Research Article


DOI :10.26650/MED.1278850   IUP :10.26650/MED.1278850    Full Text (PDF)

Evaluating Production Companies on Borsa Istanbul In Terms of Financial Indicators: Clustering Companies Using K-Means with the Silhouette Index and Elbow Method

Çiğdem ÖzarıEsin Nesrin Can

The main aim of this study is to cluster production companies in Borsa Istanbul based on financial ratios using the k-means clustering method and to determine the natural structure of these companies. The analysis focuses on 11 years of production companies based on 15 financial ratios and two financial indicators. The study determined the similarity among the financial performances of these companies using the k-means clustering analysis and evaluated the most appropriate cluster group and the most appropriate number of clusters that should be separated using the silhouette index and elbow method. The analysis was performed with different initial centers within the dataset for each k value by considering the choice of the initial center, which is a drawback of the k-means clustering method. In addition, because the number of clusters in which production companies should be grouped naturally is unknown, different k values were examined, with the most appropriate number of clusters to be separated from these values being determined using the silhouette index and elbow method. The results of the clustering analysis imply that splitting production companies into two clusters provides more accurate results.

JEL Classification : G17 , C38 , M00
DOI :10.26650/MED.1278850   IUP :10.26650/MED.1278850    Full Text (PDF)

Finansal Göstergeler Açısından Borsa İstanbul’da Faaliyet Gösteren Üretim Şirketlerinin Değerlendirilmesi: Silhouette İndeksine ve Elbow Yöntemine Göre K-Ortalamalar ile Kümelenmesi

Çiğdem ÖzarıEsin Nesrin Can

Bu çalışmanın ana amacı, k-ortalamalar kümeleme yöntemi kullanılmak suretiyle, Borsa İstanbul’da faaliyet gösteren üretim şirketlerini, finansal tablolarından hareketle hesaplanmış finansal göstergelerine göre gruplamak ve grup yapılarını değerlendirmektir. Çalışmada şirketler 11 yıllık finansal tablolardan yararlanılarak 15 finansal oran ve 2 gösterge ile gruplanmıştır. Şirketlerin finansal performans benzerliği k-ortalamalar kümeleme yöntemi ile değerlendirilirken, uygun küme grubu ve ayrılması gereken uygun küme sayısı Silhouette İndeks ve Elbow Yöntemi aracılığı ile değerlendirilmiştir. Çalışmada k-ortalamalar kümeleme yönteminin sorunsallarından biri olan başlangıç merkez seçimi göz önünde tutularak, her “k” değeri için veri seti içerisinden farklı başlangıç merkezleri itibarıyla analiz gerçekleştirilmiştir. Ayrıca üretim şirketlerinin doğal gruplanması gereken küme sayısı bilinmediği için farklı “k” değerleri incelenmiş ve bu değerlerden hareketle ayrışması uygun olan küme sayısı, Silhouette İndeks ve Elbow Yöntemi yardımıyla belirlenmiştir. Yapılan analizler sonucunda Borsa İstanbul’da faaliyet gösteren üretim şirketlerinin iki kümeye ayrılmasının daha fazla kümeye ayrılmasına göre daha uygun olduğu belirlenmiştir.

JEL Classification : G17 , C38 , M00

EXTENDED ABSTRACT


The main purpose of this study is to cluster production companies operating in Borsa Istanbul based on the most important financial indicators using the k-means clustering method and to find the natural and accurate structure of these companies. Some studies determine the performance of companies and even universities in different sectors by using financial ratios and indicators alongside the k-means clustering method in order to determine their place in the sector.

Unlike other studies, this study aims to determine the most appropriate grouping structure by running an algorithm for different initial centers. In other words, it aims to eliminate one of the drawbacks of the k-means clustering analysis, which is the selection of initial centers, by considering different initial centers from inside the dataset. In addition, the natural structure (i.e., grouping structure) of production companies is not well defined, which means that the accurate value of k is not determined. As such, the k-means clustering algorithm is applied for different values of k (e.g., 2, 3, 4, and 5) in order to determine which cluster group is more accurate using the silhouette index and elbow method. Determining the best valueof k provides information about how many clusters similar companies will be grouped into in terms of financial performance similarities of production companies.

Due to one of the study’s goals being to understand and determine the natural structure of production companies, having a long enough study period is desired. The study covers 11 years of data. Although Borsa Istanbul had142 different companies operating during this period of analysis, the 42 companies of these that did not operate throughout the entire 11-year period were not included in the study. To discover the similarities between these companies concerning their financial performance, this study needed to examine their financial ratios. Due to variation of the number of financial ratios in the literature, the researcher in this study has decided to select the financial ratios to be used in the analysis based on scientific reasons. This study has examined the literature and resultantly uses 15 financial ratios and two indicators. Four of these show the ability of short-term assets to meet the short-term liabilities of companies, five show the profitability of companies, and three show the ability of a company to effectively used their liabilities. One instance that should not be overlooked in this situation is the possibility of obtaining varied outcomes by grouping these producing organizations with various financial ratios.

During the study period, the EREGL and TUPRS listings remained in the same group and showed similarities in terms of financial performance. In Year 2, the ARCLK listing was added to this group and remained in the same group as EREGL and TUPRS for all subsequent years. In Year 3, AEFES was added to this group. Similar to ARCLK, AEFES continued to participate in the same group for all subsequent years after joining the group. In Year 4, the TOASA and VESTL listings were included in this group. In addition, the FROTO listing has been determined to be in the same group as these companies only for Years 6 and 10. ARCLK, ERGL, TUPRS, and AEFES were discovered to be part of the same cluster group for 8 years.

As a result of the findings obtained from the study, the financial performance of production companies can be said to have been preserved over time. However, the fact that 40 companies were not included in the study due to data losses may indicate that the resulting cluster groups do not fully reflect reality. Future studies may obtain more effective results by comparing

the results that were obtained using different clustering methods. In addition, which of the cluster groups is more suitablecan be determined using different statistical methods.


PDF View

References

  • Abbas, F., Tahir, M., & Rahman, M. U. (2012). A comparison of financial performance in the banking sector: Some evidence from Pakistani commercial banks. Journal of Business Administration and Education, 1(1), 101-112. google scholar
  • Abdel-Basset, M., Ding, W., Mohamed, R., & Metawa, N. (2020). An integrated plithogenic MCDM approach for financial performance evaluation of manufacturing industries. Risk Management, 22, 192-218. https://doi.org/10.1057/s41283-020-00061-4 google scholar
  • Acar, M. (2003). Tarımsal işletmelerde finansal performans analizi. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (20), 21-37. google scholar
  • Adedeji, E. A. (2014). A tool for measuring organization performance using ratio analysis. Research Journal of Finance and Accounting, 5(19), 16-22. google scholar
  • Ağırbaş, İ. (2014). Sağlık Kurumlarında Finansal Yönetim ve Maliyet Analizi, Siyasal Kitabevi, Ankara. google scholar
  • Akay, Ö., Çelik, C. ve Kıral, G. (2019). Konut talebine göre benzer özellik gösteren Türkiye illerinin panel veri kümeleme analizi ile belirlenmesi. Uluslararası Ekonomi ve Yenilik Dergisi, 5(2), 231-245. google scholar
  • Akdamar, E. (2019). OECD ülkelerinin bazı iş gücü piyasası göstergeleri kullanılarak kümeleme analizi ve çok boyutlu ölçekleme analizi ile irdelenmesi. Akademik Araştırmalar ve Çalışmalar Dergisi, 11(20), 50-65. google scholar
  • Akgüç, Ö. (2013). Mali Tablolar Analizi, Genişletilmiş 15. Baskı, Avcıol Basım Yayım, İstanbul. google scholar
  • Alam, H. M., Raza, A., & Akram, M. (2011). A financial performance comparison of public vs private banks: The case of commercial banking sector of Pakistan. International Journal of Business and Social Science, 2(11), 56-64. google scholar
  • Anitha, P., & Patil, M. M. (2022). RFM model for customer purchase behavior using K-Means algorithm. Journal of King Saud University-Computer and Information Sciences, 34(5), 1785-1792. https://doi.org/10.1016/j.jksuci.2019.12.011 google scholar
  • Aslanyürek, M., & Mesut, A. (2021). Kümeleme Performansını Ölçmek için Yeni Bir Yöntem ve Metin Kümeleme için Değerlendirmesi. Avrupa Bilim ve Teknoloji Dergisi, (27), 53-65. google scholar
  • Aydın, D. ve Başkır, M. B. (2013). Bankaların 2012 yılı sermaye yeterlilik rasyolarına göre kümeleme analizi ve çok boyutlu ölçekleme sonucu sınıflandırılma yapıları. Bankacılık ve Sigortacılık Araştırmaları Dergisi, 1(5), 29-47. google scholar
  • Arı, E. S., Özköse, H., Doğan, A. ve Calp, M. H. (2016). İstanbul Borsası’nda işlem gören firmaların finansal performanslarının kümeleme analizi ile değerlendirilmesi. Bilişim Teknolojileri Dergisi, 9(1), 33-39. https://doi.org/10.17671/btd.55726 google scholar
  • Bansal, R. (2014). A Comparative Analysis of the Financial Ratios of Selected Banks in the India for the period of 2011-2014. Research Journal of Finance and Accounting, 5(19), 153-167. google scholar
  • Bagirov, A. M., Aliguliyev, R. M., & Sultanova, N. (2023). Finding compact and well-separated clusters: Clustering using silhouette coefficients. Pattern Recognition, 135,1-15. https://doi.org/10.1016/j.patcog.2022.109144 google scholar
  • Bağcı, H., & Yerdelen Kaygın, C. (2020). The financial performance measurement of the companies listed ın the bıst holding and ınvestment ındex by the mcdm methods. Journal of Accounting & Finance, (87), 301-324. https://doi.org/10.25095/mufad.756394 google scholar
  • Bholowalia, P., & Kumar, A. (2014). EBK-means: A clustering technique based on elbow method and k-means in WSN. International Journal of Computer Applications, 105(9), 17-24. google scholar
  • Bigdeli, A., Maghsoudi, A., & Ghezelbash, R. (2022). Application of self-organizing map (SOM) and K-means clustering algorithms for portraying geochemical anomaly patterns in Moalleman district, NE Iran. Journal of Geochemical Exploration, 233(106923),1-13. https://doi.org/10.1016/j.gexplo.2021.106923. google scholar
  • Birkalan, A. Ö., & Tekeli, R. (2022). K-Means yöntemi ile Türkiye’nin vergi takozu açısından OECD ülkeleri arasındaki yerinin belirlenmesi. Proceeding Book, 260. google scholar
  • Burn, D. H., Zrinji, Z., & Kowalchuk, M. (1997). Regionalization of catchments for regional flood frequency analysis. Journal of Hydrologic Engineering, 2(2), 76-82. google scholar
  • Bülbül, Ş. ve Camkıran, C. (2018). Bankaların klasik ve bulanık yaklaşımlarla sınıflandırılması. Trakya Üniversitesi Sosyal Bilimler Dergisi, 20(2), 367-385. https://doi.org/10.26468/trakyasobed.464442. google scholar
  • Bülüç, F., Özkan, O. ve Ağırbaş, İ. (2017). Oran analizi yöntemiyle özel hastane finansal performansının değerlendirilmesi. International of Academic Value Studies, 3(11), 64-72. google scholar
  • Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory andMethods, 3(1), 1-27. google scholar
  • Coşkun, E., Gündoğan, E., Kaya, M., & Alhajj, R. (2021). Veri madenciliği yöntemleri kullanarak yoğun bakım ünitesindeki hastaların sınıflandırması. Computer Science, (Special), 319-328. https://doi.org/10.53070/bbd.990718. google scholar
  • Demirkale, Ö. ve Özarı, Ç. (2020). K-ortalamalar kümeleme yöntemi ile temel makroekonomik ve finansal göstergeler ile değerlendirilmesi: kırılgan beşli ülkelerinin örneği. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 5(1), 22-32. google scholar
  • Değirmenci, N. ve Yakici Ayan,T. (2020). OECD ülkelerinin sağlık göstergeleri açısından bulanık kümeleme analizi ve TOPSIS yöntemine göre değerlendirilmesi. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 38(2), 229-241. https://doi. org/10.17065/huniibf.592991. google scholar
  • Dhandayudam, P., & Krishnamurthi, I. (2012). An improved clustering algorithm for customer segmentation. International Journal of Engineering Science and Technology, 4(2), 99-102. google scholar
  • Dikmen, F. C. (2021). Türkiye’deki illerin iyi oluş ve yaşam kalitesinin r kümeleme çözümlemesiyle incelenmesi. Anadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 22(2), 39-58. google scholar
  • Erkılıç, C. E. ve Aksoy, A. (2020). Hastanelerde finansal başarısızlık tahmini: Lojistik regresyon modeli ile kamu hastaneleri üzerine bir uygulama. İşletme Araştırmaları Dergisi, 12(2), 1415-1433. google scholar
  • Esmer, Y. ve Dayı F. (2019). Stratejik performans yönetiminde finansal performans değerlemesi: BİST otomotiv sektöründe bir uygulama. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi, 22(2), 628-645. google scholar
  • Feranecova, A., & Krigovska, A. (2016). Measuring the performance of universities through cluster analysis and the use of financial ratio indexes. Economics & Sociology, 9(4), 259-27. https://doi.org/10.14254/2071-789X.2016/9-4/16 google scholar
  • Gazel, S. ve Akel, V. (2018). Borsa İstanbul’da sektör sınıflandırmasının kümeleme analizi ile belirlenmesi. Muhasebe ve Finansman Dergisi, (77), 147-164. google scholar
  • Gençoğlu, P. (2018). Türkiye’de illerin gelişmişlik düzeyi dikkate alınarak sağlık hizmetlerinin kümeleme analizi aracılığıyla değerlendirilmesi. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (52), 301-324. google scholar
  • He, X., Wang, C., Yang, X., & Lai, Z. (2021). Do enterprise ownership structures affect financial performance in China’s power and gas industries?. Utilities Policy, 73, 1-11. https://doi.org/10.1016/j.jup.2021.101303 google scholar
  • Hu, H., Zhao, J., Bian, X., & Xuan, Y. (2023). Transformer-customer relationship identification for low-voltage distribution networks based on joint optimization of voltage silhouette coefficient and power loss coefficient. Electric Power Systems Research, 216(109070), 1-12. https://doi.org/10.1016/j.epsr.2022.109070 google scholar
  • İncekırık, A. ve Altın E. (2021). Türkiye’deki illerin ulaştırma göstergelerine göre kümeleme analizi yöntemleriyle sınıfladırılması. Manisa Celal Bayar Üniversitesi Sosyal Bilimler Dergisi, (19)3: 186-206. https://doi.org/10.18026/cbayarsos.891649 google scholar
  • Karapınar, A., & Ayıkoğlu Zaif, F. (2018). Finansal Analiz (UFRS ile Uyumlu), 5. Baskı, Gazi Kitabevi, Ankara. google scholar
  • Kartal, E., Balaban, M. E., & Bayraktar, B. (2021). Changing status of global covid-19 outbreak in the world and in turkey and clustering analysis. Journal of Istanbul Faculty of Medicine, 84(1), 9-20. google scholar
  • Ketchen, D. J., & Shook, C. L. (1996). The application of cluster analysis in strategic management research: an analysis and critique. Strategic Management Journal, 17(6), 441-458. google scholar
  • Kou, G., Peng, Y., & Wang, G. (2014). Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Information Sciences, 275, 1-12. google scholar
  • Kumbirai, M., & Webb, R. (2010). A financial ratio analysis of commercial bank performance in South Africa. African Review of Economics and Finance, 2(1), 30-53. google scholar
  • Lin, G. F., & Chen, L. H. (2006). Identification of homogeneous regions for regional frequency analysis using the self-organizing map. Journal of Hydrology, 324(1-4), 1-9. https://doi.org/10.1016/j.jhydrol.2005.09.009 google scholar
  • MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley Symposium On Mathematical Statistics And Probability, 1(14), 281-297. google scholar
  • Mamat, A. R., Mohamed, F. S., Mohamed, M. A., Rawi, N. M., & Awang, M. I. (2018). Silhouette index for determining optimal k-means clustering on images in different color models. International Journal of Engineering Technology, 7(2), 105-109. google scholar
  • Meilâ, M., & Heckerman, D. (1998, July). An experimental comparison of several clustering and initialization methods. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, 386-395. google scholar
  • Mercadier, M., Tarazi, A., Armand, P., & Lardy, J. P. (2021). Banks’ risk clustering using k-means: a method based on size and individual and systemic risks. Available at SSRN. 1-47 http://dx.doi.org/10.2139/ssrn.3946293 google scholar
  • Miller-Nobles, T. L., Mattison, B., & Matsumura, E. M. (2016). Horngren’s Accounting: The Managerial Chapters. Pearson. google scholar
  • Mohamed, E., & Çelik, T. (2022). Early detection of failures from vehicle equipment data using K-means clustering design. Computers and Electrical Engineering, 103(108351), 1-13. https://doi.org/10.1016/j.compeleceng.2022.108351 google scholar
  • Moldovan, D., & Mutu, S. (2015, June). A cluster analysis on the default determinants in the European banking sector. In International Conference on Business Information Systems, 64-74. Springer, Cham. google scholar
  • Momeni, M., Mohseni, M., & Soofi, M. (2015). Clustering stock market companies via k-means algorithm. Kuwait Chapter of Arabian Journal of Business and Management Review, 4(5), 1-10. google scholar
  • Mouton, J. P., Ferreira, M., & Helberg, A. S. (2020). A comparison of clustering algorithms for automatic modulation classification. Expert Systems with Applications, 151, 113317. https://doi.org/10.1016/j.eswa.2020.113317 google scholar
  • Orçun, Ç., & Eren, B. S. (2017). TOPSIS yöntemi ile finansal performans değerlendirmesi: XUTEK üzerinde bir uygulama. Muhasebe ve Finansman Dergisi, (75), 139-154. google scholar
  • Oruç Erdogan, E., Erdogan, M., & Ömürbek, V. (2015). Evaluating the effects of various financial ratios on company financial performance: Application in Borsa Istanbul. Business and Economics Research Journal, 6(1), 35-42. google scholar
  • Öğünç, H. (2019). Bir tuğla üretim işletmesi ve ilişkili sektörlerin karşılaştırmalı finansal analizi. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 3(2), 241-262. doi.org/10.31200/makuubd.567335 google scholar
  • Ömürbek, V., Kınay B. (2013). Havayolu taşımacılığı sektöründe TOPSIS yöntemiyle finansal performans değerlendirmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 18(3), 343-363. google scholar
  • Özarı, Ç., & Erol, Demir, E. (2019). Trend Analizi ve Gri İlişkisel Analiz Yöntemleriyle Finansal Performans Analizi. R&S-Research Studies Anatolia Journal, 2(5), 230-246. google scholar
  • Özari, Ç., & Can, E. N. (2023). Financial Performance Evaluating and Ranking Approach for Banks in Bist Sustainability Index Using Topsis and K-Means Clustering Method, Academic Journal of Interdisciplinary Studies, 12(1), 34-50. google scholar
  • Özcan, I. (2019). Entropi ve TOPSIS yöntemleriyle finansal performans ile pay senedi getirileri arasındaki ilişkinin incelenmesi. Kent Akademisi, 12(1), 200-213. google scholar
  • Özgülbaş, N., Koyuncugil, A. S., Duman, R., & Hatipoğlu, B. (2008). Özel hastane sektörünün finansal değerlendirmesi. Muhasebe ve Finansman Dergisi, (40), 120-131. google scholar
  • Paul, A., & Sen, J. (2018). Livability assessment within a metropolis based on the impact of integrated urban geographic factors (IUGFs) on clustering urban centers of Kolkata. Cities, 74, 142-150. https://doi.org/10.1016/j.cities.2017.11.015 google scholar
  • Pham, D. T., Dimov, S. S., & Nguyen, C. D. (2005). Selection of K in K-means clustering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 219(1), 103-119. https://doi.org/10.1243/095440605X8298. google scholar
  • Rashid, C. A. (2018). Efficiency of financial ratios analysis for evaluating companies’ liquidity. International Journal of Social Sciences & Educational Studies, 4(4), 110-123. https://doi.org/0.23918/ijsses.v4i4p110. google scholar
  • Risheh, A., Tavakolian, P., Melinkov, A., & Mandelis, A. (2022). Infrared computer vision in non-destructive imaging: Sharp delineation of subsurface defect boundaries in enhanced truncated correlation photothermal coherence tomography images using K-means clustering. NDT & E International, 125(102568), 1-4. https://doi.org/10.1016/j.ndteint.2021.102568 google scholar
  • Rodrigues, L., & Rodrigues, L. (2018). Economic-financial performance of the Brazilian sugarcane energy industry: An empirical evaluation using financial ratio, cluster and discriminant analysis. Biomass and bioenergy, 108, 289-296. https://doi.org/10.1016/j. biombioe.2017.11.013 google scholar
  • Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. google scholar
  • Santis, P., Albuquerque, A., & Lizarelli, F. (2016). Do sustainable companies have a better financial performance? A study on Brazilian public companies. Journal of Cleaner Production, 133, 735-745. https://doi.org/10.1016/j.jclepro.2016.05.180. google scholar
  • Sangaiah, A. K., Rezaei, S., Javadpour, A., & Zhang, W. (2023). Explainable AI in big data intelligence of community detection for digitalization e-healthcare services. Applied Soft Computing, 136(110119), https://doi.org/10.1016/j.asoc.2023.110119 google scholar
  • Sevimli Deniz, S. (2019). Kümeleme analizinde küme doğrulama yöntemleri (Bölüm 10). A. Öztekin ve N. Mansuroğlu (Ed.), Fen bilimleri ve matematik alanında araştırma makaleleri içinde (s. 183-194), Ankara: Geceakademi. google scholar
  • Shen, L., Zhang, Z., & Long, Z. (2017). Significant barriers to green procurement in real estate development. Resources, Conservation and Recycling, 116, 160-168. https://doi.org/10.1016/j.resconrec.2016.10.004 google scholar
  • Steinbach, M., Karypis, G., & Kumar, V. (2000). A comparison of document clustering techniques, Technical Report, 1-22. google scholar
  • Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., & Satoto, B. D. (2018, April). Integration k-means clustering method and elbow method for identification of the best customer profile cluster. In IOP conference series: materials science and engineering. IOP Publishing. https://doi.org/10.1088/1757-899X/336/1/012017 google scholar
  • Tavşanlı, M. B., & Hamlacı, T. (2021). Financial performance of Turkish banks in the covid-19 era: a cluster analysis. Journal of Economics Finance and Accounting, 8(4), 184-189. https://doi.org/10.17261/Pressacademia.2021.1474. google scholar
  • Tekin, B., & Temelli, F. (2021). Firmaların kümeleme analizi ile finansal oranlar temelinde finansal başarılarının değerlendirilmesi: Borsa İstanbul Örneği. JOEEP: Journal of Emerging Economies and Policy, 6(1), 210-220. google scholar
  • Thorndike, R. L. (1953). Who belongs in the family? Pyschometrika 18 (4): 267-276. google scholar
  • Verma, R., Patel, M., Shikha, D., & Mishra, S. (2023). Assessment of food safety aspects and socioeconomic status among street food vendors in Lucknow city. Journal of Agriculture and Food Research, 11(100469). https://doi.org/10.1016/j.jafr.2022.100469 google scholar
  • Wang, R., Hozumi, Y., Yin, C., & Wei, G. W. (2020). Mutations on COVID-19 diagnostic targets. Genomics, 112(6), 5204-5213. https:// doi.org/10.1016/j.ygeno.2020.09.028 google scholar
  • Wang, W. K., Lu, W. M., & Wang, Y. H. (2013). The relationship between bank performance and intellectual capital in East Asia. Quality & Quantity, 47(2), 1041-1062. https://doi.org/10.1007/s11135-011-9582-2 google scholar
  • Yalçın, S., & Ayyıldız, E. (2018). Analysis of airports using clustering methods: case study ın Turkey. Journal of Management Marketing and Logistics, 5(3), 194-205. http://doi.org/10.17261/Pressacademia.2018.963 google scholar
  • Yılancı, V. (2010). Bulanık kümeleme analizi ile Türkiye’deki illerin sosyoekonomik açıdan sınıflandırılması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 15(3), 453-470. google scholar
  • Yeşilbudak, M. (2016, November). Clustering analysis of multidimensional wind speed data using k-means approach. In 2016 IEEE International Conference on Renewable Energy Research and Applications, 961-965. google scholar
  • Yuan, C., & Yang, H. (2019). Research on K-value selection method of K-means clustering algorithm. J Multidisciplinary Scientific Journal, 2(2), 226-235. https://doi.org/10.3390/j2020016 google scholar
  • Yücel, S. & Durak, î. (2021). COVID-19’un BIST imalat sektörü firmalarına olan finansal etkilerinin finansal oranlar ve istatistiksel tekniklerle incelenmesi, Muhasebe ve Finansman Dergisi, (90), 101-126. https://doi.org/10.25095/mufad.813411 google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Özarı, Ç., & Can, E.N. (2023). Evaluating Production Companies on Borsa Istanbul In Terms of Financial Indicators: Clustering Companies Using K-Means with the Silhouette Index and Elbow Method. Journal of Accounting Institute, 0(69), 1-19. https://doi.org/10.26650/MED.1278850


AMA

Özarı Ç, Can E N. Evaluating Production Companies on Borsa Istanbul In Terms of Financial Indicators: Clustering Companies Using K-Means with the Silhouette Index and Elbow Method. Journal of Accounting Institute. 2023;0(69):1-19. https://doi.org/10.26650/MED.1278850


ABNT

Özarı, Ç.; Can, E.N. Evaluating Production Companies on Borsa Istanbul In Terms of Financial Indicators: Clustering Companies Using K-Means with the Silhouette Index and Elbow Method. Journal of Accounting Institute, [Publisher Location], v. 0, n. 69, p. 1-19, 2023.


Chicago: Author-Date Style

Özarı, Çiğdem, and Esin Nesrin Can. 2023. “Evaluating Production Companies on Borsa Istanbul In Terms of Financial Indicators: Clustering Companies Using K-Means with the Silhouette Index and Elbow Method.” Journal of Accounting Institute 0, no. 69: 1-19. https://doi.org/10.26650/MED.1278850


Chicago: Humanities Style

Özarı, Çiğdem, and Esin Nesrin Can. Evaluating Production Companies on Borsa Istanbul In Terms of Financial Indicators: Clustering Companies Using K-Means with the Silhouette Index and Elbow Method.” Journal of Accounting Institute 0, no. 69 (Sep. 2023): 1-19. https://doi.org/10.26650/MED.1278850


Harvard: Australian Style

Özarı, Ç & Can, EN 2023, 'Evaluating Production Companies on Borsa Istanbul In Terms of Financial Indicators: Clustering Companies Using K-Means with the Silhouette Index and Elbow Method', Journal of Accounting Institute, vol. 0, no. 69, pp. 1-19, viewed 30 Sep. 2023, https://doi.org/10.26650/MED.1278850


Harvard: Author-Date Style

Özarı, Ç. and Can, E.N. (2023) ‘Evaluating Production Companies on Borsa Istanbul In Terms of Financial Indicators: Clustering Companies Using K-Means with the Silhouette Index and Elbow Method’, Journal of Accounting Institute, 0(69), pp. 1-19. https://doi.org/10.26650/MED.1278850 (30 Sep. 2023).


MLA

Özarı, Çiğdem, and Esin Nesrin Can. Evaluating Production Companies on Borsa Istanbul In Terms of Financial Indicators: Clustering Companies Using K-Means with the Silhouette Index and Elbow Method.” Journal of Accounting Institute, vol. 0, no. 69, 2023, pp. 1-19. [Database Container], https://doi.org/10.26650/MED.1278850


Vancouver

Özarı Ç, Can EN. Evaluating Production Companies on Borsa Istanbul In Terms of Financial Indicators: Clustering Companies Using K-Means with the Silhouette Index and Elbow Method. Journal of Accounting Institute [Internet]. 30 Sep. 2023 [cited 30 Sep. 2023];0(69):1-19. Available from: https://doi.org/10.26650/MED.1278850 doi: 10.26650/MED.1278850


ISNAD

Özarı, Çiğdem - Can, EsinNesrin. Evaluating Production Companies on Borsa Istanbul In Terms of Financial Indicators: Clustering Companies Using K-Means with the Silhouette Index and Elbow Method”. Journal of Accounting Institute 0/69 (Sep. 2023): 1-19. https://doi.org/10.26650/MED.1278850



TIMELINE


Submitted07.04.2023
Accepted13.06.2023
Published Online29.08.2023

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.