Research Article


DOI :10.26650/acin.1259067   IUP :10.26650/acin.1259067    Full Text (PDF)

Short-Term Sales Forecasting Using LSTM and Prophet Based Models in E-Commerce

Alp Ecevitİrem ÖztürkMustafa DağTuncay Özcan

The accuracy of sales forecasting is crucial for e-commerce businesses to optimize inventory management, pricing decisions, marketing strategies and staff scheduling. At this point, different approaches such as statistical models, fuzzy systems, machine learning and deep learning algorithms are widely used for sales forecasting. This study investigates the performance of the deep learning based the Long-Short Term Memory (LSTM) model and the Facebook Prophet model on short-term sales forecasting. The performance of the proposed models is compared with the seasonal autoregressive integrated moving average (SARIMA) using real-life data from an e-commerce site. For the comparative analysis of the proposed forecasting models, weighted average absolute percent error (wMAPE), root mean square error (RMSE) and R-squared are selected as performance measures. The numerical results show that the LSTM model outperforms the Prophet and SARIMA models in terms of forecast accuracy for hourly sales forecasting.

DOI :10.26650/acin.1259067   IUP :10.26650/acin.1259067    Full Text (PDF)

E-Ticarette LSTM ve Prophet Esaslı Modeller Kullanarak Kısa Dönemli Satış Tahmini

Alp Ecevitİrem ÖztürkMustafa DağTuncay Özcan

Satış tahmininin doğruluğu, e-ticaret işletmelerinin envanter yönetimini, fiyatlandırma kararlarını, pazarlama stratejilerini ve personel planlamasını en iyilemesi için çok önemlidir. Bu noktada, satış tahmini için istatistiksel modeller, bulanık sistemler, makine öğrenmesi ve derin öğrenme algoritmaları gibi farklı yaklaşımlar yaygın olarak kullanılmaktadır. Bu çalışma, derin öğrenme tabanlı Uzun-Kısa Süreli Bellek (LSTM) modeli ve Facebook Prophet modelinin kısa vadeli satış tahmini üzerindeki performansını incelemektedir. Önerilen modellerin performansı, bir e-ticaret sitesinden alınan gerçek hayat verileri kullanılarak mevsimsel otoregresif bütünleşik hareketli ortalama (SARIMA) ile karşılaştırılmıştır. Önerilen tahmin modellerinin karşılaştırmalı analizi için, performans ölçütleri olarak ağırlıklı ortalama mutlak yüzde hata (wMAPE), hata kareleri ortalamasının karekökü (RMSE) ve R-kare seçilmiştir. Sayısal sonuçlar, LSTM modelinin saatlik satış tahmini için tahmin doğruluğu açısından Prophet ve SARIMA modellerinden daha iyi performans gösterdiğini göstermiştir. 


PDF View

References

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Ecevit, A., Öztürk, İ., Dağ, M., & Özcan, T. (2023). Short-Term Sales Forecasting Using LSTM and Prophet Based Models in E-Commerce. Acta Infologica, 7(1), 59-70. https://doi.org/10.26650/acin.1259067


AMA

Ecevit A, Öztürk İ, Dağ M, Özcan T. Short-Term Sales Forecasting Using LSTM and Prophet Based Models in E-Commerce. Acta Infologica. 2023;7(1):59-70. https://doi.org/10.26650/acin.1259067


ABNT

Ecevit, A.; Öztürk, İ.; Dağ, M.; Özcan, T. Short-Term Sales Forecasting Using LSTM and Prophet Based Models in E-Commerce. Acta Infologica, [Publisher Location], v. 7, n. 1, p. 59-70, 2023.


Chicago: Author-Date Style

Ecevit, Alp, and İrem Öztürk and Mustafa Dağ and Tuncay Özcan. 2023. “Short-Term Sales Forecasting Using LSTM and Prophet Based Models in E-Commerce.” Acta Infologica 7, no. 1: 59-70. https://doi.org/10.26650/acin.1259067


Chicago: Humanities Style

Ecevit, Alp, and İrem Öztürk and Mustafa Dağ and Tuncay Özcan. Short-Term Sales Forecasting Using LSTM and Prophet Based Models in E-Commerce.” Acta Infologica 7, no. 1 (Mar. 2024): 59-70. https://doi.org/10.26650/acin.1259067


Harvard: Australian Style

Ecevit, A & Öztürk, İ & Dağ, M & Özcan, T 2023, 'Short-Term Sales Forecasting Using LSTM and Prophet Based Models in E-Commerce', Acta Infologica, vol. 7, no. 1, pp. 59-70, viewed 3 Mar. 2024, https://doi.org/10.26650/acin.1259067


Harvard: Author-Date Style

Ecevit, A. and Öztürk, İ. and Dağ, M. and Özcan, T. (2023) ‘Short-Term Sales Forecasting Using LSTM and Prophet Based Models in E-Commerce’, Acta Infologica, 7(1), pp. 59-70. https://doi.org/10.26650/acin.1259067 (3 Mar. 2024).


MLA

Ecevit, Alp, and İrem Öztürk and Mustafa Dağ and Tuncay Özcan. Short-Term Sales Forecasting Using LSTM and Prophet Based Models in E-Commerce.” Acta Infologica, vol. 7, no. 1, 2023, pp. 59-70. [Database Container], https://doi.org/10.26650/acin.1259067


Vancouver

Ecevit A, Öztürk İ, Dağ M, Özcan T. Short-Term Sales Forecasting Using LSTM and Prophet Based Models in E-Commerce. Acta Infologica [Internet]. 3 Mar. 2024 [cited 3 Mar. 2024];7(1):59-70. Available from: https://doi.org/10.26650/acin.1259067 doi: 10.26650/acin.1259067


ISNAD

Ecevit, Alp - Öztürk, İrem - Dağ, Mustafa - Özcan, Tuncay. Short-Term Sales Forecasting Using LSTM and Prophet Based Models in E-Commerce”. Acta Infologica 7/1 (Mar. 2024): 59-70. https://doi.org/10.26650/acin.1259067



TIMELINE


Submitted02.03.2023
Accepted14.03.2023
Published Online14.04.2023

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.