Research Article


DOI :10.26650/ekoist.2022.38.1195613   IUP :10.26650/ekoist.2022.38.1195613    Full Text (PDF)

A Study on Interregional Determinants of Infant Mortality Rate in Turkey with Spatial Econometric Analysis

Ahmet KoncakGökhan Konat

Social and economic factors, education, health literacy, health-related behavior, and many other factors are shown at the beginning of the underlying causes of infant deaths. This study it is aimed to investigate the relationship between the causes of infant mortality and socioeconomic indicators in Turkey. Therefore, using 26 Regions (NUTS2) following the classification of statistical regional units, spatial econometric approaches were employed to demonstrate if a socioeconomic disadvantage accumulation exists in Turkey. In the study, the socioeconomic indicators that affect infant mortality are the number of women who gave birth under the age of 15, income inequality coefficient (Gini index), labor force participation rate of women by age groups (15 years and above, Total/Female), the total number of hospital beds per hundred thousand people, number of primary school graduate women, and number of high schools or equivalent graduate woman. TurkStat was utilized to collect all of the study's data. The experiments show that newborn mortality is increased by the Gini coefficient, the number of women who completed primary school, and the number of women who gave birth before the age of 15, but infant mortality is decreased by higher education levels. In addition, it is found that an increase in the percentage of women over the age of 15 participating in the workforce and the number of beds per hundred thousand people in the hospital causes a decrease in infant mortality. Therefore, investigating the relationship between infant mortality causes and socioeconomic indicators can provide essential clues about public health policy design. Thus, it can assist in taking policy measures by making inferences for the country, region, or community studied.

DOI :10.26650/ekoist.2022.38.1195613   IUP :10.26650/ekoist.2022.38.1195613    Full Text (PDF)

Mekânsal Ekonometri Analizi ile Türkiye’de Bölgeler Arası Bebek Ölüm Oranı Belirleyicileri Üzerine Bir İnceleme

Ahmet KoncakGökhan Konat

Bebek ölümlerinin altında yatan nedenlerin başında sosyal ve ekonomik faktörler, eğitim, sağlık okuryazarlığı, sağlıkla ilgili davranış ve bunun gibi diğer birçok faktör gösterilmektedir. Bu çalışmada Türkiye’de bebek ölümleri nedenlerinin sosyoekonomik göstergeler ile olan ilişkisi araştırılmak istenmektedir. Böylelikle Türkiye için sosyoekonomik dezavantaj birikiminin olup olmadığını göstermek adına istatistiki bölge birimleri sınıflamasına göre 26 Bölge (İBBS-2) için mekânsal ekonometrik tekniklerden faydalanılmıştır. Çalışmada bebek ölüm oranını etkileyen sosyoekonomik göstergeler olarak annenin yaş grubuna göre doğumları (15'den az), gelir eşitsizliği katsayısı (Gini indeksi), yaş gruplarına göre kadınların işgücüne katılma oranı (15 yaş ve üzeri, Toplam/Kadın), yüz bin kişi başına toplam hastane yatak sayısı, ilköğretim mezunu kadın sayısı ile lise veya dengi mezunu kadın sayısı alınmıştır. Çalışmada dikkate alınan değişkenlerin veri setine Türkiye İstatistik Kurumu resmi veri tabanından erişilmiştir. Yapılan sınamalar neticesinde 15 yaşın altında doğum yapan kadın sayısında, Gini katsayısında ve ilkokul mezunu kadın sayısındaki artışın bebek ölümlerini artırdığı, artan eğitim düzeyi ile bebek ölümlerinin azaldığı görülmektedir. Ayrıca 15 yaş üstü işgücüne katılan kadın yüzdesi ve yüz bin kişi başına hastanede kişi başına düşen yatak sayısındaki artışın bebek ölümlerinde azalışa neden olduğu bulgusuna ulaşılmaktadır. Dolayısıyla bebek ölümlerindeki sebeplerin sosyoekonomik göstergeler ile olan ilişkilerini araştırmak, halk sağlığı politikası önlemlerinin tasarlanması önemli ipuçları sağlayabilir. Böylelikle ele alınan ülke, bölge ya da topluluk için çıkarımlarda bulunarak politika önlemleri almada yardımcı olabilir. 


EXTENDED ABSTRACT


Health indicators are also used to evaluate a nation’s level of development and well-being, in addition to economic indicators. The infant mortality rates of the most commonly used countries are one of these indicators. Infant mortality rates, accepted as a component of the physical quality of life index, are an essential indicator of a country’s health and development level. Therefore, research conducted by considering these and similar health indicators help to make inferences about the country, community, or region under consideration, as it shows good public health and quality. In this study, the determinants of infant mortality were examined with the data of 2019 for NUTS-2 for Turkey. For this purpose, the spatial regression approach was used to include the spatial interaction between regions in the modeling process.

The number of women who gave birth under the age of 15 (yas15), the Gini coefficient (gini), the percentage of women over the age of 15 participating in the workforce (isgucu), the total number of hospital beds per hundred thousand people (kbyatak), number of primary school graduate women aged 15 and over (ilkokul) and number of high school graduate women aged 15 and over (lise) were included in the model as independent variables.

The spatial weight matrix allows the spatial regression approach to integrating spatial effects into the model. In the study, row standardization was used along with the development of a spatial weight matrix based on rook contiguity. In the first step, the OLS model was estimated, and the existence of spatial autocorrelation in errors was investigated with the Moran-I test. According to the results of the OLS model, only isgucu was statistically significant. When the regional distribution of bebekol is examined on the map, it is thought that there may be a spatial interaction since it is observed that there are clusters. In this respect, the Moran-I test was applied to the residuals of the OLS model in the first step to determine the spatial autocorrelation. According to the test result, positive spatial autocorrelation was found in the residuals.

LM tests were used to select the suitable model. As a result of the test, it was decided that the suitable model was the SEM model. The variables that were statistically insignificant in the OLS model then started to become significant in the estimated SEM model. The spatial error parameter λ is statistically significant. In addition, since the Akaike Information Criteria (AIC) is lower in the SEM model, it is concluded that the performance of this model is better. Finally, when the significance of the spatial error parameter was tested with the Likelihood Ratio (LR) test, it was confirmed that it should be included in the model.

According to the SEM model, a 1% increase in the number of women who gave birth under the age of 15, the Gini coefficient, and the number of primary school graduate women caused an increase of 0.124%, 0.803%, and 0.647%, respectively. Although the 1% increase in the number of high school graduate women seems to cause an increase of 0.316% in infant mortality, it can be said that there is a decrease in infant mortality rates by about half when compared to the number of primary school graduates. The 1% increase in isgucu and kbyatak variables causes a 0.852% and 0.616% decrease in infant mortality, respectively. The spatial error term coefficient is 0.866 and is statistically significant.

When the SEM model’s findings are considered generally, it is clear that income inequality between regions is the main cause of an increase in infant mortality. Another factor is the mother’s education level. There is a decrease in infant mortality with the increase in education level. On the other hand, the increase in the number of women giving birth under the age of 15 causes an increase in infant mortality. In this respect, by supporting women in their education, pregnancies under the age of 15 can be prevented, and regional development can be achieved through qualified participation in the labor market. Thus, it is possible to observe decreases in regional income inequality as regions grow. Therefore, it is evident from this research that increasing the mother’s academic achievement is crucial for reducing infant mortality. Moreover, improving the health system and conditions through investments in the health sector will similarly reduce infant mortality. 


PDF View

References

  • Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115. google scholar
  • Anselin, L. (2001). Spatial econometrics. A companion to theoretical econometrics, 310330. google scholar
  • Aral, N., & Aytaç, M. (2018). Türkiye’de işsizliğin mekânsal analizi. Öneri Dergisi, 13(49), 1-20. google scholar
  • Arbia, G. (2014). A primer for spatial econometrics with applications in R: Springer. google scholar
  • Baird, S., Friedman, J., & Schady, N. (2011). Aggregate income shocks and infant mortality in the developing world. Review of Economics and statistics, 93(3), 847-856. google scholar
  • Cesur, R., Tekin, E., & Ulker, A. (2017). Air pollution and infant mortality: evidence from the expansion of natural gas infrastructure. The economic journal, 127(600), 330-362. google scholar
  • Cliff, A., & Ord, K. (1972). Testing for spatial autocorrelation among regression residuals. Geographical analysis, 4(3), 267-284. google scholar
  • Demirtaş, Z., & Metintaş, S. (2017). Türk Cumhuriyetlerinde Anne Çocuk Sağlığı Göstergelerinin Ekonomik Ve Doğurganlık Özellikleri Açısından Değerlendirilmesi. ESTÜDAM Halk Sağlığı Dergisi, 2(1), 16-25. google scholar
  • Der, H. H. (2020). Bebek ölüm oranlarının sosyoekonomik belirleyicileri (Master’s thesis, Pamukkale Üniversitesi Sosyal Bilimleri Enstitüsü) google scholar
  • Elhorst, J. P. (2014). Spatial econometrics from cross-sectional data to spatial panels: Springer. google scholar
  • Erdoğan, E., Ener, M., & Arıca, F. (2013). The strategic role of infant mortality in the process of economic growth: an application for high income OECD countries. Procedia-Social and Behavioral Sciences, 99, 19-25. google scholar
  • Ertekin, S. M., Dural, B. Y., & Kırca, M. (2016). Türkiye’de Ekonomik Büyüme Ve İşsizliğin Bebek Ölümlerine Etkisi. Gümüşhane Üniversitesi Sosyal Bilimler Enstitüsü Elektronik Dergisi, 7(17), 4629-2. google scholar
  • Fantini, M. P., Stivanello, E., Dallolio, L., Loghi, M., & Savoia, E. (2006). Persistent geographical disparities in infant mortality rates in Italy (1999-2001): comparison with France, England, Germany, and Portugal. The European Journal of Public Health, 16(4), 429-432. google scholar
  • Ferrarini, T., & Norström, T. (2010). Family policy, economic development and infant mortality: a longitudinal comparative analysis. International Journal of Social Welfare, 19, S89-S102. google scholar
  • Fischer, M. M., & Wang, J. (2011). Spatial data analysis: models, methods and techniques: Springer Science & Business Media. google scholar
  • Hendry, D. F. (1995). Dynamic econometrics: Oxford University Press on Demand. google scholar
  • Khadka, K. B., Lieberman, L. S., Giedraitis, V., Bhatta, L., & Pandey, G. (2015). The socioeconomic determinants of infant mortality in Nepal: analysis of Nepal Demographic Health Survey, 2011. BMC pediatrics, 15(1), 1-11. google scholar
  • Koncak, A. (2016). Teknolojik bağımlılık ve büyüme ilişkisi: Mekânsal dışsallıkların ampirik analizi. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü, google scholar
  • Lamichhane, R., Zhao, Y., Paudel, S., & Adewuyi, E. O. (2017). Factors associated with infant mortality in Nepal: a comparative analysis of Nepal demographic and health surveys (NDHS) 2006 and 2011. BMC public health, 17(1), 1-18. google scholar
  • Leigh, A., & Jencks, C. (2007). Inequality and mortality: long-run evidence from a panel of countries. Journal of health economics, 26(1), 1-24. google scholar
  • Manavgat, G. & N. Çelik (2017). Sağlık Düzeyinin Belirleyicilerine Yönelik Mekânsal Bir Analiz: Türkiye İBBS-3 Örneği. Sosyoekonomi, 25(34), 53-67. google scholar
  • Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 17-23. google scholar
  • Mosley, W. H., & Chen, L. C. (2003). An analythical framework for the study of child survival in developing countries. Bulletin of the world Health Organization, 81, 140-145. google scholar
  • Narayan, P.K. ve Smyth, R.(2006). Female Labor Force Participation, Fertility And İnfant Mortalitiy İn Australia: Some Empirical Evidence From Granger Causality Test, Applied Economics, 38(5). google scholar
  • Ortigoza, A. F., Granados, J. A. T., Miranda, J. J., Alazraqui, M., Higuera, D., Villamonte, G., ... google scholar
  • & Roux, A. V. D. (2021). Characterising variability and predictors of infant mortality in urban settings: findings from 286 Latin American cities. J Epidemiol Community Health, 75(3), 264-270. google scholar
  • Rosicova, K., Madarasova Geckova, A., van Dijk, J. P., Kollarova, J., Rosic, M., & Groothoff, J. W. (2011). Regional socioeconomic indicators and ethnicity as predictors of regional infant mortality rate in Slovakia. International journal of public health, 56(5), 523-531. google scholar
  • Sahu, D., Nair, S., Singh, L., Gulati, B. K., & Pandey, A. (2015). Levels, trends & predictors of infant & child mortality among Scheduled Tribes in rural India. The Indian journal of medical research, 141(5), 709-719. google scholar
  • Saurabh, S., Sarkar, S., & Pandey, D. K. (2013). Female literacy rate is a better predictor of birth rate and infant mortality rate in India. Journal of family medicine and primary care, 2(4), 349353. google scholar
  • Siah, A.K. ve Lee, G.H.(2015). FemaleLabor Force Participation, İnfant Mortality And Fertility İn Malaysia, Journal of The Asia Pasific Economy, 20(4). google scholar
  • Şantaş, F., Şantaş, G., & Demirgil, B. (2021). Kamu Sağlık Harcamasının Üç Temel Sağlık Göstergesine Etkisi: OECD Ülkeleri Üzerine Bir Panel Regresyon Analizi. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 11(21), 73-84. google scholar
  • Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic geography, 46(sup1), 234-240. google scholar
  • Tatlı, S. (2021). Spatial econometric analysis of health services in Turkey through the perspective of the health development indicator. Journal of Life Economics, 8(4), 555-563. google scholar
  • Tuzun H. (2021). Factors related to ınfant mortality rate and under-five mortality rate in Turkey: An ecological study with provincial data. Çocuk Dergisi - Journal of Child. 21(3), 221-230. https:// doi.org/10.26650/jchild.2021.993630. google scholar
  • Tüylüoğlu, Ş., & Tekin, M. (2009). Gelir düzeyi ve sağlık harcamalarının beklenen yaşam süresi ve bebek ölüm oranı üzerindeki etkileri. Çukurova Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 13(1), 1-31. google scholar
  • Wang, L. (2003). Determinants of child mortality in LDCs: empirical findings from demographic and health surveys. Health policy, 65(3), 277-299 google scholar
  • Yetim, B., Demirci, Ş., Konca, M., İlgün, G., & Çilhoroz, Y. (2021). Socio-Economic Determinants of Infant Mortality Rate in Turkey. Sosyoekonomi, 29(47), 367-381. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Koncak, A., & Konat, G. (2023). A Study on Interregional Determinants of Infant Mortality Rate in Turkey with Spatial Econometric Analysis. EKOIST Journal of Econometrics and Statistics, 0(38), 149-170. https://doi.org/10.26650/ekoist.2022.38.1195613


AMA

Koncak A, Konat G. A Study on Interregional Determinants of Infant Mortality Rate in Turkey with Spatial Econometric Analysis. EKOIST Journal of Econometrics and Statistics. 2023;0(38):149-170. https://doi.org/10.26650/ekoist.2022.38.1195613


ABNT

Koncak, A.; Konat, G. A Study on Interregional Determinants of Infant Mortality Rate in Turkey with Spatial Econometric Analysis. EKOIST Journal of Econometrics and Statistics, [Publisher Location], v. 0, n. 38, p. 149-170, 2023.


Chicago: Author-Date Style

Koncak, Ahmet, and Gökhan Konat. 2023. “A Study on Interregional Determinants of Infant Mortality Rate in Turkey with Spatial Econometric Analysis.” EKOIST Journal of Econometrics and Statistics 0, no. 38: 149-170. https://doi.org/10.26650/ekoist.2022.38.1195613


Chicago: Humanities Style

Koncak, Ahmet, and Gökhan Konat. A Study on Interregional Determinants of Infant Mortality Rate in Turkey with Spatial Econometric Analysis.” EKOIST Journal of Econometrics and Statistics 0, no. 38 (Jul. 2024): 149-170. https://doi.org/10.26650/ekoist.2022.38.1195613


Harvard: Australian Style

Koncak, A & Konat, G 2023, 'A Study on Interregional Determinants of Infant Mortality Rate in Turkey with Spatial Econometric Analysis', EKOIST Journal of Econometrics and Statistics, vol. 0, no. 38, pp. 149-170, viewed 17 Jul. 2024, https://doi.org/10.26650/ekoist.2022.38.1195613


Harvard: Author-Date Style

Koncak, A. and Konat, G. (2023) ‘A Study on Interregional Determinants of Infant Mortality Rate in Turkey with Spatial Econometric Analysis’, EKOIST Journal of Econometrics and Statistics, 0(38), pp. 149-170. https://doi.org/10.26650/ekoist.2022.38.1195613 (17 Jul. 2024).


MLA

Koncak, Ahmet, and Gökhan Konat. A Study on Interregional Determinants of Infant Mortality Rate in Turkey with Spatial Econometric Analysis.” EKOIST Journal of Econometrics and Statistics, vol. 0, no. 38, 2023, pp. 149-170. [Database Container], https://doi.org/10.26650/ekoist.2022.38.1195613


Vancouver

Koncak A, Konat G. A Study on Interregional Determinants of Infant Mortality Rate in Turkey with Spatial Econometric Analysis. EKOIST Journal of Econometrics and Statistics [Internet]. 17 Jul. 2024 [cited 17 Jul. 2024];0(38):149-170. Available from: https://doi.org/10.26650/ekoist.2022.38.1195613 doi: 10.26650/ekoist.2022.38.1195613


ISNAD

Koncak, Ahmet - Konat, Gökhan. A Study on Interregional Determinants of Infant Mortality Rate in Turkey with Spatial Econometric Analysis”. EKOIST Journal of Econometrics and Statistics 0/38 (Jul. 2024): 149-170. https://doi.org/10.26650/ekoist.2022.38.1195613



TIMELINE


Submitted27.10.2022
Accepted15.12.2022
Published Online11.01.2023

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.