CHAPTER


DOI :10.26650/B/T3.2024.40.027   IUP :10.26650/B/T3.2024.40.027    Full Text (PDF)

Use of Artificial Intelligence in Dentistry

Dilan TopkıranÜmit Begüm Güray Efes

The objective of this review was to quantify the frequency of artificial intelligence (AI) utilization in dentistry. Literature from 2009 until 2023 was evaluated, and the main inclusion criterion was original articles or reviews focused on the dental applications of AI. The following MeSH (medical subject headings) keywords were used: artificial intelligence, dentistry, AI in dentistry, neural Networks and dentistry, machine learning, AI dental imaging and AI treatment recommendations in dentistry. Advanced technology is being employed to streamline work flow, asists with treatment planning, and enhance patient-provider relationships in dental practices. One of the latest advancements in dental innovation and technology is the use of artificial intelligence. To comprehend the current and future clinical applications of AI in dentistry, it is necessary to understand the fundamental AI technologies. AI encompasses fundamental Technologies such as machine learning, artificial neural networks, and deep learning. Artificial intelligence is increasingly being employed in various dental specialties, including head and neck cancer, restorative dentistry, prosthetic dental sciences, orthodontics, radiology and periodontology to enhance diagnosis, treatment planning, and patient outcomes. AI algorithms can analyze patient data, such as x-rays, computed tomography scans and medical histories, to identify patterns and make predictions about future outcomes. In conclusion, AI is currently under development and dental practitioners can perceive AI as a supplementary tool to reduce their workload and improve precision and accuracy in diagnosis, decision-making, treatment planning, prediction of treatment outcomes and disease prognosis.


DOI :10.26650/B/T3.2024.40.027   IUP :10.26650/B/T3.2024.40.027    Full Text (PDF)

Di̇ş Heki̇mli̇ği̇nde Yapay Zekânın Kullanımı

Dilan TopkıranÜmit Begüm Güray Efes

Bu inceleme, diş hekimliğinde yapay zekâ (YZ) kullanımının sıklığını nicelendirmeyi amaçlamaktadır. 2009’dan 2023’e kadar olan literatür değerlendirilmesinde ana dahil etme kriteri, diş hekimliği alanındaki YZ uygulamalarına odaklanan orijinal makaleler veya incelemelerdir. Buradaki tıp konu başlıkları (MeSH-medical subject headings) anahtar kelimeleri kullanılmış; yapay zekâ, diş hekimliği, diş hekimliğinde zekâ, sinir ağları ve diş hekimliği, makine öğrenimi, zekâ diş görüntüleme ve diş hekimliğinde zekâ tedavi önerileri başlıkları dahil edilmiştir. Diş hekimliği pratiğinde iş akışını düzenlemek, tedavi planlamasına yardımcı olmak ve hasta-hekim ilişkilerini geliştirmek için ileri teknoloji kullanılmaktadır. Diş hekimliği alanındaki son yeniliklerden biri de yapay zekâ kullanımıdır. Diş hekimliğinde YZ’nın mevcut ve gelecekteki klinik uygulamalarını anlamak için temel YZ teknolojilerini anlamak gerekmektedir. YZ, makine öğrenimi, yapay sinir ağları ve derin öğrenme gibi temel teknolojileri içermektedir. Baş-boyun kanseri, restoratif diş hekimliği, protetik diş tedavisi, ortodonti, radyoloji ve periodontoloji dahil olmak üzere çeşitli diş hekimliği alanlarında teşhis, tedavi planlaması ve sonuçlarını geliştirmek için YZ kullanımı giderek artmaktadır. YZ algoritmaları, hastanın röntgenlerini, bilgisayarlı tomografi taramalarını ve tıbbi geçmiş gibi verilerini analiz ederek gelecekteki sonuçlar hakkında tahminlerde bulunabilmektedir. Sonuç olarak, YZ şu anda gelişme aşamasında olup diş hekimleri tarafından iş yükünü azaltmak, teşhis, karar verme, tedavi planlaması, tedavi sonuçlarının tahmin edilmesi ve hastalık prognozu gibi alanlarda hassasiyet ve doğruluğu artırmak için yardımcı bir araç olarak görülmektedir.



References

  • Aktan, E., & Şen, N. (2023). Diş hekimliğinde dijital gülüş tasarımı uygulamaları. Ado Klinik Bilimler Dergisi, 12(3), 474-479. google scholar
  • Akst, J. (2019). A primer: Artificial intelligence versus neural networks. Inspiring Innovation: The Scientist Exploring Life, 65802. google scholar
  • Alnıaçık, G., İnanç, Ö., & Tak, Ö. (2015). Implant diş hekimliğinde kullanılan radyografik tekniklerin cerrahi ve protetik tedavideki yararları. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 8, 141-451. google scholar
  • Block, M., Emery, R., Lank, K., & Ryan, J. (2017). Implant placement accuracy using dynamic navigation. International Journal of Oral and Maxillofacial Implants, 32, 92. https://doi.org/10.11607/jomi.5004 google scholar
  • Chen, H., Zhang, K., Lyu, P., Li, H., Zhang, L., Wu, J., & Lee, C. H. (2019). A deep learning approach to auto-matic teeth detection and numbering based on object detection in dental periapical films. Scientific Reports, 9(1), 3840. https://doi.org/10.1038/s41598-019-40414-y google scholar
  • Cheng, L., Kalvandi, M., McKinstry, S., Maddahi, A., Chaudhary, A., Maddahi, Y., & Tavakoli, M. (2021). Application of Denteach in remote dentistry teaching and learning during the COVID-19 pandemic: A case study. Frontiers in Robotics and AI, 7, 611424. https://doi.org/10.3389/frobt.2020.611424 google scholar
  • Doğan, A. N. (2020). Dijital gülüş tasarımı: Kullanılan sistemler ve avantajları. Sağlık Bilimleri Dergisi, 29(2), 138-143. google scholar
  • Estai, M., Tennant, M., Gebauer, D., Brostek, A., Vignarajan, J., Mehdizadeh, M., & Saha, S. (2022). Deep lear-ning for automated detection and numbering of permanent teeth on panoramic images. DentoMaxilloFacial Radiology, 51(2), 20210296. https://doi.org/10.1259/dmfr.20210296 google scholar
  • Ganz, S. D. (2005). Presurgical planning with CT-derived fabrication of surgical guides. Journal of Oral and Maxillofacial Surgery, 63(9 Suppl 2), 59-71. https://doi.org/10.1016/j.joms.2005.05.156 google scholar
  • Greenleaf, W. (2016). How VR technology will transform healthcare. Proceedings of the 2016 ACM Conference on Human Factors in Computing Systems, 1-2. https://doi.org/10.1145/2929490.2956569 google scholar
  • Hiraiwa, T., Ariji, Y., Fukuda, M., Kise, Y., Nakata, K., Katsumata, A., Fujita, H., & Ariji, E. (2019). A deep-lear-ning artificial intelligence system for assessment of root morphology of the mandibular first molar on pano-ramic radiography. DentoMaxilloFacial Radiology, 48(3), 20180218. https://doi.org/10.1259/dmfr.20180218 google scholar
  • Hwang, J.-J., Azernikov, S., Efros, A., & Yu, S. (2018). Learning beyond human expertise with generative models for dentalrestorations. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision andPattern Recognition. https://doi.org/10.48550/arXiv.1804.00064 google scholar
  • Jung, S. K., & Kim, T. W. (2016). New approach for the diagnosis of extractions with neural network machine learning. American Journal of Orthodontics andDentofacial Orthopedics, 149(1), 127-133. https://doi. org/10.1016/j.ajodo.2015.07.030 google scholar
  • Kattadiyil, M. T., Mursic, Z., Alrumaih, H., & Goodacre, C. J. (2014). Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. The Journal of Prosthetic Dentistry, 112(3), 444-448. https://doi.org/10.1016/j.prosdent.2014.03.022 google scholar
  • Koca Ünsal, B., & Orhan, K. (2022). Artificial intelligence applications in dentistry. Journal of Ankara Univer-sity Faculty of Medicine, 75, 52-55. https://doi.org/10.4274/atfm.galenos.2022.02438 google scholar
  • Khanagar, S. B., Al-Ehaideb, A., Maganur, P. C., Vishwanathaiah, S., Patil, S., Baeshen, H. A., Sarode, S. C., & Bhandi, S. (2021). Developments, application, and performance of artificial intelligence in dentistry- A systematic review. Journal of Dental Sciences, 16(1), 508-522. https://doi.org/10.1016/jjds.2020.06.019 google scholar
  • Lee, J. H., Kim, D. H., Jeong, S. N., & Choi, S. H. (2018). Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry, 77, 106-111. https://doi. org/10.1016/j.jdent.2018.07.015 google scholar
  • Moor, J. (2006). The Dartmouth College Artificial Intelligence Conference: The next fifty years. AI Magazine, 27(4), 87. https://doi.org/10.1609/aimag.v27i4.1911 google scholar
  • Neocis. (2020, May 27). Yomi robotic technology. Neocis. Retrieved from https://www.neocis.com/technology google scholar
  • Orhan, K., Aktuna Belgin, C., Manulis, D., Golitsyna, M., Bayrak, S., Aksoy, S., Sanders, A., Önder, M., Ez-hov, M., Shamshiev, M., Gusarev, M., & Shlenskii, V. (2023). Determining the reliability of diagnosis and treatment using artificial intelligence software with panoramic radiographs. Imaging Science in Dentistry, 53(3), 199-208. https://doi.org/10.5624/isd.20230109 google scholar
  • Özlü Uçan, G., Apaydın, B. K., & Uçan, B. (2022). Diş hekimliği eğitiminde yenilikçi bir yöntem olarak genişletilmiş gerçeklik teknolojisi. Aurum Journal ofEngineering Systems and Architecture, 6(1), 125-130. google scholar
  • Polido, W. (2010). Digital impressions and handling of digital models: The future of dentistry. Dental Press Journal of Orthodontics, 15, 18-22. https://doi.org/10.1590/S2176-94512010000500003 google scholar
  • Rawtiya, M., Verma, K., Sethi, P., & Loomba, K. (2014). Application of robotics in dentistry. Indian Journal of Dentistry, 6(4), 1696-1702. https://doi.org/10.5866/2014.641700 google scholar
  • Roy, E., Bakr, M. M., & George, R. (2017). The need for virtual reality simulators in dental education: A review. The Saudi Dental Journal, 29(2), 41-47. https://doi.org/10.1016/j.sdentj.2017.02.001 google scholar
  • Sağlam, H., Arı, T., Bayrakdar, I. S., Bilgir, E., Uğurlu, M., Çelik, Ö., & Orhan, K. (2021). Artificial intelligence in dentistry. Journal ofArtificial Intelligence in Health Sciences. https://doi.org/10.52309/jai.2021.11 google scholar
  • Şen, N. (2020). Farklı dijital ölçü sistemlerinin dental implantın ölçü netliğine etkisinin değerlendirilmesi. Ege Üniversitesi Diş Hekimliği Dergisi, 41(2), 77-82. google scholar
  • Taneva, E., Kusnoto, B., & Evans, C. A. (2015). 3D scanning, imaging, and printing in orthodontics. Issues in Contemporary Orthodontics, 148(5), 862-7. https://dx.doi.org/10.5772/60010 google scholar
  • Tang, A., Tam, R., Cadrin-Chenevert, A., Guest, W., Chong, J., Barfett, J., ... & Canadian Association of Radi-ologists (CAR) Artificial Intelligence Working Group. (2018). Canadian Association of Radiologists white paper on artificial intelligence in radiology. Canadian Association ofRadiologists Journal, 69(2), 120-135. https://doi.org/10.1016/j.carj.2018.02.002 google scholar
  • Türköz, Ç. (2009). Dijital ortodontik modeller. Gazi Üniversitesi Diş Hekimliği Fakültesi Dergisi, 26(3), 181187. google scholar
  • Wang, F., Liu, Y., Tian, M., Zhang, Y., Zhang, S., & Chen, J. (2016). Application of a 3D haptic virtual reality simulation system for dental crown preparation training. 2016 8th International Conference on Information Technology in Medicine and Education (ITME), 424-427. https://doi.org/10.1109/ITME.2016.0101 google scholar
  • Wu, Y., Wang, F., Fan, S., & Chow, J. K.-F. (2019). Robotics in dental implantology. Oral and Maxillofacial Surgery Clinics ofNorth America, 31(3), 513-518. https://doi.org/10.1016/j.coms.2019.03.013 google scholar
  • Yauney, G., Rana, A., Wong, L. C., Javia, P., Muftu, A., & Shah, P. (2019, July). Automated process incorporating machine learning segmentation and correlation of oral diseases with systemic health. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (p. 3387-3393). IEEE. https://doi: 10.1109/EMBC.2019.8857965. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.