Research Article


DOI :10.5152/iujsb.2017.003   IUP :10.5152/iujsb.2017.003    Full Text (PDF)

Online Yorumlardan Algılanan Faydanın İncelenmesi: Yorumun Faydalı Bulunma İhtimali ve Aldığı Faydalı Oy Sayısı

Eyyup YaraşMeltem Yetkin ÖzbükAkif Şen

Bu çalışmada, bir yorumun faydalı oy alma ihtimali ile aldığı faydalı oy sayısı üzerinde etkili olan değişkenler incelenmiştir. Bu amaçla, online yorumun olumluluğu/olumsuzluğu, uzunluğu, internet sitesinde yayınlandığı süre ve yorumcunun uzmanlığı değişkenlerinin bir yorumun faydalı oy alma ihtimali ile aldığı faydalı oy sayısı üzerindeki etkileri araştırılmıştır. Booking.com adlı internet sitesinde yer alan İstanbul otellerini değerlendirmek amacıyla yazılmış 59.163 adet online yorum için eşik regresyonu analizi uygulanmıştır. Analiz sonuçlarına göre, bir online yorumun olumsuz içerikte, uzun ve güncel olması ile yorumcunun uzmanlığı, yorumun faydalı oy alma ihtimalini arttırırken; bir yorumun olumlu olması ve internet sitesinde uzun süre yayınlanması ile yorumcunun uzmanlığının az olması, o yorumun aldığı faydalı oy sayısını arttırmaktadır. Bu araştırma sonucunda, bir yorumun aldığı faydalı oy sayısı için yorum ve yorumcunun inandırıcılığının da önemli bir etken olduğu belirlenmiştir.

DOI :10.5152/iujsb.2017.003   IUP :10.5152/iujsb.2017.003    Full Text (PDF)

Examination of the Online Reviews’ Perceived Helpfulness: The Review’s Possibility of Being Helpful and the Number of Helpful Votes Taken

Eyyup YaraşMeltem Yetkin ÖzbükAkif Şen

In this study, the variables effective on the online review’s possibility of being helpful and the number of helpful votes that a review taken were examined. For this purpose, the effects of online review’s valence, length, the period that a review has been published on the website, and the expertise of a reviewer on the online review’s possibility of being helpful and the number of helpful votes that a review has taken were investigated. Hurdle regression was applied for 59,163 online reviews written to evaluate the Istanbul’s hotels and posted on Booking.com website. According to the results of the analysis, while negative, long, recent online reviews and online reviews written by expert reviewers have higher possibility of being helpful; positive, old reviews and the reviews written by nonexpert reviewers have higher number of helpful votes. As a result of this research, the review’s and reviewer’s credibility are also found to be as effective determinants of the number of helpful votes that a review has taken.


PDF View

References

  • Agnihotri, A. & Bhattacharya, S. (2016). Online review helpfulness: Role of qualitative factors. Psychology & Marketing, 33(11), 1006-1017. google scholar
  • Baker, A. M., Donthu, N. & Kumar, V. (2016). Investigating how word-of-mouth conversations about brands influence purchase and retransmission intentions. Journal of Marketing Research, 53(2), 225-239. google scholar
  • Bigné, E., Caplliure, E. M. & Miquel, M. J. (2016). eWOM on travel agency selection: Specialized versus private label. Psychology & Marketing, 33(12), 1046-1053. google scholar
  • Bowerman, B. L., O’Connell, R. T. & Hand, L. M. (2001). Business Statistics in Practice . McGraw-Hill. google scholar
  • Brown, J., Broderick, A. J. & Lee, N. (2007). Word of mouth communication within online communities: Conceptualizing the online social network. Journal of Interactive Marketing, 21(3), 2-20. google scholar
  • Cabosky, J. (2016). Social media opinion sharing: beyond volume. Journal of Consumer Marketing, 33(3), 172-181. google scholar
  • Cameron, A. C. & Trivedi, P. K. (2009). Microeconometrics Using Stata. College Station, Texas: Stata Press. google scholar
  • Casaló, L. V., Flavián, C., Guinalíu, M. & Ekinci, Y. (2015). Avoiding the dark side of positive online consumer reviews: Enhancing reviews’ usefulness for high risk-averse travelers. Journal of Business Research, 68(9), 1829-1835. google scholar
  • Chen, J., Teng, L. Y. & Yu, X. (2016). The effect of online information sources on purchase intentions between consumers with high and low susceptibility to informational influence. Journal of Business Research, 69(2), 467-475. google scholar
  • Chen, Z. ve Lurie, N. H. (2013). Temporal contiguity and negativity bias in the impact of online word of mouth. Journal of Marketing Research, 50(4), 463-476. google scholar
  • Cheng, Y. H. ve Ho, H. Y. (2015). Social influence’s impact on reader perceptions of online reviews. Journal of Business Research, 68(4), 883-887. google scholar
  • De Langhe, B., Fernbach, P. M. & Lichtenstein, D. R. (2016). Navigating by the stars: Investigating the actual and perceived validity of online user ratings. Journal of Consumer Research, 42(6), 817-833. google scholar
  • Dünya Turizm Organizasyonu. (2016). UNWTO Tourism Highlights 2016 Edition. Madrid: World Tourism Organization. google scholar
  • Felbermayr, A. & Nanopoulos, A. (2016). The role of emotions for the perceived usefulness in online customer reviews. Journal of Interactive Marketing, 36, 60-76. google scholar
  • Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. Journal of Business Research, 68(6), 1261-1270. google scholar
  • Folse, J. A., Porter III, M., Godbole, M. B. & Reynolds, K. E. (2016). The effects of negatively valenced emotional expressions in online reviews on the reviewer, the review, and the product. Psychology & Marketing, 33(9), 747-760. google scholar
  • Garrigos-Simon, F. J., Garrigos-Simon, F. J., Galdon, J. L., Galdon, J. L., Sanz-Blas, S. & Sanz-Blas, S. (2017). Effects of crowdvoting on hotels: the Booking. com case. International Journal of Contemporary Hospitality Management, 29(1), 419-437. google scholar
  • Gottschalk, S. A. & Mafael, A. (2017). Cutting through the online review jungle—Investigating selective eWOM processing. Journal of Interactive Marketing, 37, 89-104. google scholar
  • Gupta, P. & Harris, J. (2010). How e-WOM recommendations influence product consideration and quality of choice: A motivation to process information perspective. Journal of Business Research, 63(9), 1041-1049. google scholar
  • Hamby, A., Daniloski, K. & Brinberg, D. (2015). How consumer reviews persuade through narratives. Journal of Business Research, 68(6), 1242-1250. google scholar
  • He, S. & Bond, S. (2013). Word-of-mouth and the forecasting of consumption enjoyment. Journal of Consumer Psychology, 23(4), 464-482. google scholar
  • Huang, J. H. & Chen, Y. F. (2006). Herding in online product choice. Psychology & Marketing, 23(5), 413-428. google scholar
  • Ismagilova, E., Dwivedi, Y. K., Slade, E. & Williams, M. (2017). Electronic Word of Mouth (eWOM) in the Marketing Context: A State of the Art Analysis and Future Directions. Springer. google scholar
  • Ito, T. A., Larsen, J. T., Smith, N. K. & Cacioppo, J. T. (1998). Negative information weighs more heavily on the brain: the negativity bias in evaluative categorizations. Journal of Personality and Social Psychology, 75(4), 887-900. google scholar
  • Jiménez, F. R. & Mendoza, N. A. (2013). Too popular to The influence of online reviews on purchase intentions of search and experience products. Journal of Interactive Marketing, 27(3), 226-235. google scholar
  • Jin, L., Hu, B. & He, Y. (2014). The recent versus the out-dated: An experimental examination of the time-variant effects of online consumer reviews. Journal of Retailing, 90(4), 552-566. google scholar
  • Kim, J. & Gupta, P. (2012). Emotional expressions in online user reviews: How they influence consumers’ product evaluations. Journal of Business Research, 65(7), 985-992. google scholar
  • King, R. A., Racherla, P. & Bush, V. D. (2014). What we know and don’t know about online word-of-mouth: A review and synthesis of the literature. Journal of Interactive Marketing, 28(3), 167-183. google scholar
  • Koo, D. M. (2015). The strength of no tie relationship in an online recommendation: Focused on interactional effects of valence, tie strength, and type of service. European Journal of Marketing, 49(7/8), 1163-1183. google scholar
  • Kostyra, D. S., Reiner, J., Natter, M. & Klapper, D. (2016). Decomposing the effects of online customer reviews on brand, price, and product attributes. International Journal of Research in Marketing, 33(1), 11-26. google scholar
  • Leal, G. P., Hor-Meyll, L. F. & de Paula Pessôa, L. A. (2014). Influence of virtual communities in purchasing decisions: The participants’ perspective. Journal of Business Research, 5(882-890), 67. google scholar
  • Lee, M., Rodgers, S. & Kim, M. (2009). Effects of valence and extremity of eWOM on attitude toward the brand and website. Journal of Current Issues & Research in Advertising, 31(2), 1-11. google scholar
  • Long, J. S. & Freese, J. (2014). Regression Models For Categorical Dependent Variables Using Stata. Collage Station, Texas: Stata Press. google scholar
  • Martin, W. C. & Lueg, J. E. (2013). Modeling word-of-mouth usage. Journal of Business Research, 66(7), 801-808. google scholar
  • März, A., Schubach, S. & Schumann, J. H. (2017). “Why Would I Read a Mobile Review?” device compatibility perceptions and effects on perceived helpfulness. Psychology & Marketing, 34(2), 119-137. google scholar
  • Mert, M. (2016). Yatay Kesit Veri Analizi Bilgisayar Uygulamaları. Ankara: Detay Yayıncılık. google scholar
  • Moore, S. G. (2015). Attitude predictability and helpfulness in online reviews: The role of explained actions and reactions. Journal of Consumer Research, 42(1), 30-44. google scholar
  • Munzel, A. (2016). Assisting consumers in detecting fake reviews: The role of identity information disclosure and consensus. Journal of Retailing and Consumer Services, 32, 96-108. google scholar
  • Pan, Y. & Zhang, J. Q. (2011). Born unequal: a study of the helpfulness of user-generated product reviews. Journal of Retailing, 87(4), 598-612. google scholar
  • Park, C. & Lee, T. M. (2009). Antecedents of online reviews’ usage and purchase influence: An empirical comparison of US and Korean consumers. Journal of Interactive Marketing, 23(4), 332-340. google scholar
  • Peng, L., Cui, G., Zhuang, M. & Li, C. (2016). Consumer perceptions of online review deceptions: an empirical study in China. Journal of Consumer Marketing, 33(4), 269- google scholar
  • Purnawirawan, N., De Pelsmacker, P. & Dens, N. (2012). Balance and sequence in online reviews: How perceived usefulness affects attitudes and intentions. Journal of Iinteractive Marketing, 26(4), 244-255. google scholar
  • Purnawirawan, N., Eisend, M., De Pelsmacker, P. & Dens, N. (2015). A meta-analytic investigation of the role of valence in online reviews. Journal of Interactive Marketing, 31, 17-27. google scholar
  • Rozin, P. & Rosyzman, E. (2001). Negativity bias, negativity dominance, and contagion. Personality and Social Psychology Review, 5(4), 296-320. google scholar
  • Senecal, S. & Nantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of retailing, 80(2), 159-169. google scholar
  • Singh, V. K., Nishant, R. & Kitchen, P. J. (2016). Self or simulacra of online reviews: an empirical perspective. Psychology & Marketing, 33(12), 1112-1118. google scholar
  • Sussman, S. W. & Siegal, W. S. (2003). Informational influence in organizations: An integrated approach to knowledge adoption. Information Systems Research, 14(1), 47-65. google scholar
  • Tripadvisor. (2017). Tripadvisor. 15 Eylül 2017 tarihinde www.tripadvisor.com sitesinden alınmıştır. google scholar
  • Wathen, C. N. & Burkell, J. (2002). Believe it or not: Factors influencing credibility on the Web. Journal of the American Society for Information Science and Technology, 53(2), 134-144. google scholar
  • Wu, P. (2013). In search of negativity bias: An empirical study of perceived helpfulness of online reviews. Psychology & Marketing, 30(11), 971-984. google scholar
  • Zhao, Y., Yang, S., Narayan, V. & Zhao, Y. (2013). Modeling consumer learning from online product reviews. Marketing Science, 32(1), 153-169. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Yaraş, E., Yetkin Özbük, M., & Şen, A. (2017). Online Yorumlardan Algılanan Faydanın İncelenmesi: Yorumun Faydalı Bulunma İhtimali ve Aldığı Faydalı Oy Sayısı. Istanbul Business Research, 46(2), 179-187. https://doi.org/10.5152/iujsb.2017.003


AMA

Yaraş E, Yetkin Özbük M, Şen A. Online Yorumlardan Algılanan Faydanın İncelenmesi: Yorumun Faydalı Bulunma İhtimali ve Aldığı Faydalı Oy Sayısı. Istanbul Business Research. 2017;46(2):179-187. https://doi.org/10.5152/iujsb.2017.003


ABNT

Yaraş, E.; Yetkin Özbük, M.; Şen, A. Online Yorumlardan Algılanan Faydanın İncelenmesi: Yorumun Faydalı Bulunma İhtimali ve Aldığı Faydalı Oy Sayısı. Istanbul Business Research, [Publisher Location], v. 46, n. 2, p. 179-187, 2017.


Chicago: Author-Date Style

Yaraş, Eyyup, and Meltem Yetkin Özbük and Akif Şen. 2017. “Online Yorumlardan Algılanan Faydanın İncelenmesi: Yorumun Faydalı Bulunma İhtimali ve Aldığı Faydalı Oy Sayısı.” Istanbul Business Research 46, no. 2: 179-187. https://doi.org/10.5152/iujsb.2017.003


Chicago: Humanities Style

Yaraş, Eyyup, and Meltem Yetkin Özbük and Akif Şen. Online Yorumlardan Algılanan Faydanın İncelenmesi: Yorumun Faydalı Bulunma İhtimali ve Aldığı Faydalı Oy Sayısı.” Istanbul Business Research 46, no. 2 (Oct. 2022): 179-187. https://doi.org/10.5152/iujsb.2017.003


Harvard: Australian Style

Yaraş, E & Yetkin Özbük, M & Şen, A 2017, 'Online Yorumlardan Algılanan Faydanın İncelenmesi: Yorumun Faydalı Bulunma İhtimali ve Aldığı Faydalı Oy Sayısı', Istanbul Business Research, vol. 46, no. 2, pp. 179-187, viewed 2 Oct. 2022, https://doi.org/10.5152/iujsb.2017.003


Harvard: Author-Date Style

Yaraş, E. and Yetkin Özbük, M. and Şen, A. (2017) ‘Online Yorumlardan Algılanan Faydanın İncelenmesi: Yorumun Faydalı Bulunma İhtimali ve Aldığı Faydalı Oy Sayısı’, Istanbul Business Research, 46(2), pp. 179-187. https://doi.org/10.5152/iujsb.2017.003 (2 Oct. 2022).


MLA

Yaraş, Eyyup, and Meltem Yetkin Özbük and Akif Şen. Online Yorumlardan Algılanan Faydanın İncelenmesi: Yorumun Faydalı Bulunma İhtimali ve Aldığı Faydalı Oy Sayısı.” Istanbul Business Research, vol. 46, no. 2, 2017, pp. 179-187. [Database Container], https://doi.org/10.5152/iujsb.2017.003


Vancouver

Yaraş E, Yetkin Özbük M, Şen A. Online Yorumlardan Algılanan Faydanın İncelenmesi: Yorumun Faydalı Bulunma İhtimali ve Aldığı Faydalı Oy Sayısı. Istanbul Business Research [Internet]. 2 Oct. 2022 [cited 2 Oct. 2022];46(2):179-187. Available from: https://doi.org/10.5152/iujsb.2017.003 doi: 10.5152/iujsb.2017.003


ISNAD

Yaraş, Eyyup - Yetkin Özbük, Meltem - Şen, Akif. Online Yorumlardan Algılanan Faydanın İncelenmesi: Yorumun Faydalı Bulunma İhtimali ve Aldığı Faydalı Oy Sayısı”. Istanbul Business Research 46/2 (Oct. 2022): 179-187. https://doi.org/10.5152/iujsb.2017.003



TIMELINE


Submitted26.09.2017
Accepted10.11.2017

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.