Review


DOI :10.26650/JARHS2021-808337   IUP :10.26650/JARHS2021-808337    Full Text (PDF)

Nanocrystal Technology: Increasing Oral Bioavailability of Low-Soluble Drugs

Yağmur Pirinçci TokSevgi GüngörYıldız Özsoy Erginer

Nanocrystal technology enables the production of solid drug particles with a particle size below 1000 nm without the need for any carrier system. By reducing the size of the particles of drugs with low solubility in water, increasing the surface area and decreasing the thickness of the diffusion layer leads to an increase in k the solubility rate. Accordingly, the increasing concentration gradient in the absorption zone promotes permeation and absorption by passive diffusion between the intestinal lumen and blood. Therefore, it is very important to improve and / or increase their bioavailability by using the nanocrystal technology approach for drug molecules belonging to BCS Class II and IV. Top-down and bottom-up methods are used to obtain nanometer-sized drug particles. In the pharmaceutical industry, top-down methods, which are subdivided into wet milling (BWM) and high pressure homogenization (HPH), are preferred in the ball mill because of its ease of application, repeatability and scalability. With nanocrystal technology, it is aimed to create new dosage forms by providing less side effects, lower doses and faster onset of action of drug molecules that are already approved in the pharmaceutical industry. It is also aimed that new drug molecules can be formulated with better bioavailability.

DOI :10.26650/JARHS2021-808337   IUP :10.26650/JARHS2021-808337    Full Text (PDF)

Nanokristal Teknolojisi: Çözünürlüğü Düşük İlaçların Oral Biyoyararlanımın Artırılması

Yağmur Pirinçci TokSevgi GüngörYıldız Özsoy Erginer

Nanokristal teknolojisi partikül boyutu 1000 nanometre (nm)’nin altında, herhangi bir taşıyıcı sisteme ihtiyaç duymadan katı ilaç partikülerinin üretilmesini sağlar. Sudaki çözünürlüğü düşük ilaçların partiküllerinin boyutunun küçültülmesi ile, yüzey alanlarının artması ve difüzyon tabakasının kalınlığının azaltılması k çözünürlük hızının da artışına yol açar. Buna bağlı olarak, absorpsiyon bölgesinde artan konsantrasyon gradienti bağırsak lümeni ve kan arasındaki pasif difüzyon yoluyla permeasyonu ve emilimi teşvik etmektedir. Dolayısıyla Biyofarmasötik Sınıflandırma Sistemi (BCS) Sınıf II ve IV’e ait ilaç molekülleri için nanokristal teknolojisi yaklaşımını kullanarak biyoyararlanımlarını geliştirmek ve/veya arttırmak oldukça önemlidir. Nanometre boyutunda ilaç partikülü elde edebilmek için yukarıdan aşağıya (top-down) ve aşağıdan yukarıya (bottom-up) yöntemlerinden yararlanılmaktadır. İlaç endüstrisinde uygulama kolaylığı, tekrar edilebilirliği ve ölçeklendirilebilmesi nedeniyle bilyeli değirmende yaş öğütme (BWM) ve yüksek basınçlı homojenizasyon (HPH) olarak alt bölümlere ayrılan yukarıdan aşağıya yöntemleri tercih edilmektedir. Nanokristal teknolojisi ile ilaç endüstrisinde hâlihazırda tedavide onaylanmış olan ilaç moleküllerinin daha az yan etki, daha düşük dozlar ve daha hızlı etki başlangıcı sağlayarak yeni dozaj formlarının geliştirilmesi ve yeni ilaç moleküllerinin daha iyi bir biyoyararlanımla formüle edilebilmesi amaçlanmaktadır.


PDF View

References

  • 1. Kalepu S, Nekkanti V. Insoluble drug delivery strategies : review of recent advances and business prospects. Acta Pharm Sin B 2015;5(5):442-53. google scholar
  • 2. Augustijns P, Wuyts B, Hens B, Annaert P, Butler J, Brouwers J. A review of drug solubility in human intestinal fluids : Implications for the prediction of oral absorption. Eur J Pharm Sci 2014;57:322-32. google scholar
  • 3. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins : basic science and product development. J Pharm Pharmacol 2010;62:1607-21. google scholar
  • 4. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system : Basic approaches and practical applications. Int J Pharm 2011;420:1-10. google scholar
  • 5. Wu C, Benet LZ. Predicting Drug Disposition via Application of BCS : Transport / Absorption / Elimination Interplay and Development of a Biopharmaceutics Drug Disposition Classification System Pharm Res 2005;22(1):11-23. google scholar
  • 6. Butler JM, Dressman JB. The Developability Classification System : Application of Biopharmaceutics Concepts to Formulation Development. J Pharm Sci 2010;99(12):4940-54. google scholar
  • 7. Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 2012;453:142-56. google scholar
  • 8. Merisko-liversidge E, Liversidge GG, Cooper ER. Nanosizing : a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 2003;18:113-20. google scholar
  • 9. Hou Y, Shao J, Fu Q, Li J, Sun J, He Z. Spray-dried nanocrystals for a highly hydrophobic drug : Increased drug loading, enhanced redispersity, and improved oral bioavailability. Int J Pharm 2017;516(1-2):372-9. google scholar
  • 10. Cheng M, Yuan F, Liu J, Liu W, Feng J, Jin Y, Tu L. Fabrication of Fine Puerarin Nanocrystals by Box - Behnken Design to Enhance Intestinal Absorption. AAPS PharmSciTech 2020:1-12. google scholar
  • 11. Soisuwan S, Teeranachaideekul V, Wongrakpanich A. Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals. Eur J Pharm Biopharm 2019;137:68-76. google scholar
  • 12. Seto Y, Ueno K, Suzuki H, Sato H, Onoue S. Development of novel lutein nanocrystal formulation with improved oral bioavailability and ocular distribution. J Funct Foods 2019;61:103499. google scholar
  • 13. Shah DA, Murdande SB, Dave RH. A Review : Pharmaceutical and Pharmacokinetic Aspect of Nanocrystalline Suspensions. J Pharm Sci 2016;105:10-24. google scholar
  • 14. Ren X, Qi J, Wu W, Yin Z, Li T, Lu Y. Development of carrier-free nanocrystals of poorly water-soluble drugs by exploring metastable zone. Acta Pharmacol Sinic 2019;9(1):118-27. google scholar
  • 15. Chen L, Wang Y, Zhang J, Hao L, Guo H, Lou H, Zhang D. Bexarotene nanocrystal — Oral and parenteral formulation development, characterization and pharmacokinetic evaluation. Eur J Pharm Biopharm 2014;87(1):160-9. google scholar
  • 16. Ferrar JA, Sellers BD, Chan C, Leung DH. Towards an improved understanding of drug excipient interactions to enable rapid optimization of nanosuspension formulations. Int J Pharm 2020;578:119094. google scholar
  • 17. Bitterlich A, Laabs C, Krautstrunk I, Dengler M, Juhnke M, Grandeury A, Bunyes H, Kwade A. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling. Eur J Pharm Biopharm 2015;92:171-9. google scholar
  • 18. Peltonen L, Hirvonen J. Drug nanocrystals - Versatile option for formulation of poorly soluble materials. Int J Pharm 2018;537(1-2):73-83. google scholar
  • 19. Sarnes A, Kovalainen M, Hakkinen MR, Laaksonen T, Laru J, Kiessevara J, Ilkka J, Oksala O et al. Nanocrystal-based per-oral itraconazole delivery : Superior in vitro dissolution enhancement versus Sporanox ® is not realized in in vivo drug absorption. J Control Release 2014;180:109-16. google scholar
  • 20. Buraphacheep V, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci 2015;10(1):13-23. google scholar
  • 21. He Y, Ye Z. Can machine learning predict drug nanocrystals? J Control Release 2020;322:274-85. google scholar
  • 22. Eerdenbrugh B Van, Mooter G Van Den, Augustijns P. Top-down production of drug nanocrystals : Nanosuspension stabilization , miniaturization and transformation into solid products. Int J Pharm 2008;364:64-75. google scholar
  • 23. Shegokar R, Müller RH. Nanocrystals : Industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 2010;399(1-2):129-39. google scholar
  • 24. Liu P, Rong X, Laru J, et al. Nanosuspensions of poorly soluble drugs : Preparation and development by wet milling. Int J Pharm 2011;411(1-2):215-22. google scholar
  • 25. Fontana F, Figueiredo P, Zhang P, Hirvonen JT, Liu D, Santos HA. Production of pure drug nanocrystals and nano co-crystals by con fi nement methods. Adv Drug Deliv Rev 2018;131:3-21. google scholar
  • 26. Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 2008;10:845-62. google scholar
  • 27. Keck CM, Mu RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006;62:3-16. google scholar
  • 28. Krause KP, Kayser O, Ma K, Gust R, Mu RH. Heavy metal contamination of nanosuspensions produced by high-pressure homogenisation. Int J Pharm 2000;196:169-72. google scholar
  • 29. Hui Z, Kumar A, Wan P, Heng S. ScienceDirect Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci 2015;10(4): 255-74. google scholar
  • 30. Gora S, Mustafa G, Sahni JK, Ali J, Baboota S. Nanosizing of valsartan by high pressure homogenization to produce dissolution enhanced nanosuspension : pharmacokinetics and pharma- codyanamic study. Drug Deliv 2016;23(3):940-50. google scholar
  • 31. Li W, Quan P, Zhang Y, Cheng J, Liu J, Cun D. Influence of drug physicochemical properties on absorption of water insoluble drug nanosuspensions. Int J Pharm 2014;460:13-23. google scholar
  • 32. Dong Y, Kiong W, Hu J, Shen S, Tan RBH. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs. Int J Pharm 2010;386:256-61. google scholar
  • 33. Hu J, Kiong W, Dong Y, Shen S, Tan RBH. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. Int J Pharm 2011;404:198-204. google scholar
  • 34. Xia D, Quan P, Piao H, Sun S, Yin Y, Cui F. Preparation of stable nitrendipine nanosuspensions using the precipitation -ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci 2010;40:325-34. google scholar
  • 35. Liu J, Tu L. Mechanisms for oral absorption enhancement of drugs by nanocrystals. J Drug Deliv Sci Technol 2020;56:101607. google scholar
  • 36. Shair I, Hu H, Yin L, He W. Drug nanocrystals : Fabrication methods and promising therapeutic applications. Int J Pharm 2019;562:187-202. google scholar
  • 37. Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals : Formulations and factors affecting particle size. Int J Pharm 2013;453:126-41. google scholar
  • 38. Kesisoglou F, Wu Y. Understanding the Effect of API Properties on Bioavailability Through Absorption Modeling. AAPS J 2008;10(4):516-25. google scholar
  • 39. Ueda K, Iwai T, Sunazuka Y, Chen Z, Kato N, Higashi K. Effect of molecular weight of hypromellose on mucin diffusion and oral absorption behavior of fenofibrate nanocrystal. Int J Pharm 2019;564:39-47. google scholar
  • 40. Guo M, Wei M, Li W, Guo M, Guo C, Ma M, et al. Impacts of particle shapes on the oral delivery of drug nanocrystals : Mucus permeation , transepithelial transport and bioavailability. J Control Release 2019;307:64-75. google scholar
  • 41. Deng F, Zhang H, Wang X, Zhang Y, Hu H, Song S, et al. The transmembrane pathways and mechanisms of rod-like paclitaxel nanocrystals through MDCK polarized monolayer. Appl Mater Interfaces 2017;9(7):5803-16. google scholar
  • 42. Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK. Engineered nanocrystal technology : In-vivo fate , targeting and applications in drug delivery. J Control Release 2014;183:51-66. google scholar
  • 43. Fu Q, Sun J, Ai X, Zhang P, Li M, Wang Y, et al. Nimodipine nanocrystals for oral bioavailability improvement : Role of mesenteric lymph transport in the oral absorption. Int J Pharm 2013;448:290-7. google scholar
  • 44. Müller RH, Jacobs C. Buparvaquone mucoadhesive nanosuspension : preparation , optimisation and long-term stability. Int J Pharm 2002;237:151-61. google scholar
  • 45. Fu Q, Ma M, Li M, Wang G, Guo M, Li J, et al. Improvement of oral bioavailability for nisoldipine using nanocrystals. Powder Technol 2017;305(103):757-63. google scholar
  • 46. Lai F, Pini E, Angioni G, Manca ML, Perricci J, Sinico C, Fadda AM. Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets. Eur J Pharm Biopharm 2011;79:552-8. google scholar
  • 47. Junghanns JAH, Müller RH. Nanocrystal technology , drug delivery and clinical applications. Int J Nanomedicine 2008;3(3):295-309. google scholar
  • 48. Chen M, John M, Lee SL, Tyner KM. Development Considerations for Nanocrystal Drug Products. AAPS J 2017;19(3):642-51. google scholar
  • 49. Basu A, Guti S, Kundu S, Das A, Das S, Mukherjee A. Oral andrographolide nanocrystals protect liver from paracetamol induced injury in mice. J Drug Deliv Sci Technol 2020;55:101406. google scholar
  • 50. Singare DS, Marella S, Gowthamrajan K, Kulkarni GT, Vooturi R, Srinivasa P. Optimization of formulation and process variable of nanosuspension : An industrial perspective. Int J Pharm 2010;402(1-2):213-20. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Pirinçci Tok, Y., Güngör, S., & Özsoy Erginer, Y. (2019). Nanocrystal Technology: Increasing Oral Bioavailability of Low-Soluble Drugs. Journal of Advanced Research in Health Sciences, 0(0), -. https://doi.org/10.26650/JARHS2021-808337


AMA

Pirinçci Tok Y, Güngör S, Özsoy Erginer Y. Nanocrystal Technology: Increasing Oral Bioavailability of Low-Soluble Drugs. Journal of Advanced Research in Health Sciences. 2019;0(0):-. https://doi.org/10.26650/JARHS2021-808337


ABNT

Pirinçci Tok, Y.; Güngör, S.; Özsoy Erginer, Y. Nanocrystal Technology: Increasing Oral Bioavailability of Low-Soluble Drugs. Journal of Advanced Research in Health Sciences, [Publisher Location], v. 0, n. 0, p. -, 2019.


Chicago: Author-Date Style

Pirinçci Tok, Yağmur, and Sevgi Güngör and Yıldız Özsoy Erginer. 2019. “Nanocrystal Technology: Increasing Oral Bioavailability of Low-Soluble Drugs.” Journal of Advanced Research in Health Sciences 0, no. 0: -. https://doi.org/10.26650/JARHS2021-808337


Chicago: Humanities Style

Pirinçci Tok, Yağmur, and Sevgi Güngör and Yıldız Özsoy Erginer. Nanocrystal Technology: Increasing Oral Bioavailability of Low-Soluble Drugs.” Journal of Advanced Research in Health Sciences 0, no. 0 (Dec. 2021): -. https://doi.org/10.26650/JARHS2021-808337


Harvard: Australian Style

Pirinçci Tok, Y & Güngör, S & Özsoy Erginer, Y 2019, 'Nanocrystal Technology: Increasing Oral Bioavailability of Low-Soluble Drugs', Journal of Advanced Research in Health Sciences, vol. 0, no. 0, pp. -, viewed 9 Dec. 2021, https://doi.org/10.26650/JARHS2021-808337


Harvard: Author-Date Style

Pirinçci Tok, Y. and Güngör, S. and Özsoy Erginer, Y. (2019) ‘Nanocrystal Technology: Increasing Oral Bioavailability of Low-Soluble Drugs’, Journal of Advanced Research in Health Sciences, 0(0), pp. -. https://doi.org/10.26650/JARHS2021-808337 (9 Dec. 2021).


MLA

Pirinçci Tok, Yağmur, and Sevgi Güngör and Yıldız Özsoy Erginer. Nanocrystal Technology: Increasing Oral Bioavailability of Low-Soluble Drugs.” Journal of Advanced Research in Health Sciences, vol. 0, no. 0, 2019, pp. -. [Database Container], https://doi.org/10.26650/JARHS2021-808337


Vancouver

Pirinçci Tok Y, Güngör S, Özsoy Erginer Y. Nanocrystal Technology: Increasing Oral Bioavailability of Low-Soluble Drugs. Journal of Advanced Research in Health Sciences [Internet]. 9 Dec. 2021 [cited 9 Dec. 2021];0(0):-. Available from: https://doi.org/10.26650/JARHS2021-808337 doi: 10.26650/JARHS2021-808337


ISNAD

Pirinçci Tok, Yağmur - Güngör, Sevgi - Özsoy Erginer, Yıldız. Nanocrystal Technology: Increasing Oral Bioavailability of Low-Soluble Drugs”. Journal of Advanced Research in Health Sciences 0/0 (Dec. 2021): -. https://doi.org/10.26650/JARHS2021-808337



TIMELINE


Submitted09.10.2020
Accepted19.11.2020
Published Online20.10.2021

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.