez, J. (2019). Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progress in Polymer Science, 94, 57-116. https://doi.org/10.1016/j.progpolymsci.2019.01.002 google scholar
  • Gronet, P. M., Waskewicz, G. A., & Richardson, C. (2003). Preformed acrylic cranial implants using fused deposition modeling: A clinical report. The Journal of Prosthetic Dentistry, 90(5), 429-433. https://doi. org/10.1016/S0022-3913(03)00583-5 google scholar
  • Haleem, A., Javaid, M., Singh, R. P., & Suman, R. (2021). Significant roles of 4D printing using smart materials in the field of manufacturing. Advanced Industrial and Engineering Polymer Research, 4(4), 301-311. https://doi.org/10.1016/j.aiepr.2021.05.003 google scholar
  • Hazeveld, A., Slater, J. J. H., & Ren, Y. (2014). Accuracy and reproducibility of dental replica models reconst-ructed by different rapid prototyping techniques. American Journal of Orthodontics and Dentofacial Ort-hopedics, 145(1), 108-115. https://doi.org/10.1016/j.ajodo.2013.05.011 google scholar
  • Huang, S., Zhang, H., Sheng, J., Agyenim-Boateng, E., Wang, C., Yang, H., ... & Zhang, J. (2023). Digital light processing 4D printing multilayer polymers with tunable mechanical properties and shape memory behavior. Chemical Engineering Journal, 465, 142830. https://doi.org/10.1016/j.cej.2023.142830 google scholar
  • Javaid, M., & Haleem, A. (2019). 4D printing applications in the medical field: A brief review. Clinical Epide-miology and Global Health, 7(3), 317-321. https://doi.org/10.1016/j.cegh.2018.09.007 google scholar
  • Javaid, M., & Haleem, A. (2020). Exploring smart material applications for the COVID-19 pandemic using 4D printing technology. Journal of Industrial Integration and Management, 5(4), 481-494. https://doi. org/10.1142/S2424862220500209 google scholar
  • Khorasani, A. M., Gibson, I., Goldberg, M., & Littlefair, G. (2018). A comprehensive study on surface quality in 5-axis milling of SLM Ti-6Al-4V spherical components. The International Journal of Advanced Manu-facturing Technology, 94, 3765-3784. https://doi.org/10.1007/s00170-017-1138-4 google scholar
  • Khorsandi, D., Fahimipour, A., Abasian, P., Saber, S. S., Seyedi, M., Ghanavati, S., ... & Makvandi, P. (2021). 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomaterialia, 122, 26-49. https://doi.org/10.1016/j.actbio.2020.12.048 google scholar
  • Konuk Ege, G., Surmen, H., Bektaş Güneş, B., & İstanbul, N. (2019). 4D baskı teknolojisi ve biyobaskı alanındaki uygulamaları. In Proceedings of the 4th International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry (p. 516-524). Antalya, Türkiye. 11-14 April 2019. google scholar
  • Kouka, M. A., Abbassi, F., Habibi, M., Chabert, F., Zghal, A., & Garnier, C. (2023). 4D printing of shape me-mory polymers, blends, and composites and their advanced applications: A comprehensive literature review. Advanced Engineering Materials, 25(4), 2200650. https://doi.org/10.1002/adem.202200650 google scholar
  • Koutsoukis, T., Zinelis, S., Eliades, G., Al-Wazzan, K., Rifaiy, M. A., & Al Jabbari, Y. S. (2015). Selective laser melting technique of Co-Cr dental alloys: A review of structure and properties and comparative analysis with other available techniques. Journal of Prosthodontics, 24(4), 303-312. https://doi.org/10.1111/jopr.12203 google scholar
  • Kuang, X., Roach, D. J., Wu, J., Hamel, C. M., Ding, Z., Wang, T., ... & Qi, H. J. (2019). Advances in 4D prin-ting: Materials and applications. Advanced Functional Materials, 29(2), 1805290. https://doi.org/10.1002/ adfm.201805290 google scholar
  • Lee, A. Y., An, J., & Chua, C. K. (2017). Two-way 4D printing: A review on the reversibility of 3D-printed shape memory materials. Engineering, 3(5), 663-674. https://doi.org/10.1016/J.ENG.2017.05.010 google scholar
  • Liu, G., He, Y., Liu, P., Chen, Z., Chen, X., Wan, L., ... & Lu, J. (2020). Development of bioimplants with 2D, 3D, and 4D additive manufacturing materials. Engineering, 6(11), 1232-1243. https://doi.org/10.1016/J. ENG.2020.08.002 google scholar
  • Liu, T., Liu, L., Zeng, C., Liu, Y., & Leng, J. (2020). 4D printed anisotropic structures with tailored mechani-cal behaviors and shape memory effects. Composites Science and Technology, 186, 107935. https://doi. org/10.1016/j.compscitech.2019.107935 google scholar
  • Loh, X. J. (2016). Four-dimensional (4D) printing in consumer applications. Polymers for Personal Care Pro-ducts and Cosmetics, 20, 108-116. https://doi.org/10.3390/polym20010108 google scholar
  • Mahmoud, D. B., & Schulz-Siegmund, M. (2023). Utilizing 4D printing to design smart gastroretentive, esop-hageal, and intravesical drug delivery systems. Advanced Healthcare Materials, 2202631. https://doi. org/10.1002/adhm.202202631 google scholar
  • Mei, S., Wang, J., Li, Z., Ding, B., Li, S., Chen, X., ... & Liu, M. (2023). 4D printing of polyamide 1212 based shape memory thermoplastic polyamide elastomers by selective laser sintering. Journal of Manufacturing Processes, 92, 157-164. https://doi.org/10.1016/j.jmapro.2023.01.049 google scholar
  • Miao, S., Castro, N., Nowicki, M., Xia, L., Cui, H., Zhou, X., ... & Zhang, L. G. (2017). 4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 20(10), 577-591. https://doi.org/10.1016/j. mattod.2017.06.002 google scholar
  • Momeni, F., Liu, X., & Ni, J. (2017). A review of 4D printing. Materials & Design, 122, 42-79. https://doi. org/10.1016/j.matdes.2017.02.004 google scholar
  • Namathoti, S., & Vakkalagadda, M. R. K. (2023). Development of multiwalled carbon nanotubes/halloysite nanotubes reinforced thermal responsive shape memory polymer nanocomposites for enhanced mecha-nical and shape recovery characteristics in 4D printing applications. Polymers, 15(6), 1371. https://doi. org/10.3390/polym15061371 google scholar
  • Pearce, J. M. (2012). Building research equipment with free, open-source hardware. Science, 337(6100), 13031304. https://doi.org/10.1126/science.1221931 google scholar
  • Pei, E. (2014). 4D printing: Dawn of an emerging technology cycle. Assembly Automation. https://doi. org/10.1108/AA-11-2013-049 google scholar
  • Pei, E., & Loh, G. H. (2018). Technological considerations for 4D printing: An overview. Progress in Additive Manufacturing, 3, 95-107. https://doi.org/10.1007/s40940-018-0067-4 google scholar
  • Rahmatabadi, D., Aberoumand, M., Soltanmohammadi, K., Soleyman, E., Ghasemi, I., Baniassadi, M., ... & Baghani, M. (2023). 4D printing-encapsulated polycaprolactone-thermoplastic polyurethane with high shape memory performances. Advanced Engineering Materials, 25(6), 2201309. https://doi.org/10.1002/ adem.202201309 google scholar
  • Ramezani, M., & Mohd Ripin, Z. (2023). 4D printing in biomedical engineering: Advancements, challenges, and future directions. Journal of Functional Biomaterials, 14(7), 347. https://doi.org/10.3390/jfb14070347 google scholar
  • Siminska-Stanny, J., Niziol, M., Szymczyk-Ziolkowska, P., Brozyna, M., Junka, A., Shavandi, A., & Podstawcz-yk, D. (2022). 4D printing of patterned multimaterial magnetic hydrogel actuators. Additive Manufacturing, 49, 102506. https://doi.org/10.1016/j.addma.2022.102506 google scholar
  • Tibbits, S. (2018). The emergence of “4D printing” [Video]. TED Talks. https://www.ted.com/talks/skylar_tib-bits_the_emergence_of_4d_printing google scholar
  • Smith, K. E., Dupont, K. M., Safranski, D. L., Blair, J., Buratti, D., Zeetser, V., ... & Gall, K. (2016). Use of 3D printed bone plate in novel technique to surgically correct hallux valgus deformities. Techniques in Ortho-paedics, 31(3), 181. https://doi.org/10.1097/BTO.0000000000000212 google scholar
  • Soleimani-Gorgani, A. (2016). Fundamentals of inkjet printing technology. In PDL handbook series (p. 231-232). Elsevier Science. http://dx.doi.org/10.1016/B978-0-323-37468-2.00014-2 google scholar
  • Sponchioni, M., Palmiero, U. C., & Moscatelli, D. (2019). Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Materials Science and Engineering: C, 102, 589-605. https://doi.org/10.1016/j.msec.2019.04.024 google scholar
  • Subash, A., & Kandasubramanian, B. (2020). 4D printing of shape memory polymers. European Polymer Jour-nal, 134, 109771. https://doi.org/10.1016/j.eurpolymj.2020.109771 google scholar
  • Tan, E. T., Ling, J. M., & Dinesh, S. K. (2016). The feasibility of producing patient-specific acrylic crani-oplasty implants with a low-cost 3D printer. Journal of Neurosurgery, 124(5), 1531-1537. https://doi.or-g/10.3171/2015.7.JNS15130 google scholar
  • Thakur, V., Singh, R., Kumar, R., & Gehlot, A. (2022). 4D printing of thermoresponsive materials: A state-of-the-art review and prospective applications. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-20. https://doi.org/10.1007/s12008-022-00762-3 google scholar
  • Tran, T. S., Balu, R., Mettu, S., Roy Choudhury, N., & Dutta, N. K. (2022). 4D printing of hydrogels: Innovation in material design and emerging smart systems for drug delivery. Pharmaceuticals, 15(10), 1282. https:// doi.org/10.3390/ph15101282 google scholar
  • Tyge, E., Pallisgaard, J. J., Lillethorup, M., Hjaltalin, N. G., Thompson, M. K., & Clemmensen, L. H. (2015). Characterizing digital light processing (DLP) 3D printed primitives. In Image analysis: 19th Scandinavian Conference, SCIA 2015, Copenhagen, Denmark, June 15-17, 2015. Proceedings (Vol. 19, p. 302-313). Springer International Publishing. https://doi.org/10.1007/978-3-319-18826-3_29 google scholar
  • Wan, X., Luo, L., Liu, Y., & Leng, J. (2020). Direct ink writing-based 4D printing of materials and their appli-cations. Advanced Science, 7(16), 2001000. https://doi.org/10.1002/advs.2001000 google scholar
  • Wang, D., Wang, Y., Wang, J., Song, C., Yang, Y., Zhang, Z., & et al. (2016). Design and fabrication of a pre-cision template for spine surgery using selective laser melting (SLM). Materials, 9(7), 608. https://doi. org/10.3390/ma9070608 google scholar
  • Wang, R., Wang, X., Mu, X., Feng, W., Lu, Y., Yu, W., & Zhou, X. (2022). Reducing thermal damage to adja-cent normal tissue with dual thermo-responsive polymer via thermo-induced phase transition for precise photothermal theranosis. Acta Biomaterialia, 148, 142-151. https://doi.org/10.1016/j.actbio.2022.05.030 google scholar
  • Yadroitsev, I., Bertrand, P., & Smurov, I. (2007). Parametric analysis of the selective laser melting process. Applied Surface Science, 253(19), 8064-8069. https://doi.org/10.1016/j.apsusc.2006.12.020 google scholar
  • Zhang, Z., Demir, K. G., & Gu, G. X. (2019). Developments in 4D printing: A review on current smart materials, technologies, and applications. International Journal of Smart Nano Materials, 10, 205-224. https://doi.or g/10.1080/19475411.2019.1596697 google scholar
  • Zeng, W., Lin, F., Shi, T., Zhang, R., Nian, Y., Ruan, J., & Zhou, T. (2008). Fused deposition modelling of an auricle framework for microtia reconstruction based on CT images. Rapid Prototyping Journal, 14(5), 280284. https://doi.org/10.1108/13552540810909979 google scholar
  • Zhang, Y., Raza, A., Xue, Y. Q., Yang, G., Hayat, U., Yu, J., & Wang, J. Y. (2023). Water-responsive 4D printing based on self-assembly of hydrophobic protein “Zein” for the control of degradation rate and drug release. Bioactive Materials, 23, 343-352. https://doi.org/10.1016/j.bioactmat.2023.02.013 google scholar
  • Zhao, W., Zhang, F., Leng, J., & Liu, Y. (2019). Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites. Composites Science and Technology, 184, 107866. https://doi.org/10.1016/j.compscitech.2019.107866 google scholar
  • Zhou, W., Qiao, Z., Nazarzadeh Zare, E., Huang, J., Zheng, X., Sun, X., & Wu, A. (2020). 4D-printed dynamic materials in biomedical applications: Chemistry, challenges, and their future perspectives in the clinical sector. Journal of Medicinal Chemistry, 63(15), 8003-8024. https://doi.org/10.1021/acs.jmedchem.0c00552 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.