Research Article


DOI :10.26650/IstanbulJPharm.2020.0078   IUP :10.26650/IstanbulJPharm.2020.0078    Full Text (PDF)

Ameliorative effects of melatonin on intestinal oxidative damage in streptozotocin-induced diabetic rats

Zatiye Ayça Çevikelli YakutGizem Buse AkçayÖzge ÇevikGöksel Şener

Background and Aims: The potential therapeutic effects of melatonin on changes in intestinal tissue of diabetic rats were investigated. Methods: Male Sprague-Dawley rats were assigned into 5 groups (10 rats in each): Control, diabetes, diabetes+insulin, diabetes+melatonin, and diabetes+insulin+melatonin groups. Streptozotocin (60 mg/kg) was administered intraperitoneally to the rats to induce diabetes. At the end of 8 weeks of treatment, after blood glucose measurement and subsequent decapitation, glutathione (GSH) and malondialdehyde (MDA) levels and caspase-3, myeloperoxidase (MPO), and superoxide dismutase (SOD) activities in the intestinal tissue were investigated. Results: In diabetic animals, elevated blood glucose levels caused oxidant damage in the intestinal tissue that was demonstrated with increased MDA levels, caspase and MPO activities, and decreased GSH levels and SOD activities. Although melatonin demonstrated more significant results than insulin, separate administration of both melatonin and insulin improved the oxidative damage parameters compared to the diabetes group. In the combined treatment group, all parameters were back to control levels statistically more significant when compared with the treatment-alone. Conclusion: Melatonin has been shown to protect intestinal tissue from diabetic oxidant damage. With insulin treatment in type I diabetes, melatonin supplements may increase the quality of life through reducing complications.


PDF View

References

  • Alikhani, V., Keshavarzi, Z., Hadjzadeh, M. A. R., & Karimi, S. (2015). The effect of melatonin on gastric parameters following diabetes induction in male rats. Acta Endocrinologica (Buc), 11(2), 155–161. https://doi.org/10.4183/aeb.2015.155 google scholar
  • • Anarkooli, I. J., Sankian, M., Ahmadpour, S., Varasteh, A. R., & Haghir, H. (2008). Evaluation of Bcl-2 family gene expression and caspase-3 activity in hippocampus STZ- induced diabetic rats. Experimental Diabetes Research, 2008, 638467. https://doi. org/10.1155/2008/638467 google scholar
  • • Bansal, A. K., & Bilaspuri, G. S. (2011). Impact of oxidative stress and antioxidants on semen functions. Veterinary Medicine International, 2011, 686137. https://doi.org/10.4061/2011/686137 google scholar
  • • Beuge, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–311. https://doi.org/10.1016/ s0076-6879(78)52032-6 google scholar
  • • Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888. google scholar
  • • Bhor, V. M., Raghuram, N., & Sivakami, S. (2004). Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. The International Journal of Biochemistry & Cell Biology, 36, 89–97. google scholar
  • • Bolkent, S., Bolkent, S., Yanardag, R., Mutlu, O., & Yildirim, S. (2006). Alterations in somatostatin cells and biochemical parameters following zinc supplementation in gastrointestinal tissue of streptozotocin- induced diabetic rats. Acta Histochem Cytochem, 39(1), 9–15. https://doi.org/10.1267/ahc.05054 google scholar
  • • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(2), 248–254. https://doi.org/10.1006/abio.1976.9999 google scholar
  • • Costes, S., Boss, M., Thomas, A. P., & Matveyenko, A. V. (2015). Activation of Melatonin Signaling Promotes β-Cell Survival and Function. Molecular Endocrinology, 29(5), 682–692. https://doi. org/10.1210/me.2014-1293 google scholar
  • • Çevik, Ö., Oba, R., Macit, Ç., Çetinel, Ş., Çilingir-Kaya, Ö.T., Şener, E., & Şener, G. (2012). Lycopene inhibits caspase-3 activity and reduces oxidativeorgan damage in a rat model of thermal injury. Burns, 38(6), 861–871. https://doi.org/10.1016/j.burns.2012.01.006 google scholar
  • • Djordjevic, G. M., Djuric, S. S., Djordjevic, V. B., Apostolski, S., & Zivkovic, M. (2011). The role of oxidative stress in pathogenesis of diabetic neuropathy: Erythrocyte superoxide dismutase, catalase and glutathione peroxidase level in relation to peripheral nerve conduction in diabetic neuropathy patients. Dr. Colleen Croniger (Ed.), Role of the Adipocyte in Development of Type 2 Diabetes (pp. 153-178). Rijeka, Croatia: InTech.. Retrieved from https://www.intechopen.com/ books/role-of-the-adipocyte-in-development-of-type-2-diabetes/ the-role-of-oxidative-stress-in-pathogenesis-of-diabetic-neuropathy- erythrocyte-superoxide-dismutase google scholar
  • • Esposito, E., & Cuzzocrea, S. (2010). Antiinflammatory activity of melatonin in central nervous system. Current Neuropharmacology, 8(3), 228–242. https://doi.org/10.2174/157015910792246155 google scholar
  • • Garcia, A. G., Rodrigues, M. R., Alonso, C. G., Rodrigues-Ochoa, D. Y., & Aguilar, C. A. (2015). Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with Type 2 diabetes mellitus. Diabetes & Metabolism Journal, 39(1), 59–65. https://doi.org/10.4093/dmj.2015.39.1.59 google scholar
  • • Ghosh, S., Khazaei, M., Moien-Afshari, F., Ang, L. S., Granville, D. J., Verchere, C. B. … Laher, I. (2009). Moderate exercise attenuates caspase-3 activity, oxidative stress, and inhibits progression of diabetic renal disease in db/db mice. American Journal of Physiology- Renal Physiology, 296(4), 700–708. https://doi.org/10.1152/ ajprenal.90548.2008 google scholar
  • • Gurel-Gokmen, B., Ipekci, H., Oktay, S., Alev, B., Ustundag, U. V., Ak, E., Tunali-Akbay, T. (2018). Melatonin improves hyperglycemia induced damages in rat brain. Diabetes Metabolism Research and Reviews, 34(8), e3060. https://doi.org/10.1002/dmrr.3060 google scholar
  • • Hadjzadeh, M. A. R., Alikhani, V., Hosseinian, S., Zarei, B., & Keshavarzi, Z. (2018). The effect of melatonin against gastric oxidative stress and dyslipidemia in streptozotocin-ınduced diabetic rats. Acta Endocrinologica (Buchar), 14(4), 453–458. https://doi. org/10.4183/aeb.2018.453 google scholar
  • • Hardin, J. A., Donegan, L., Woodman, R. C., Trevenen, C., & Gall, D. G. (2002). Mucosal inflammation in a genetic model of spontaneous type I diabetes mellitus. Canadian Journal of Physiology and Pharmacology, 80(11), 1064–1070. https://doi.org/10.1139/y02-138 google scholar
  • • Hillegas, L. M., Griswold, D. E., Brickson, B., & Winslow, C. A. (1990). Assessment of myeloperoxidase activity in whole rat kidney. Journal of Pharmacological Methods, 24(4), 285–295. https://doi. org/10.1016/0160-5402(90)90013-b google scholar
  • • Husni, A., Anggara, F. P., Isnansetyo, A., & Nugroho, A. E. (2016). Blood glucose level and lipid profile of streptozotozin-induced diabetic rats treated with Sargassum polystum extract. International Journal of Pharmaceutical and Clinical Research, 8(5), 445– 450. https://doi.org/10.3923/jbs.2016.58.64 google scholar
  • • Hussain, S. A., Khadim, H. M., Khalaf, B. H., Ismail, S. H., Hussein, K. I., & Sahib, A. S. (2006). Effects of melatonin and zinc on glycemic control in Type 2 diabetic patients poorly controlled with metformin. Saudi Medical Journal, 27(10),1483–1488. google scholar
  • • Ighodaro, O. M. (2018). Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine & Pharmacotherapy, 108, 656–662. google scholar
  • • Kochar, N. I., & Umathe, S. N. (2009). Beneficial effects of L-arginine against diabetes-induced oxidative stress in gastrointestinal tissues in rats. Pharmacological Reports, 61, 665–672. https://doi. org/10.1016/s1734-1140(09)70118-5 google scholar
  • • Kowluru, R., & Koppolu, P. (2002). Diabetes-induced activation of caspase- 3 in retina: effect of antioxidant therapy. Free Radical Research, 36(9), 993–999. https://doi.org/10.1080/ 1071576021000006572 google scholar
  • • Liadis, N., Murakami, K., Eweida, M., Elford, A. R., Sheu, L., Gaisano, H. Y. … Woo, M. (2005). Caspase-3-dependent β-cell apoptosis in the initiation of autoimmune diabetes Mellitus. Molecular and Cellular Biology, 25(9), 3620–3629. https://doi.org/10.1128/ MCB.25.9.3620-3629.2005 google scholar
  • • Loven, D. P., Scheld, H. P., Oberley, L. W., Wilson, H. D., Bruch, L., Niehaus, C. L. (1982). Superoxide dismutase activity in the intestine of the streptozotocin-diabetic rat. Endocrinology, 111(3), 737–742. https://doi.org/10.1210/endo-111-3-737 google scholar
  • • Mandal, M., Varghese, A., Gaviraju, V. K., Talwar, S. N., Malini, S. S. (2019). Impact of hyperglycaemia on molecular markers of oxidative stress and antioxidants in type 2 diabetes mellitus. Clinical Diabetology, 8(4), 215–222. https://doi.org/10.5603/DK.2019.0015 google scholar
  • • Montilla, P. L., Tunez, I. F., de Agueda, C. M., Gascon, F. L., Soria, J. V. (1998). Protective role of melatonin and retinol palmitate in oxidative stress and hyperlipidemic nephropathy induced by adriamycin in rats. Journal of Pineal Research, 25(2), 86–93. https://doi. org/10.1111/j.1600-079x.1998.tb00544.x google scholar
  • • Mylroie, A. A., Collins, H., Umbles, C., Kyle, J. (1986). Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicology and Applied Pharmacology, 82(3), 512–520. https://doi.org/10.1016/0041- 008x(86)90286-3 google scholar
  • • Nogueira, T. C., Lellis-Santos, C., Jesus, D. S., Taneda, M., Rodrigues, S. C., Amaral, F. G. … Anhe, G. F. (2011). Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology, 152(4), 1253–1263. https://doi. org/10.1210/en.2010-1088 google scholar
  • • Onk, D., Onk, O. A., Erol, H. S., Özkaraca, M., Çomaklı, S., Ayazoğlu, T. A., … Ünver, S. (2018). Effect of melatonin on antioxidant capacity, ınflammation and apoptotic cell death in lung tissue of diabetic rats. Acta Cirurgica Brasileira, 33(4), 375–385. https://doi. org/10.1590/s0102-865020180040000009 google scholar
  • • Owino, S., Buonfiglio, D. D. C., Tchio, C., Tosini, G. (2019). Melatonin signaling a key regulator of glucose homeostasis and energy metabolism. Frontiers in Endocrinology, 10, 488. https://doi. org/10.3389/fendo.2019.00488 google scholar
  • • Paskaloğlu, K., Şener, G., Ayanoğlu-Dülger, G. (2004). Melatonin treatment protects against diabetes-induced functional and biochemical changes in rat aorta and corpus cavernosum. European Journal of Pharmacology, 499(3), 345–354. https://doi. org/10.1016/j.ejphar.2004.08.002 google scholar
  • • Santhi, T., Shaik, J. B., Mahendran, B. (2017). Myeloperoxidase levels predicts the vascular dysfunction in patients with Type 2 Diabetes Mellitus. Journal of Dental and Medical Sciences, 16(3), 30–34. google scholar
  • • Song, P., Xu, J., Song, Y., Jiang, S., Yuan, H., Zhang, X. (2015). Association of plasma myeloperoxidase level with risk of coronary artery disease in patients with Type 2 diabetes. Disease Markers, 2015, 761939. https://doi.org/10.1155/2015/761939 google scholar
  • • Ullah, A., Khan, A., Khan, I. (2016). Diabetes mellitus and oxidative stress––A concise review. Saudi Pharmaceutical Journal, 24, 547–553. https://doi.org/10.1016/j.jsps.2015.03.013 google scholar
  • • Vural, H., Sabuncu, T., Arslan, S.O., Aksoy, N. (2001). Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. Journal of Pineal Research, 31, 193–198. https://doi. org/10.1034/j.1600-079x.2001.310301.x google scholar
  • • Wolosin, J. D., & Edelman, S. V. (2000). Diabetes and the gastrointestinal tract. Clinical Diabetes, 18(4), 148. google scholar
  • • Yang, X., Zou, D., Tang, S., Fan, T., Su, H., Hu, R. … Wang, Y. (2016). Ameliorative effect of melatonin against increased intestinal permeability in diabetic rats: possible involvement of MLCK-dependent MLC phosphorylation. Molecular Cellular Biochemistry, 416(1- 2), 23–32. https://doi.org/10.1007/s11010-016-2691-4. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Çevikelli Yakut, Z.A., Akçay, G.B., Çevik, Ö., & Şener, G. (2020). Ameliorative effects of melatonin on intestinal oxidative damage in streptozotocin-induced diabetic rats. İstanbul Journal of Pharmacy, 0(0), 5-10. https://doi.org/10.26650/IstanbulJPharm.2020.0078


AMA

Çevikelli Yakut Z A, Akçay G B, Çevik Ö, Şener G. Ameliorative effects of melatonin on intestinal oxidative damage in streptozotocin-induced diabetic rats. İstanbul Journal of Pharmacy. 2020;0(0):5-10. https://doi.org/10.26650/IstanbulJPharm.2020.0078


ABNT

Çevikelli Yakut, Z.A.; Akçay, G.B.; Çevik, Ö.; Şener, G. Ameliorative effects of melatonin on intestinal oxidative damage in streptozotocin-induced diabetic rats. İstanbul Journal of Pharmacy, [Publisher Location], v. 0, n. 0, p. 5-10, 2020.


Chicago: Author-Date Style

Çevikelli Yakut, Zatiye Ayça, and Gizem Buse Akçay and Özge Çevik and Göksel Şener. 2020. “Ameliorative effects of melatonin on intestinal oxidative damage in streptozotocin-induced diabetic rats.” İstanbul Journal of Pharmacy 0, no. 0: 5-10. https://doi.org/10.26650/IstanbulJPharm.2020.0078


Chicago: Humanities Style

Çevikelli Yakut, Zatiye Ayça, and Gizem Buse Akçay and Özge Çevik and Göksel Şener. Ameliorative effects of melatonin on intestinal oxidative damage in streptozotocin-induced diabetic rats.” İstanbul Journal of Pharmacy 0, no. 0 (Sep. 2021): 5-10. https://doi.org/10.26650/IstanbulJPharm.2020.0078


Harvard: Australian Style

Çevikelli Yakut, ZA & Akçay, GB & Çevik, Ö & Şener, G 2020, 'Ameliorative effects of melatonin on intestinal oxidative damage in streptozotocin-induced diabetic rats', İstanbul Journal of Pharmacy, vol. 0, no. 0, pp. 5-10, viewed 16 Sep. 2021, https://doi.org/10.26650/IstanbulJPharm.2020.0078


Harvard: Author-Date Style

Çevikelli Yakut, Z.A. and Akçay, G.B. and Çevik, Ö. and Şener, G. (2020) ‘Ameliorative effects of melatonin on intestinal oxidative damage in streptozotocin-induced diabetic rats’, İstanbul Journal of Pharmacy, 0(0), pp. 5-10. https://doi.org/10.26650/IstanbulJPharm.2020.0078 (16 Sep. 2021).


MLA

Çevikelli Yakut, Zatiye Ayça, and Gizem Buse Akçay and Özge Çevik and Göksel Şener. Ameliorative effects of melatonin on intestinal oxidative damage in streptozotocin-induced diabetic rats.” İstanbul Journal of Pharmacy, vol. 0, no. 0, 2020, pp. 5-10. [Database Container], https://doi.org/10.26650/IstanbulJPharm.2020.0078


Vancouver

Çevikelli Yakut ZA, Akçay GB, Çevik Ö, Şener G. Ameliorative effects of melatonin on intestinal oxidative damage in streptozotocin-induced diabetic rats. İstanbul Journal of Pharmacy [Internet]. 16 Sep. 2021 [cited 16 Sep. 2021];0(0):5-10. Available from: https://doi.org/10.26650/IstanbulJPharm.2020.0078 doi: 10.26650/IstanbulJPharm.2020.0078


ISNAD

Çevikelli Yakut, ZatiyeAyça - Akçay, GizemBuse - Çevik, Özge - Şener, Göksel. Ameliorative effects of melatonin on intestinal oxidative damage in streptozotocin-induced diabetic rats”. İstanbul Journal of Pharmacy 0/0 (Sep. 2021): 5-10. https://doi.org/10.26650/IstanbulJPharm.2020.0078



TIMELINE


Submitted01.08.2020
Accepted11.09.2020
Published Online16.10.2020

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.