CHAPTER


DOI :10.26650/B/T3.2024.40.007   IUP :10.26650/B/T3.2024.40.007    Full Text (PDF)

Early Detection of Alzheimer Disease with Machine Learning

Ahmet Okan ArıkNeslihan UzunUral VerimliArzu BaloğluBurcu Bulut OkayUlvi Başpınar

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in the world. AD, which causes irreversible damage to the brain, has adverse effects on human life, such as memory loss, the need for constant care, and the inability to perform daily activities. Although there is no cure, early diagnosis has benefits such as slowing down the progression of the disease, starting treatment, participating in clinical trial treatments, receiving psychological support, and preparing families for the future. The study aims to develop an early detection model with the help of machine learning. The proposed model uses digitized MRI images of the Cognitive Normal (CN), Mild Cognitive Impairment (MCI), and AD patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset for early detection of AD. Most studies focus only on distinguishing the CN and AD groups, but the proposed model also successfully detects the MCI group. In addition, the proposed model outperforms many AD early detection models in the literature.


DOI :10.26650/B/T3.2024.40.007   IUP :10.26650/B/T3.2024.40.007    Full Text (PDF)

Alzheimer Hastalığının Maki̇ne Öğrenmesi̇ ile Erken Tespi̇ti̇

Ahmet Okan ArıkNeslihan UzunUral VerimliArzu BaloğluBurcu Bulut OkayUlvi Başpınar

Alzheimer hastalığı (AH), dünyadaki en yaygın nörodejeneratif hastalıklardan biridir. Beyinde geri dönüşü olmayan hasarlara neden olan AH, hafıza kaybı, sürekli bakıma ihtiyaç duyma, günlük aktivitelerini yapamama gibi insan yaşamı üzerinde olumsuz etkilere sahiptir. Kesin bir tedavisi olmamakla birlikte erken teşhisin hastalığın ilerlemesini yavaşlatma, tedaviye başlama, klinik deneme tedavilere katılma, psikolojik destek alma, aileleri geleceğe hazırlama gibi faydaları vardır. Çalışma, makine öğrenimi yardımıyla bir AH erken tespit modeli geliştirmeyi amaçlamaktadır. Önerilen model, AH’nın erken tespiti için Alzheimer Hastalığı Nörogörüntüleme inisiyatifi (AHNİ) veri setinden Bilişsel Normal (BN), Hafif Bilişsel Bozukluk (HBB) ve AH hastalarının sayısallaştırılmış MRI görüntülerini kullanır. Çoğu çalışma sadece BN ve AH gruplarını ayırmaya odaklanır ancak, önerilen model HBB grubunu da başarıyla tespit edilebilmektedir. Ayrıca, önerilen model literatürdeki birçok AH erken tespit modelinden daha iyi performans göstermektedir. 



References

  • Akers, K. G., Martinez-Canabal, A., Restivo, L., Yiu, A. P., De Cristofaro, A., Hsiang, H. L.... Frankland P. W.(2014). Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science, 344(6184), 598-602. google scholar
  • Bauer, P. J. (2007). Remembering the times of our lives: Memory in Infancy and beyond. Mahwah, NJ: Erlbaum. google scholar
  • Bauer, P. J. (2015). A complementary processes account of the development of childhood amnesia and a personal Past. Psychological Review, 122(2), 204-231. google scholar
  • Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300—318. https://doi.Org/1O.1016/j.mri.2019.O5.028 google scholar
  • Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300-318. https://doi.org/10.1016/j.mri.2019.05.028 google scholar
  • Alickovic, E., & Subasi, A. (2020). Automatic Detection of Alzheimer Disease Based on Histogram and Random Forest. 73, 91-96. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-161583 google scholar
  • Alzheimer’s Association. (2016). 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 12(4), 459-509. https://doi.org/10.1016/j.jalz.2016.03.001 google scholar
  • Alzheimer’s Association. (2018). 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 14(3), 367-429. https://doi.org/10.1016/j.jalz.2018.02.001 google scholar
  • Alzheimer’s Association. (2022). 2022 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 18(4), 700-789. https://doi.org/10.1002/alz.12638 google scholar
  • Bari Antor, M., Jamil, A. H. M. S., Mamtaz, M., Monirujjaman Khan, M., Aljahdali, S., Kaur, M., Singh, P., & Masud, M. (2021). A Comparative Analysis of Machine Learning Algorithms to Predict Alzheimer’s Dise-ase. Journal of Healthcare Engineering, 2021, 9917919. https://doi.org/10.1155/2021/9917919 google scholar
  • Bekris, L. M., Lutz, F., & Yu, C.-E. (2012). Functional analysis of APOE locus genetic variation implicates re-gional enhancers in the regulation of both TOMM40 and APOE. Journal of Human Genetics, 57(1), 18-25. https://doi.org/10.1038/jhg.2011.123 google scholar
  • Chaves, R., Ramfrez, J., Gorriz, J. M., Illan, I. A., Gomez-Rfo, M., Carnero, C., & the Alzheimer’s Disease Neuroimaging Initiative. (2012). Effective diagnosis of Alzheimer’s disease by means of large margin-based methodology. BMC Medical Informatics and Decision Making, 12(1), 79. https://doi.org/10.1186/1472-6947-12-79 google scholar
  • datastd-dev. (2023, January 15). AI in Healthcare. GitHub. https://github.com/datastd-dev/AI-in-Healthcare (Original work published 2023) google scholar
  • Dimitriadis, S. I., Liparas, D., Tsolaki, M. N., & Alzheimer’s Disease Neuroimaging Initiative. (2018). Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healthy elderly, MCI, cMCI and Alzheimer’s disease patients: From the Alzheimer’s disease neuroimaging initiative (ADNI) database. Journal of Neuroscience Methods, 302, 14-23. https:// doi.org/10.1016/j.jneumeth.2017.12.010 google scholar
  • El-Dahshan, E.-S. A., Mohsen, H. M., Revett, K., & Salem, A.-B. M. (2014). Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm. Expert Systems with Applications, 41(11), 5526-5545. https://doi.org/10.1016/j.eswa.2014.01.021 google scholar
  • Jongin, K., & Boreom, L. (2017). Automated discrimination of dementia spectrum disorders using extreme le-arning machine and structural T1 MRI features. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2017, 1990-1993. https://doi.org/10.1109/EMBC.2017.8037241 google scholar
  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Advances in Neural Information Processing Systems, 30. https:// proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html google scholar
  • Khan, A., & Zubair, S. (2022a). An Improved Multi-Modal based Machine Learning Approach for the Prognosis of Alzheimer’s disease. Journal of King Saud University - Computer and Information Sciences, 34(6, Part A), 2688-2706. https://doi.org/10.1016Zj.jksuci.2020.04.004 google scholar
  • Khan, A., & Zubair, S. (2022b). Development of a three-tiered cognitive hybrid machine learning algorithm for effective diagnosis of Alzheimer’s disease. Journal of King Saud University - Computer and Information Sciences, 34(10, Part A), 8000-8018. https://doi.org/10.1016/j.jksuci.2022.07.016 google scholar
  • Kundaram, S. S., & Pathak, K. C. (2021). Deep Learning-Based Alzheimer Disease Detection. 673, 587-597. https://doi.org/10.1007/978-981-15-5546-6_50 google scholar
  • Long, X., Chen, L., Jiang, C., Zhang, L., & Initiative, A. D. N. (2017). Prediction and classification of Alzheimer disease based on quantification of MRI deformation. PLOS ONE, 12(3), e0173372. https://doi.org/10.1371/ journal.pone.0173372 google scholar
  • Lu, S., Xia, Y., Cai, W., Fulham, M., Feng, D. D., & Alzheimer’s Disease Neuroimaging Initiative. (2017). Early identification of mild cognitive impairment using incomplete random forest-robust support vector machine and FDG-PET imaging. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 60, 35-41. https://doi.org/10.1016/j.compmedimag.2017.01.001 google scholar
  • Manjon, J. V., & Coupe, P. (2016). volBrain: An Online MRI Brain Volumetry System. Frontiers in Neuroinfor-matics, 10. Retrieved from https://www.frontiersin.org/articles/10.3389/fninf.2016.00030 google scholar
  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., Klunk, W. E., Ko-roshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7(3), 263-269. https://doi.org/10.1016/j.jalz.2011.03.005 google scholar
  • Mofrad, S. A., Lundervold, A., & Lundervold, A. S. (2021). A predictive framework based on brain volume trajectories enabling early detection of Alzheimer’s disease. Computerized Medical Imaging and Graphics, 90, 101910. https://doi.org/10.1016/j.compmedimag.2021.101910 google scholar
  • Neelaveni, J., & Devasana, M. S. G. (2020). Alzheimer Disease Prediction using Machine Learning Algorith-ms. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 101-104. https://doi.org/10.1109/ICACCS48705.2020.9074248 google scholar
  • Ning, L., & Luo, K. (2020). Using text and acoustic features to diagnose Mild Cognitive Impairment and Alz-heimer’s disease. https://doi.org/10.21203/rs.3.rs-92702/v1 google scholar
  • Ruiz, E., Ramfrez, J., Gorriz, J. M., Casillas, J., & Alzheimer’s Disease Neuroimaging Initiative. (2018). Al-zheimer’s Disease Computer-Aided Diagnosis: Histogram-Based Analysis of Regional MRI Volumes for Feature Selection and Classification. Journal of Alzheimer’s Disease: JAD, 65(3), 819-842. https://doi. org/10.3233/JAD-170514 google scholar
  • Talo, M., Baloglu, U. B., Yıldırım, Ö., & Rajendra Acharya, U. (2019). Application of deep transfer learning for automated brain abnormality classification using MR images. Cognitive Systems Research, 54, 176-188. https://doi.org/10.1016/j.cogsys.2018.12.007 google scholar
  • Uysal, G., & Ozturk, M. (2020). Hippocampal atrophy based Alzheimer’s disease diagnosis via machine learning methods. Journal of Neuroscience Methods, 337, 108669. https://doi.org/10.1016/j.jneumeth.2020.108669 google scholar
  • Vishal, R. (2021). Machine learning classification of Alzheimer’s patients using SMRI volumetric data [Thesis, SCTIMST]. Retrieved from http://dspace.sctimst.ac.in/xmlui/handle/123456789/11260 google scholar
  • Wang, S., Zhang, Y., Liu, G., Phillips, P., & Yuan, T.-F. (2016). Detection of Alzheimer’s Disease by Three-Di-mensional Displacement Field Estimation in Structural Magnetic Resonance Imaging. Journal of Alzhei-mer’s Disease: JAD, 50(1), 233-248. https://doi.org/10.3233/JAD-15084 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.