Research Article


DOI :10.26650/ISTJECON2023-1021393   IUP :10.26650/ISTJECON2023-1021393    Full Text (PDF)

Kripto Paraların Volatilite Dinamiklerinin ve Spekülatif Balon Varlığının Analizi: Bitcoin, Ethereum ve Ripple Örneği

Utku Altunöz

Çalışmada küresel kriz sonrası gündeme gelen kripto paraların en yüksek hacimli Bitcoin, Ethereum ve Ripple özelinde volatilite özellikleri modellenmiş olup fiyat balonlarının varlığı ve tarihleri belirlenmiştir. ADF ve Ng-Perron birim kök testlerinin ardından Bitcoin için EGARCH, Ethereum ve Ripple için TGARCH modellerinin en iyi model olduğunun tespiti edilmiştir. Analiz sonuçlarına göre Bitcoin için katsayılarının negatif olması negatif şokların pozitif şoklara göre volatiliteleri artıracak şekilde etki göstereceği anlamı taşımaktadır. Bu durum kaldıraç etkisinin bulunduğu anlamına gelmektedir. Ethereum ve Ripple için kaldıraç etkisine ulaşılamamış olup pozitif şokların negatif şoklara göre volatiliteleri artıracak şekilde etki göstereceği anlaşılmaktadır.Ayrıca her üç kripto para için sürekli spekülatif balon fiyatlamalarımeydana gelmiş olup Ripple’a göre Ethereum ve Bitcoin’de çok daha yüksek balon fiyatların meydana gelmektedir.

JEL Classification : C01 , C13 , C51 , E42
DOI :10.26650/ISTJECON2023-1021393   IUP :10.26650/ISTJECON2023-1021393    Full Text (PDF)

Analyzing the Volatility Dynamics of Crypto Currency and the Occurrence of Speculative Bubbles: The Examples of Bitcoin, Ethereum, and Ripple

Utku Altunöz

This study aims to model the volatility features of Bitcoin, Ethereum, and Ripple, which are the cryptocurrencies with the greatest volumes that have come to the agenda since the global crisis, and to determine the presence and dates of price bubbles.After running the ADF and Ng-Perron unit root tests, the EGARCH model was analyzed as the best for Bitcoin and TGARCH for the Ethereum and Ripple. According to the obtained results, negative coefficients for Bitcoin imply that negative shocks will increase volatility more than positive shocks. This means that a leverage effect is present. No leverage effect was reached for Ethereum or Ripple, and positive shocks are understood to increase volatility for them compared to negative shocks. In addition, continuous speculative bubble pricing occurred for all three cryptocurrencies, with much higher bubble prices being understood to have occurred with Ethereum and Bitcoin compared to Ripple.

JEL Classification : C01 , C13 , C51 , E42

EXTENDED ABSTRACT


The convergence of technology and finance in recent years has radically changed the understanding of money in daily use. Parallel with this are cryptocurrencies, which emerged in 2009 and have become increasingly popular and more widely used these days, as well as the Blockchain system as the technological power behind these coins. Although cryptocurrencies haveemerged as currency, the formation of price bubbles and volatility in their prices have led to cryptocurrencies being considered as an investment tool. The Blockchain system was created by Satoshi Nakamoto (2008) by combining technology and finance and can be defined as a cryptographic system that allows interpersonal payments without any central authority. This system can keep any data in the digital environment open (distributed) to all users over communication networks and ensure that the data remains the same at all points in this process. The blockchain system started with the Genesis (block zero) installation. Unlike the central banking system and central electronic money, crypto assets are completely decentralized and anonymous. In addition, cryptocurrencies also have various features such as crypto money owner registration and rules for creating new crypto money supplies, with only the owner being able to prove crypto money ownership and to have it change hands. The stored money consists of passwords that are not suitable for memorization and that only the recorded owner of the money will know. Digital currency is issued by a central authority and is also controlled by the same central authority. Due to the absence of any central authority, digital currency transactions are made ‘openly’ with real-identified users, while cryptocurrency transactions are done in secret.

The study aims to determine the most appropriate model and bubble price formations for obtaining volatilities by using different conditional variance models for Bitcoin, Ethereum, and Ripple, which have had the highest market values between 2017-2020. The study is thought to be able to make a unique contribution to the literature because it covers the epidemic period and because it also uses volatility and economic balloons. The study consists of three parts. After the introduction on blockchain technology and cryptocurrencies, the first section discusses bubbles and volatility with regard to financial assets. The second section of the study performs a national and international literature review on volatility and bubbles in cryptocurrencies. The study then moves on the third section where it models the volatility features of cryptocurrencies that have come to the agenda with the highest trade volumes since the global crisis (i.e., Bitcoin, Ethereum, and Ripple), and determined the occurrence and dates of price bubbles. After performing the augmented Dickey-Fuller (ADF) and Ng-Perron unit root tests, EGARCH was determined as the best model for Bitcoin and TGARCH for Ethereum and Ripple, after which the analyses were carried out. According to the obtained results, negative coefficients for Bitcoin indicate that negative shocks will increase volatility more than positive shocks. This means a leverage effect is present for Bitcoin. No leverage effect was found for Ethereum or Ripple, and thus positive shocks are understood to increase volatility for them compared to negative shocks. In addition, continuous speculative bubble pricing has occurred for all three cryptocurrencies, with much higher bubble prices occurring for Ethereum and Bitcoin compared to Ripple. The results are remarkable for researchers, professionals, investors, and policy makers who are interested in the subject. The up-to-date nature of the analysis periods has made detecting the effects from the epidemic period and the financial bubbles that occurred toward the end of 2020 possible. According to the obtained results, cryptocurrencies can be considered as an alternative to other investment tools on the assumption that price increases will be continuous during periods when bubbles are detected for risk-favoring investors. Having future studies related to the subject examine the relationship between the spot market and the futures market, especially in price formations, and detect price bubbles in the Bitcoin futures market will progress the research. This study has revealed prices in the crypto-money market to be open to speculation with particular regard to Bitcoin, Ethereum, and Ripple, and the obtained results can be used as indicators for investors while setting up their positions.


PDF View

References

  • Akkuş, H.T. & Çelik, İ. (2020). Modeling, forecasting the cryptocurrency market volatility and value at risk dynamics of Bitcoin. Muhasebe Bilim Dünyası Dergisi, 22(2), 296-312. google scholar
  • Altunöz, U. (2020). Hile ekonomisi, finansal piyasalarda yatırımcı psikolojisi ve finansal skandallar. Seçkin Yayınları, 2. Baskı. google scholar
  • Avunduk, H. & Aşan, H. (2018). Block zinciri (Blockchain) teknolojisi ve işletme uygulamaları: genel bir değerlendirme. Dokuz Eylül Üniversitesi İİBF Dergisi, 33(1), 369-384. google scholar
  • Baumol, W. J. (1957). Speculation, profitability, and stability. The Review of Economics and Statistics, 39(3), 263-271. google scholar
  • Blanchard, O. J. & Watson, MW. (1982). Bubbles, rational expectations, and financial markets. google scholar
  • Working paper no:945. National Bureau of Economic Research Blanchard, O. J. (1979). Speculative bubbles. crashes and rational expectations, Economic Letters, 3(4):263-271. google scholar
  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31(3), 307-327. google scholar
  • Bouoiyour, J. & Selmi R. (2016). Bitcoin: a beginning of a new phase?. Economics Bulletin, 36(3), 1430-1440. google scholar
  • Brunnermeier, M. K. (2008), Bubbles. The New Palgrave Dictionary of Economics, 2 ed., eds. S. Durlauf and L. Blume. google scholar
  • Buğan, M . (2021). Bitcoin ve altcoin kripto para piyasalarında finansal balonlar . Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) , 13 (24) , 165-180 . google scholar
  • Byström, H. &Krygier, D. (2018). What drives bitcoin volatility?, The Knut Wicksell Centre for Financial Studies, Working Paper, 2018:3, 1-26. google scholar
  • Campbell, J. Y. & Shiller,R.J. (1987). Cointegration and tests of present value models, Journal of PoliticalEconomy, 95(5), 1062-88 google scholar
  • Ceylan, F., Ekinci, R., Tüzün, O. & Kahyaoğlu, H. (2018). Kripto para piyasasında balonların tespiti: Bitcoin ve Ethereum örneği, Business & Management Studies: An International Journal , 6(3), 263-274. google scholar
  • Charles, A. & Darne, O. (2019). Volatility estimation for Bitcoin: Replication and extension, International Economics, 157, 1-15. google scholar
  • Çağlı, E. Ç. & Mandacı, E. M. (2017). Borsa İstanbul'da rasyonel balon varlığı: Sektör Endeksleri Üzerine Bir Analiz. Finans Politik ve Ekonomik Yorumlar Dergisi, 54( 629), 63 - 76. google scholar
  • Demarzo, P. M., Kaniel R. & Kremer, I. (2008). Relative eealth concerns and financial bubbles, Review of Financial Studies, 21(1), 19-50. google scholar
  • Demirel, B., Bozdağ, E. G. & İnci, A. G., (2008). Döviz kurundaki dalgalanmaların gelen turist sayısına etkisi: Türkiye örneği. DEU Ulusal İktisat Kongresi, İzmir,1-15. google scholar
  • Dickey, D.A. & W.A. Fuller (1979). Distribution of the estimators for autoregressive time series with a unit root, Journal of the American Statistical Association, 74 (336a), 427-431. google scholar
  • Dyhrberg, A. H. (2016). Hedging capabilities of Bitcoin. Is it the virtual gold?. Finance Research Letters, 16, 139-14. google scholar
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50 (4), 987-1007. http://www.jstor.org/stable/1912773 google scholar
  • Ertuğrul, H. M. (2019). Kripto paraların volatilite dinamiklerinin incelenmesi: GARCH modelleri üzerine bir uygulama. Yönetim ve Ekonomi Araştırmaları Dergisi, 17(4), 59-71. google scholar
  • Flood, R. P. & Garber P.M. (1980). Market fundamentals versus price-level bubbles: The first test. Journal of Political Economy, 88(4):745-770. google scholar
  • Frascaroli, B. F. & Pinto, T. C. (2016).Innovative aspects of Bitcoin, market microetructure and volatility returns, Revista Brasileira de Economia de Empresas, 18(2):49-70. google scholar
  • Friedman, M. (1953). Essays in positive economics, University of Chicago Press, United States. google scholar
  • Garber, P.M. (2000). Famous first bubbles: The Fundamentals of Early Manias, MIT Press, Cambridge, MA. google scholar
  • Glosten, L. R., Jagannathan, R.& Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779-1801. google scholar
  • Güler, İ. & Gökçe, A. (2020). Yabancılara konut satışı ile konut balonu ilişkisinin GSADF sınamaları ile araştırılması: Türkiye geneli ve İstanbul, Antalya illeri örneği. Üçüncü Sektör Sosyal Ekonomi Dergisi, 55(2) ,990-1007. google scholar
  • Hall, S. G., Zacharias P. & Martin S. (1999). Detecting periodically collapsing bubbles: A Markov-switching unit root test. Journal of Applied Econometrics, 14(2), pp. 143-54. google scholar
  • Hardouvelis, G. A. (1988). Evidence on stock market speculative bubbles: Japan, the United States, and Great Britain. Federal Reserve Bank of New York Quarterly Review, (Sum), 4-16. google scholar
  • Hart, Oliver D. & Kreps, D (1986). Price destabilizing speculation. Journal of Political Economy, 94(5), pp. 927- 952. google scholar
  • Hepkorucu, A. & Genç, S. (2019). Kripto para değerleri için spekülatif fiyat balonlarının test edilmesi : Bitcoin üzerine bir uygulama. Vergi Bilim Dergisi, 2(1), 44-50 google scholar
  • Kayral, İ. E. (2020). Volatility estimatition for three cyripto currencies with the highest market cap. Finansal Araştırmalar ve Çalışmalar Dergisi, 12(22) , 152-168. google scholar
  • Kindleberger, C. P. (1978). Manias, Panics, and Crashes: A History of Financial Crises. New York: Basic Books. , xii, 271. google scholar
  • Kindleberger, Charles P., & Robert Aliber (2005). Manias, Panics and Crashes: A History of Financial Crises. John Wiley & Sons, New Jersey, 5th edition. google scholar
  • Kohn, M. (1978). Competitive speculation. Econometrica: Journal of the Econometric Society, 46(5), pp.1061-1076. google scholar
  • Koy, A. & Ekim, S . (2016). Borsa İstanbul sektör endekslerinin volatilite modellemesi,. Trakya Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi , 5(2) , 1-23 . google scholar
  • Latif, S. R., Mohd, M. A., Amin, M. N. M. & Mohamad, A. I. (2017). Testing the weak form efficient market in cyrptocurrency, Journal of Engineering and Applied Science, 12 (9): 2285-2288 google scholar
  • Meese, R., A. (1986).Testing for bubbles in exchange markets: A case of sparkling rates?” Journal of Political Economy, 94(2), 345,373. google scholar
  • Nakamoto, S. (2008). Bitcoin: A Peer-to-peer electronic cash system.,(çevrim içi) https://bitcoin.org/ bitcoin.pdf, Erişim Tarihi:3.11.2022. google scholar
  • Nelson, D., B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica - The Econometric , (2), 347-370. google scholar
  • Ng, S., & Perron, P. (2001). Lag length selection and the construction of unit root tests with good size and power. Econometrica, 69(6), 529-1554. google scholar
  • Oran, A. (2011). Balonları daha iyi tanımaya çalışmak: Balon tanımları, modelleri ve lale çılgınlığı örneği, Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 26(1),51-161. google scholar
  • Özden, Ü., H. (2008). İMKB bileşik 100 endeksi getiri volatilitesinin analizi. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 7(13), 339-350. google scholar
  • Phillips, P.C. B & Perron, P. (1988). Testing for a Unit Root in Time Series Regression, Biometrika, 75(2), ss.335 346. google scholar
  • Phillips, P., C., B. & Yu, J. (2011). Dating the timeline of financial bubbles during the subprime crises. Quantitative Economics, 2(3), 455-491. google scholar
  • Rappoport, P. & White,E. (1994). Was the crash of 1929 expected?. The American Economic Review, 84(1), 271-81. google scholar
  • Sevüktekin, M. & Nargeleçekenler, M. (2007). Ekonometrik Zaman Serileri Analizi, 1. Baskı, Ankara: Nobel Yayın. google scholar
  • Shiller, R. J. (1981). Do stock prices move too much to be justified by subsequent changes in dividends?. The American Economic Review, 71(3), 421-436 google scholar
  • Şahin, E. E. & Özkan, O. (2018). Asimetrik volatilitenin tahmini: Kripto para bitcoin uygulaması., Bilecik Şeyh Edebali Üniversitesi Sosyal Bilimler Dergisi 3(2), 240-247 google scholar
  • Şahin, E. E. (2020). Kripto para fiyatlarında balon varlığının tespiti: Bitcoin, IOTA ve Ripple örneği, Selçuk Ün. Sos. Bil. Ens. Der., (43), -69 google scholar
  • Vigna, P. (2017). Kriptopara Çağı: Buzdagı Yayınevi. google scholar
  • Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, AB., & Chen, S., (2016). The Blockchain as a software connector. 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), 182-191 google scholar
  • Yli-Huumo, J., Ko, D., Choi, S., Park, S.,& Smolander, K. (2016). Where is current research on blockchain technology?. A Systematic Review, 11(10), 1-27. google scholar
  • Zou, H.& Sun, L. (2012). The influence of insvestor sentiment on stock return and Its volatility under different market states, 2012 Fifth International Conferance On Business Inteligence and Financial Engineering, 337-341. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Altunöz, U. (2023). Kripto Paraların Volatilite Dinamiklerinin ve Spekülatif Balon Varlığının Analizi: Bitcoin, Ethereum ve Ripple Örneği. Istanbul Journal of Economics, 73(1), 615-644. https://doi.org/10.26650/ISTJECON2023-1021393


AMA

Altunöz U. Kripto Paraların Volatilite Dinamiklerinin ve Spekülatif Balon Varlığının Analizi: Bitcoin, Ethereum ve Ripple Örneği. Istanbul Journal of Economics. 2023;73(1):615-644. https://doi.org/10.26650/ISTJECON2023-1021393


ABNT

Altunöz, U. Kripto Paraların Volatilite Dinamiklerinin ve Spekülatif Balon Varlığının Analizi: Bitcoin, Ethereum ve Ripple Örneği. Istanbul Journal of Economics, [Publisher Location], v. 73, n. 1, p. 615-644, 2023.


Chicago: Author-Date Style

Altunöz, Utku,. 2023. “Kripto Paraların Volatilite Dinamiklerinin ve Spekülatif Balon Varlığının Analizi: Bitcoin, Ethereum ve Ripple Örneği.” Istanbul Journal of Economics 73, no. 1: 615-644. https://doi.org/10.26650/ISTJECON2023-1021393


Chicago: Humanities Style

Altunöz, Utku,. Kripto Paraların Volatilite Dinamiklerinin ve Spekülatif Balon Varlığının Analizi: Bitcoin, Ethereum ve Ripple Örneği.” Istanbul Journal of Economics 73, no. 1 (Sep. 2023): 615-644. https://doi.org/10.26650/ISTJECON2023-1021393


Harvard: Australian Style

Altunöz, U 2023, 'Kripto Paraların Volatilite Dinamiklerinin ve Spekülatif Balon Varlığının Analizi: Bitcoin, Ethereum ve Ripple Örneği', Istanbul Journal of Economics, vol. 73, no. 1, pp. 615-644, viewed 30 Sep. 2023, https://doi.org/10.26650/ISTJECON2023-1021393


Harvard: Author-Date Style

Altunöz, U. (2023) ‘Kripto Paraların Volatilite Dinamiklerinin ve Spekülatif Balon Varlığının Analizi: Bitcoin, Ethereum ve Ripple Örneği’, Istanbul Journal of Economics, 73(1), pp. 615-644. https://doi.org/10.26650/ISTJECON2023-1021393 (30 Sep. 2023).


MLA

Altunöz, Utku,. Kripto Paraların Volatilite Dinamiklerinin ve Spekülatif Balon Varlığının Analizi: Bitcoin, Ethereum ve Ripple Örneği.” Istanbul Journal of Economics, vol. 73, no. 1, 2023, pp. 615-644. [Database Container], https://doi.org/10.26650/ISTJECON2023-1021393


Vancouver

Altunöz U. Kripto Paraların Volatilite Dinamiklerinin ve Spekülatif Balon Varlığının Analizi: Bitcoin, Ethereum ve Ripple Örneği. Istanbul Journal of Economics [Internet]. 30 Sep. 2023 [cited 30 Sep. 2023];73(1):615-644. Available from: https://doi.org/10.26650/ISTJECON2023-1021393 doi: 10.26650/ISTJECON2023-1021393


ISNAD

Altunöz, Utku. Kripto Paraların Volatilite Dinamiklerinin ve Spekülatif Balon Varlığının Analizi: Bitcoin, Ethereum ve Ripple Örneği”. Istanbul Journal of Economics 73/1 (Sep. 2023): 615-644. https://doi.org/10.26650/ISTJECON2023-1021393



TIMELINE


Submitted09.11.2021
Accepted11.03.2022
Published Online27.06.2023

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.