Research Article


DOI :10.26650/experimed.1318122   IUP :10.26650/experimed.1318122    Full Text (PDF)

Effects of Neurocognitive Rehabilitation on the Levels of Neurotransmitters and Memory Proteins in Patients with Multiple Sclerosis

Özlem TotukErdil ArsoyRecai Türkoğlu

Objective: This study aimed to investigate the role of neurotrophic factors and neurotransmitters in the neurocognitive impairments observed in Multiple Sclerosis (MS) patients, explore potential biomarkers, and evaluate the impact of computer-assisted cognitive rehabilitation (CCR) on these biomarkers.

Materials and Methods: The study included 20 healthy volunteers and 23 relapsing-remitting MS patients with a beck depression inventory score below 17, who could use computers and had no attack in the last 6 months. Serum levels of brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), melatonin, and orexin-A were measured using enzyme-linked immunosorbent assay (ELISA) and compared between patients and controls. MS patients underwent assessment using the brief repeatable battery of neuropsychological tests (BRB-N) before (baseline) and after (sixth month) CCR their biomarker levels were measured again, along with administering neuropsychological tests.

Results: Results showed lower levels of BDNF, CREB, melatonin, and orexin-A in MS patients compared to healthy controls before neurorehabilitation. Among the measured cognition-related proteins in the MS group, only BDNF was insignificantly decreased after neurorehabilitation. No significant differences were found in orexin-A, melatonin, and CREB levels before and after neurorehabilitation. Although, correlation analysis revealed no significant correlation between biomarkers and clinical parameters, paced auditory serial addition test and stroop tests which pointed to sustaining attention, information processing speed, verbal fluency, and categorical reasoning were found meaningful after CCR.

Conclusions: CCR may have beneficial effects on cognitive functions, particularly executive functions. However, the four examined molecules did not reflect cognitive changes in MS and cannot be used as biomarkers. Further investigation of other molecules related to CREB and BDNF pathways may shed light on cognitive impairment in MS.


PDF View

References

  • 1. Bar-Or A, Oliveira EM, Anderson DE, Hafler DA. Molecular pathogenesis of multiple sclerosis. J Neuroimmunol 1999; 100(1-2): 252-9. google scholar
  • 2. Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol 2008; 7(12): 1139-51. google scholar
  • 3. Deloire MS, Salort E, Bonnet M, Arimone Y, Boudineau M, Amieva H, et al. Cognitive impairment as marker of diffuse brain abnormalities in early relapsing remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 2005; 76(4): 519-26. google scholar
  • 4. Benedict RH, Weinstock-Guttman B, Fishman I, Sharma J, Tjoa CW, Bakshi R. Prediction of neuropsychological impairment in multiple sclerosis: comparison of conventional magnetic resonance imaging measures of atrophy and lesion burden. Arch Neurol 2004; 61(2): 226-30. google scholar
  • 5. Castellucci VF, Kandel ER, Schwartz JH, Wilson FD, Nairn AC, Greengard P. Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in aplysia. Proc Natl Acad Sci USA 1980; 77(12): 7492-6. google scholar
  • 6. Sharma SK, Bagnall MW, Sutton MA, Carew TJ. Inhibition of calcineurin facilitates the induction of memory for sensitization in aplysia: requirement of mitogen-activated protein kinase. Proc Natl Acad Sci USA 2003; 100(8): 4861-6. google scholar
  • 7. Zhang G, Zhang T, Li N, Wu L, Gu J, Li C, et al. Tetramethylpyrazine nitrone activates the BDNF/Akt/CREB pathway to promote post-ischaemicneuroregeneration and recovery of neurological functions in rats. Br J Pharmacol 2018; 175(3): 517-31. google scholar
  • 8. Alvarez XA, Alvarez I, Iglesias O, Crespo I, Figueroa J, Aleixandre M, et al. Synergistic increase of serum BDNF in Alzheimer patients treated with cerebrolysin and donepezil: Association with cognitive improvement in ApoE4 cases. Int J Neuropsychopharmacol 2016; 19(6): pyw024. google scholar
  • 9. Peng C, Hong X, Chen W, Zhang H, Tan L, Wang X, et al. Melatonin ameliorates amygdala-dependent emotional memory deficits in Tg2576 mice by up-regulating the CREB/c-Fos pathway. Neurosci Lett 2017; 638: 76-82. google scholar
  • 10. Bonzano L, Pedulla L, Pardini M, Tacchino A, Zaratin P, Battaglia MA, et al. Brain activity pattern changes after adaptive working memory training in multiple sclerosis. Brain Imaging Behav 2020; 14(1): 142-54. google scholar
  • 11. Covey TJ, Shucard JL, Benedict RH, Weinstock-Guttman B, Shucard DW. Improved cognitive performance and event-related potential changes following working memory training in patients with multiple sclerosis. MultScler J Exp Transl Clin 2018; 4(1): 2055217317747626. google scholar
  • 12. BoringaJB,LazeronRH,ReulingIE,AderHJ,PfenningsL,Lindeboom J, et al. The brief repeatable battery of neuropsychological tests: normative values allow application in multiple sclerosis clinical practice. Mult Scler 2001; 7: 263-7. google scholar
  • 13. Mesaros S, Rovaris M, Pagani E, Pulizzi A, Caputo D, Ghezzi A, et al. A magnetic resonance imaging voxel-based morphometry study of regional gray matter atrophy in patients with benign multiple sclerosis. Arch Neurol 2008; 65(9): 1223-30. google scholar
  • 14. Gajofatto A, Turatti M, Bianchi MR, Forlivesi S, Gobbin F, Azzara A, et al. Benign multiple sclerosis: physical and cognitive impairment follow distinct evolutions. Acta Neurol Scand 2016; 133(3): 183-91. google scholar
  • 15. Rocca MA, Valsasina P, Ceccarelli A, Absinta M, Ghezzi A, Riccitelli G, et al. Structural and functional MRI correlates of stroop control in benign MS. Hum Brain Mapp 2009; 30(1): 276-90. google scholar
  • 16. Cerasa A,Gioia MC,Valentino P, Nistico R,ChiriacoC,Pirritano D,et al. Computer-assisted cognitive rehabilitation of attentiondeficits for multiple sclerosis: a randomized trial with fMRIcorrelates. Neurorehabil Neural Repair 2013; 27(4): 284-95. google scholar
  • 17. Hansen S, Muenssinger J, Kronhofmann S, Lautenbacher S, Oschmann P, Keune PM. Cognitive screening in Multiple Sclerosis: the Five-Point Test as a substitute for the PASAT in measuring executive function. Clin Neuropsychol 2017; 31(1): 179-92. google scholar
  • 18. Hansen PE, Videbech P, Clemmensen K, Sturlason R, Jensen HM, Vestergaard P. Repetitive transcranial magnetic stimulation as add-on antidepressant treatment. The applicability ofthe method in a clinical setting. Nord J Psychiatry 2004; 58(6): 455-7. google scholar
  • 19. Lin R, Lin Y, Tao J, Chen B, Yu K, Chen J, et al. Electroacupuncture ameliorates learning and memory in rats with cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting p-CREB expression in the hippocampus. Mol Med Rep 2015; 12(5): 6807-14. google scholar
  • 20. Wang X, Chen A, Wu H, Ye M, Cheng H, Jiang X, et al. Enriched environment improves post-stroke cognitive impairment in mice by potential regulation of acetylation homeostasis in cholinergic circuits. Brain Res 2016;1650: 232-42. google scholar
  • 21. Chen BH, Park JH, Lee TK, Song M, Kim H, Lee JC, et al. Melatonin attenuates scopolamine-induced cognitive impairment via protecting against demyelination through BDNF-TrkB signaling in the mouse dentate gyrus. Chem Biol Interact 2018; 285: 8-13. google scholar
  • 22. Alzoubi KH, Mayyas FA, Mahafzah R, Khabour OF. Melatonin prevents memory impairment induced by high-fat diet: Role of oxidative stress. Behav Brain Res 2018; 336: 93-8. google scholar
  • 23. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A01-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther 2016; 8(1): 40. google scholar
  • 24. Mavanji V, Butterick TA, Duffy CM, Nixon JP, Billington CJ, Kotz CM. Orexin-A/hypocretin treatment restores hippocampal-dependent memory in orexin-A-deficient mice. Neurobiol Learn Mem 2017; 146: 21-30. google scholar
  • 25. Ardeshiri MR, Hosseinmardi N, Akbari E. The effect of orexin-A 1 and orexin-A 2 receptors antagonisms in the basolateral amygdala on memory processing in a passive avoidance task. Physiol Behav 2017; 174: 42-8. google scholar
  • 26. Prokopova B, Hlavacova N, Vlcek M, Penesova A, Grunnerova L, Garafova A, et al. Early cognitive impairment along with decreased stress-induced BDNF in male and female patients with newly diagnosed multiple sclerosis. J Neuroimmunol 2017; 302: 34-40. google scholar
  • 27. Oka Y, Kanbayashi T, Mezaki T, Iseki K, Matsubayashi J, Murakami G, et al. Low CSF hypocretin-1/orexin-A-A associated with hypersomnia secondary to hypothalamic lesion in a case of multiple sclerosis. J Neurol 2004; 251(7): 885-6. google scholar
  • 28. Dokoohaki S, Ghareghani M, Ghanbari A, Farhadi N, Zibara K, Sadeghi H. Corticosteroid therapy exacerbates the reduction of melatonin in multiple sclerosis. Steroids 2017; 128: 32-6. google scholar
  • 29. Fatemi I, Shamsizadeh A, Ayoobi F, Taghipour Z, Sanati MH, Roohbakhsh A, et al. Role of orexin-A-A in experimental autoimmune encephalomyelitis. J Neuroimmunol 2016; 291: 101-9. google scholar
  • 30. Jana M, Ghosh S, Pahan K. Upregulation of myelin gene expression by a physically-modified saline via phosphatidylinositol 3-kinase-mediated activation of CREB: Implications for multiple sclerosis. Neurochem Res 2018; 43(2): 407-19. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Totuk, Ö., Arsoy, E., & Türkoğlu, R. (2023). Effects of Neurocognitive Rehabilitation on the Levels of Neurotransmitters and Memory Proteins in Patients with Multiple Sclerosis. Experimed, 13(3), 187-193. https://doi.org/10.26650/experimed.1318122


AMA

Totuk Ö, Arsoy E, Türkoğlu R. Effects of Neurocognitive Rehabilitation on the Levels of Neurotransmitters and Memory Proteins in Patients with Multiple Sclerosis. Experimed. 2023;13(3):187-193. https://doi.org/10.26650/experimed.1318122


ABNT

Totuk, Ö.; Arsoy, E.; Türkoğlu, R. Effects of Neurocognitive Rehabilitation on the Levels of Neurotransmitters and Memory Proteins in Patients with Multiple Sclerosis. Experimed, [Publisher Location], v. 13, n. 3, p. 187-193, 2023.


Chicago: Author-Date Style

Totuk, Özlem, and Erdil Arsoy and Recai Türkoğlu. 2023. “Effects of Neurocognitive Rehabilitation on the Levels of Neurotransmitters and Memory Proteins in Patients with Multiple Sclerosis.” Experimed 13, no. 3: 187-193. https://doi.org/10.26650/experimed.1318122


Chicago: Humanities Style

Totuk, Özlem, and Erdil Arsoy and Recai Türkoğlu. Effects of Neurocognitive Rehabilitation on the Levels of Neurotransmitters and Memory Proteins in Patients with Multiple Sclerosis.” Experimed 13, no. 3 (Mar. 2024): 187-193. https://doi.org/10.26650/experimed.1318122


Harvard: Australian Style

Totuk, Ö & Arsoy, E & Türkoğlu, R 2023, 'Effects of Neurocognitive Rehabilitation on the Levels of Neurotransmitters and Memory Proteins in Patients with Multiple Sclerosis', Experimed, vol. 13, no. 3, pp. 187-193, viewed 3 Mar. 2024, https://doi.org/10.26650/experimed.1318122


Harvard: Author-Date Style

Totuk, Ö. and Arsoy, E. and Türkoğlu, R. (2023) ‘Effects of Neurocognitive Rehabilitation on the Levels of Neurotransmitters and Memory Proteins in Patients with Multiple Sclerosis’, Experimed, 13(3), pp. 187-193. https://doi.org/10.26650/experimed.1318122 (3 Mar. 2024).


MLA

Totuk, Özlem, and Erdil Arsoy and Recai Türkoğlu. Effects of Neurocognitive Rehabilitation on the Levels of Neurotransmitters and Memory Proteins in Patients with Multiple Sclerosis.” Experimed, vol. 13, no. 3, 2023, pp. 187-193. [Database Container], https://doi.org/10.26650/experimed.1318122


Vancouver

Totuk Ö, Arsoy E, Türkoğlu R. Effects of Neurocognitive Rehabilitation on the Levels of Neurotransmitters and Memory Proteins in Patients with Multiple Sclerosis. Experimed [Internet]. 3 Mar. 2024 [cited 3 Mar. 2024];13(3):187-193. Available from: https://doi.org/10.26650/experimed.1318122 doi: 10.26650/experimed.1318122


ISNAD

Totuk, Özlem - Arsoy, Erdil - Türkoğlu, Recai. Effects of Neurocognitive Rehabilitation on the Levels of Neurotransmitters and Memory Proteins in Patients with Multiple Sclerosis”. Experimed 13/3 (Mar. 2024): 187-193. https://doi.org/10.26650/experimed.1318122



TIMELINE


Submitted21.06.2023
Accepted10.11.2023
Published Online28.12.2023

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.