Research Article


DOI :10.26650/JEPR1255062   IUP :10.26650/JEPR1255062    Full Text (PDF)

Effects of Environmental Degradation, Economic, and Demographic Variables on Life Expectancy: Panel Data Analysis for High-Income Countries

Şehadet BulutSaltuk Ağıralioğlu

Life expectancy is one of the most significant variables that reflect countries’ welfare levels. This study aims to investigate the effects of environmental degradation, economic conditions, and demographic factors on average life expectancy in 10 high-income countries (i.e., Canada, Belgium, England, Germany, Austria, Spain, Sweden, France, Italy, and the USA). The study covers the 2000-2019 period and has selected CO2 emissions, infant mortality rates, unemployment rates, and share of public health expenditures in current health expenditures as the indicators. The study uses the panel data analysis method, first analyzing the countries together and then individually. When examining the countries together, a 1% increase in infant mortality has been determined to lead to a 0.111% decrease in life expectancy, whereas CO2 emissions have no effect on life expectancy. When analyzing the countries separately, a 1% increase in CO2 emissions was observed to reduce life expectancy in Canada, Spain, France, Italy, and Sweden. Reduced unemployment rates and an increased share of public health expenditures were seen to positively affect average life expectancy in England. Moreover, increased CO2 emissions were seen to negatively affect life expectancy in France. Meanwhile, a 1% increase in unemployment in Canada leads to a 0.034% increases in life expectancy, while a 1% increase in the infant mortalityrate causes a 0.239% decrease in life expectancy. As a result, increasing the share of public health expenditures in current health expenditures and decreasing unemployment rates have been concluded to positively affect average life expectancy in high-income countries. Policymakers in high-income countries are expected to focus on environmentally friendly policies that reduce CO2 emissions and increase health expenditures and employment in the coming years; as this in turn will contribute to positive developments in life expectancy. In addition, social policies that reduce infant mortality rates, especially for babies born of a mother going through puberty, may lead to improvements in life expectancy in high-income countries. These findings can be used to contribute to policy makers in high-income countries developing further comprehensive measurements.

JEL Classification : J11 , H51 , I11
DOI :10.26650/JEPR1255062   IUP :10.26650/JEPR1255062    Full Text (PDF)

Çevresel Bozulma, Ekonomik ve Demografik Değişkenlerin Beklenen Yaşam Süresi Üzerindeki Etkileri: Yüksek Gelir Grubundaki Ülkeler İçin Panel Veri Analizi*

Şehadet BulutSaltuk Ağıralioğlu

Beklenen yaşam süresi ülkelerin refah düzeylerini gösteren en önemli göstergelerdendir. Bu çalışmanın amacı, yüksek gelir grubu içinde yer alan Kanada, Belçika, İngiltere, Almanya, Avusturya, İspanya, İsveç, Fransa, İtalya ve ABD’de çevresel bozulmanın, ekonomik koşulların ve demografik faktörlerin beklenen yaşam süresi üzerindeki etkilerini araştırmaktır. Bu

çalışma 2000-2019 dönemini kapsamaktadır. Araştırmada, CO2 emisyonu, bebek ölüm oranları, işsizlik oranı ve kamu sağlık harcamalarının mevcut sağlık harcamaları içerisindeki payı gibi faktörlerin beklenen yaşam süresine etkileri panel veri analizi yöntemi kullanılarak incelenmiştir. Ülkelerin birlikte ele alındığı analiz sonuçlarında bebek ölüm oranındaki %1’lik artışın yaşam beklentisini %0,111 azalttığı, CO2 emisyonlarının ise yaşam beklentisi üzerinde bir etkisinin olmadığı bulunmuştur. Buna karşılık ülkeler tek tek değerlendirildiğinde CO2 emisyonundaki %1’lik artışın Kanada, İspanya, Fransa, İtalya ve İsveç’te yaşam beklentisini düşürdüğü görülmüştür. Ayrıca, İngiltere’de işsizlik oranındaki azalma ve kamu sağlık harcamalarındaki artışın yaşam beklentisini olumlu yönde etkilediği bulgusuna ulaşılmıştır. CO2 emisyonundaki artışın en fazla Fransa’da yaşam beklentisini olumsuz yönde etkilediği görülmüştür.Kanada’da işsizlik oranındaki %1’lik artışın yaşam beklentisini %0,034 oranında arttırdığı tespit edilmiştir. Bebek ölüm oranlarındaki %1’lik artış en fazla Kanada’da yaşam beklentisini %0,239 oranında azaltmaktadır. Sonuç olarak ekonomik değişkenlerden yüksek gelir gurubuna dâhil olan ülkelerde kamu sağlık harcamalarının mevcut sağlık harcamaları içerisindeki payının artırılması ve işsizlik oranındaki düşüşler yaşam süresini olumlu yönde etkilediği bulgusuna ulaşılmıştır. Üst gelir gurubundaki ülkelerde politika yapıcılarının gelecek yıllarda CO2 salınımını azaltan çevre dostu; sağlık harcamalarını ve istihdamı artıran ekonomi politikalarına yönelmelerinin, beklenen yaşam süresi üzerine olumlu bir gelişme yaratacağı tahmin edilmektedir. Ayrıca gelişmiş ülkelerde özellikle ergenlik çağında doğan bebeklerdeki ölüm oranlarını da azaltıcı sosyal politikalara de beklenen yaşam süresinde iyileşmelere yol açabilir. Bu çalışmanın bulguları, yüksek gelirli ülkelerdeki politika yapıcılarının gelecekte daha kapsamlı tedbirler almasına katkıda bulunabilir.

JEL Classification : J11 , H51 , I11

EXTENDED ABSTRACT


Environmental degradation, economic conditions, and demographic factors are significant determinants of life expectancy. Life expectancy is the average life of a newborn based on current health conditions (Chukmaitova, 2003, p.4). Life expectancy is also an indicator of a country’s economic, social, and environmental development (Teker, Teker, & Sönmez, 2012, p. 119). Life expectancy has significant effects on the public finances and economic growth of countries due to how it affects the financing of health and retirement benefits. Environmental degradation such as air pollution, water pollution, and climate change can have significantly adverse effects on health and life expectancy. Economic conditions can also play a role in life expectancy, as countries with higher levels of economic development often have better access to health care, education, and other resources that can contribute to longer lifespans. However, income inequality can negatively impact health outcomes due to lower-income individuals possibly having more limited access to health care and other resources. Demographic factors such as infant mortality rate also affect life expectancy.

This study examines the effects of CO2 emissions, unemployment rates, infant mortalityrates, and public health expenditures on life expectancy for the period of 2000-2019 for ten

high-income countries. The variables used in the study have been determined as CO2 emissions for environmental degradation, infant mortality rates for demographic indicators, and unemployment rates and public health expenditures’ share of current health expenditures as the economic variables. Data regarding life expectancy (LE), unemployment rate (UR), infant mortality rate (IMR), public health expenditures (HE), and CO2 emissions have been taken annually from the World Bank (2023) database for the 2000-2019 period. According to the results obtained from the study, evaluating the countries as a group reveals a 1% increase in infant mortality rate to reduce average life expectancy by 0.11%, while increases in CO2

emissions, the unemployment rate, and public health expenditures decrease average life expectancy. These do not appear to have a significant effect on the duration. either.

Findings from the results regarding the concept of average life expectancy differ for underdeveloped and developed countries. The findings from studies conducted in underdeveloped countries show factors such as clean and easily accessible water, nutrition and food, and environmental health to affect average life expectancy. Teker, Teker and Sönmez (2012) found health expenditures, income, unemployment, and inflation to affect life expectancy in high-income countries. Infant mortality rates are also among the most important factors affecting life expectancy in all countries (Bayın, 2016; Linden & Ray, 2017; Şener, Aslan, & Yiğit, 2019). Private health expenditures have a positive effect on life expectancy in Organisation for Economic Co-operation and Development (OECD) countries. Şahin (2018) analyzed 16 Asian-Pacific Economic Cooperation Organization (APEC) countries using data from the 2000–2013 period.

The findings from the current study have revealed a 1% increase in total lifetime health expenditures to increase life expectancy at birth by 0.635%. Some studies have determined the relationship between CO2 emissions and expected CO2 emissions to be a determinant affecting lifespan (Ali & Ahmad, 2014; Issaoui, Toumi, & Touili, 2015; Balan, 2016; Tıraş & Özbek, 2020). The results from the current study indicate unemployment’s negative impact on life expectancy to be highest in England, with a 1% increase in unemployment being associated with a 0.109% decrease in life expectancy. This relationship is weaker in Belgium, Germany, Spain, and the USA, whose decreases range from 0.021%-0.001%. These findings are consistent with previous studies in the field. Furthermore, the current study has found increasing public health expenditures to be able to lead to an increase in life expectancy, with a 1% increase resulting in a maximum increase of 0.12% in England and 0.091% in Italy. This result is also consistent with previous studies (Dhrifi, 2018; Pedram &.Mehrjou, 2019; Tatlı& Barak, 2021). Also, in this study an increase in CO2 emissions negatively impacted life expectancy in France, whereas an increase in infant mortality rate was found to be negatively associated with life expectancy in Canada. Surprisingly and contrary to previous studies, this study found a 1% increase in public health expenditures to reduce life expectancy by 0.193% in Canada. These findings can contribute to having policymakers develop further comprehensive policies regarding the factors that affect life expectancy in high-income countries.


PDF View

References

  • Adams, S. & Klobodu, E. K. M. (2017). Urbanization, democracy, bureaucratic quality, and environmental degradation. Journal of Policy Modeling, 39(6), 1035-51. google scholar
  • Akar, S. (2014). Türkiye’de sağlık harcamaları, sağlık harcamalarının nisbi fiyatı ve ekonomik büyüme arasındaki ilişkinin incelenmesi. Yönetim ve Ekonomi Dergisi, 21(1), 311-322. google scholar
  • Alaiye, M. K. & Metintaş, S. (2016). Türk Cumhuriyetlerinde toplum yaşlanmasının sosyodemografik ve ekonomik özellikler açısından değerlendirilmesi. Türk Dünyası Uygulama ve Araştırma Merkezi Halk Sağlığı Dergisi, 1(1), 1-10. google scholar
  • Ali, A. & Ahmad, K. (2014). The Impact of socio-economic factors on life expectancy for sultanate of oman: an empirical analysis. Munich Personal RePEc Archive, 1-14. https://mpra.ub.uni-muenchen.de/70871/1/MPRA_ paper_70871.pdf. google scholar
  • Assadzadeh, A., Bastan, F. & Shahverdi, A. (2014, November). The impact of environmental quality and pollution on health expenditures: A case study of petroleum exporting countries. In Proceedings of 29th International Business Research Conference, (24), 25. google scholar
  • Atay P. M. & Ergun, S. (2018). Yapısal kırılma altında Türkiye’de ekonomik büyüme, co2 emisyonu ve sağlık harcamaları ilişkisi. İşletme ve Ekonomi Araştırmaları Dergisi, (3), 481-497. google scholar
  • Aydın, B. (2020). İktisadi göstergelerin beklenen yaşam suresi üzerindeki etkileri: Panel veri analizi. İstanbul İktisat Dergisi, 70(1), 163-181. google scholar
  • Balan, F. (2016). Environmental quality and its human health effects: A causal analysis for the EU-25. International Journal of Applied Economics, 13(1), 57-71. google scholar
  • Baltagi, B. H. (2005). Econometric analysis of panel data, Third Edition, John Wiley&Sons Ltd.,West Sussex, England. google scholar
  • Bayın, G. (2016). Doğuşta ve ileri yaşta beklenen yaşam sürelerine etki eden faktörlerin belirlenmesi. Türkiye Aile. Hekimliği Dergisi, 20(3), 93-103. google scholar
  • Bernadette, O. Innocent, M., Levison, C. & Naor, B. Z. (2013). Income and child mortality in developing countries: A systematic review and meta-analysis. Journal of the Royal Society of Medicine. 106(10), 408-414. google scholar
  • BRITISHTURKS (2023).https://www.britishturks.com/ingilterede-saglik-sistemi (E. T.16.04.2023). google scholar
  • Chen, A. & Rogan, W. J. (2004). Breastfeeding and the risk of postneonatal death in the united states. Pediatrics, 113(5), e435-e439. google scholar
  • Chukmaitova, A. (2003). Determinants of life expectancy and mortality: comparative analysis of different regions in Kazakhstan. Working Paper BSP/2003/072 E, New Economic School, Moscow. google scholar
  • Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., et al. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study. Lancet, (389), 1907-1918. google scholar
  • Destek, M. A. (2016). Natural gas consumption and economic growth: Panel evidence from OECD countries. Energy, (114),1007-1015. google scholar
  • Dhrifi, A. (2018). Does environmental degradation, ınstitutional quality and economic development matter for health? Evidence from African Countries. Journal of the Knowledge Economy, 1-16. google scholar
  • Diallo, S. M. & Seck, A. (2023). Air pollution in urban Africa: Understanding attitudes and economic valuation in the case of Dakar, Senegal. Sustainability, 15(2), 1494. google scholar
  • Djoumessi, Y. F. (2022). The impact of malnutrition on infant mortality and life expectancy in Africa. Nutrition, 111760. google scholar
  • Dwyer-Lindgren, L., Bertozzi-Villa, A., Stubbs, R. W., Morozoff, C., Mackenbach, J. P., van Lenthe, F. J., ... & Murray, C. J. (2017). Inequalities in life expectancy among US counties, 1980 to 2014: temporal trends and key drivers. JAMA internal medicine, 177(7), 1003-1011 google scholar
  • Granger, C. W. J. (1981). Some properties of time series data and the iruse in Econometric model specification. Journal of Econometrics, 16, 121-30. google scholar
  • Grene, W. H. (2003). Econometric analysis, 5th Edition, Prentice Hall, New Jersey. google scholar
  • Gürsoy G.T.Z. & Şen, H. ( 2020). Sağlık harcamalarının yaşam beklentisine etkisi; OECD ülkeleri örneği. Gazi İktisat ve İşletme Dergisi, 6(2),121-129. google scholar
  • Hançerlioğlu, O. (2009). Ekonomi Sözlüğü (11. Basım). İstanbul: Remzi Kitabevi. google scholar
  • Hassan ,F. A., Minato, N., Ishida, S. & Nor, M. N. (2016). Social environment determinants of life expectancy in developing countries: A panel data analysis. Global Journal of Health Science, 9(5), 105. google scholar
  • Hsiao, C. (2003). Panel data analysis. Second Edition, Cambridge University Press, Cambridge. google scholar
  • Im, K. S., Pesaran, H. M. & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics. 115(1), 53-74. google scholar
  • Issaoui, F., Toumi, H. & Touili, W. (2015). Effects of CO2 emissions on economic growth, urbanization and welfare: Application to MENA Countries. Munich Personal RePEc Archive [MPRA], Paper No. 65683. google scholar
  • Jaba, E., Balan, B. C. & Robu, I-B. (2014). The Relationship between life expectancy at birthand health expenditures estimated by a cross-country and time-series Analysis. Procedia Economics and Finance (15),108 - 114. google scholar
  • Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics, (90), 1-44. google scholar
  • Kodalak, T. E. B. (2023). BRICS-T ülkelerinde erkek ve kadın genç işsizlik ile doğuşta beklenen yaşam süresi ilişkisi: Toda-Yamamoto nedensellik analizi. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 23(1), 259-278. google scholar
  • Lallo, C. & Raitano, M. (2018). Life expectancy inequalities in the elderly by socioeconomic status: Evidence from Italy. Population Health Metrics, 16(1), 1-21. google scholar
  • Levin, A., Lin, C. F. & Chu, C. S. J. (2002). Unit root tests in panel data: Asymptotic and finitesample properties. Journal of econometrics, 108(1), 1-24. google scholar
  • Liang, Z., Yang, Y., Qian, Z., Ruan, Z., Chang, J., Vaughn, M. G., & Lin, H. (2019). Ambient PM2. 5 and birth outcomes: Estimating the association and attributable risk using a birth cohort study in nine Chinese cities. Environment international, (126), 329-335. google scholar
  • Linden, M. & Ray, D. (2017). Life expectancy effects of public and private health expenditures in OECD countries 1970-2012: Panel time series approach. Economic Analysis andPolicy, 56, 101-113. google scholar
  • Mandal, B., Ayyagari, P. & Gallo, W.T. (2011). Job loss and depression: The role of subjective expectations. Social Sciences and Medicine, 72 (4), 576-583. google scholar
  • Miladinov, G. (2020). Socioeconomic development and life expectancy relationship: Evidence from the EU accession candidate countries. Genus, 76(1), 2. google scholar
  • Monsef, A. & Mehrjardi, A. (2015). Determinants of life expectancy: A panel data approach. Asian. Economic and Financial Review. 5(11), 1251-1257. google scholar
  • Montagna, C., Pinto, A. N. & Vlassis, N. (2020). Welfare and trade effects of international environmental agreements. Environmental and Resource Economics, (76), 331-345. google scholar
  • Pedram, M. and Mehrjou, B. (2019). The Impact of globalization and government expenditure on health: selected study from developing countrıes. Journal of Economic and Social Research, 18(5), 776-782. google scholar
  • Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Ox fBull Econ Statistics 1999:653e69. November Special Issue. google scholar
  • Pedroni, P. (2000). Fully modified OLS for heterogeneous cointegrated panels. Adv Econ, 15:93e130. google scholar
  • Pedroni, P. (2001). Purchasing power parity tests in cointegrated panels. Rev Econ Stat, 83:727e31. google scholar
  • Rezapour, A., Mousavi, A., Lotfi, F., Movahed, M. S. & Alipour, S. (2019). The effects of health expenditure on health outcomes based on the classification of public health expenditure: A panel data approach. Shiraz E-Medical Journal, 20(12). google scholar
  • Roelfs, D. J., Shor, E., Davidson, K. W. & Schwartz, J. E. (2011). Losing life and livelihood: a systematic review and meta-analysis of unemployment and all-cause mortality. Social science & medicine, 72(6), 840-854. google scholar
  • Sağlık İstatistikleri Yıllığı (2017). https://sbsgm.saglik.gov.tr/TR-71766/saglikistatistikleri-yilligi-2017-yayimlandi. html, (E.T. 03.05.2021). google scholar
  • Safiri, S., Carson-Chahhoud, K., Karamzad, N., Sullman, M. J., Nejadghaderi, S. A., Taghizadieh, A. & Kaufman, J. S. (2022). Prevalence, deaths, and disability-adjusted life-years due to asthma and its attributable risk factors in 204 countries and territories, 1990-2019. Chest, 161(2), 318-329. google scholar
  • Sede, P. I., & Ohemeng, W. (2015). Socio-economic determinants of life expectancy in Nigeria (1980-2011). Health economics review, 5(1), 1-11. google scholar
  • Şahin, D. (2018). Doğumda yaşam beklentisinin belirleyicilerinin analizi: APEC ülkeleri örneği. Ömer Halisdemir Üniversitesi İ.İ.B.F. Dergisi, 11(1), 1-7. google scholar
  • Şener, M., Aslan, Y. & Yiğit, V. (2019). Sağlık harcamalarının sağlık sonuçlarına etkisinin yapısal eşitlik modeli ile analizi. KSBD, 11(21), 391-399. google scholar
  • Tafran, K., Tumin, M. & Osman, A. F. (2020). Poverty, ıncome and unemployment as determinants of life expectancy: mpirical evidence from panel data of thirteen malaysian states. Iran J Public Health, 49(2), 294303. google scholar
  • Tatlı, H. & Barak, D. (2021). Sağlık harcamaları, hükümet etkinliği ve beklenen yaşam süresi: OECD ülkelerinden yeni kanıtlar. Bingöl Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 5(2), 65-97. google scholar
  • Teker, D., Teker, S. & Sönmez, M. (2012). Ekonomik değişkenlerin kadın ve erkeğin yaşam süresine etkisi. İşletme Araştırmaları Dergisi, 4(3), 118-126. google scholar
  • Tıraş, H. H. (2018). Sağlık harcamaları ve ekonomik büyüme ilişkisi: Panel nedensellik analizleri. Kahramanmaraş Sütçü İmam Üniversitesi, Sosyal Bilimler Enstitüsü, İktisat Ana Bilim Dalı, Yayınlanmamış Doktora Tezi. google scholar
  • Tıraş, H. H. & Özbek, S. (2020). Econometric analysis of the determinants of life expectancy at birth in OECD countries. Business & Management Studies: An International Journal, 8(3), 2893-2923. google scholar
  • Tözün, M., Sözmen, M. K., Babaoğlu, A. & Elmalı, F. (2017). Bağımsız Türk Devletlerinde ergen gebeliklerinin ve doğumlarının değerlendirilmesi: Ülkeler arası karşılaştırma ve bazı sosyodemografik parametrelerin olası etkileri. Türk Dünyası Uygulama Ve Araştırma Merkezi Halk Sağlığı Dergisi, 2(2),12-23. google scholar
  • TÜİK (2020). Türkiye İstatistik Kurumu. https://data.tuik.gov.tr/Bulten/Index?p=Istatistiklerle-Yaslilar-2020-37227, (E.T. 03.06.2021). google scholar
  • Tüylüoğlu, Ş. & Tekin, M. (2009). Gelir düzeyi ve sağlık harcamalarının beklenen yaşam süresi ve bebek ölüm oranı üzerindeki etkileri. Çukurova Üniversitesi İİBF Fakültesi Dergisi, 13(1), 1-31. google scholar
  • UNDP (2021). Birleşmiş Milletler Kalkınma Programı, İnsani Geliştirme Raporları, http://hdr.undp.org/en/ indicators/195606. google scholar
  • UNFPA (2013). UNFPA Türkiye: Ergen Gebeliği: Nesiller boyu süren ayrımcılık. http://www.bmdergi.org/tr/unfpa-turkiye-ergen-gebeligi-nesiller-boyu-surenayrimcilik, (E.T.10.04.2020). google scholar
  • Wilkinson, R. & Pickett, K. (2019). The inner level: How more equal societies reduce stress, restore sanity and improve everyone’s well-being. Penguin. google scholar
  • Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data. The MIT Press, Cambridge, Massachusetts. google scholar
  • World Bank (2021a). Dünya Bankası. http://data.worldbank.org/indicator, (E.T.10.01.2021). google scholar
  • Word Bank (2021b). Dünya Bankası. google scholar
  • https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-worldbank-country-and-lending-groups, (E.T.10.01.2021). google scholar
  • World Bank (2023). Dünya Bankası. http://data.worldbank.org/indicator, (E.T.14.04.2023). google scholar
  • Zaman, K., Ahmad, A., Hamzah, T. A. & Yusoff, M. M. (2016). Environmental factors affecting health indicators in Sub-Saharan African countries: Health is wealth. Social Indicators Research, (129), 215-228. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Bulut, Ş., & Ağıralioğlu, S. (2023). Effects of Environmental Degradation, Economic, and Demographic Variables on Life Expectancy: Panel Data Analysis for High-Income Countries. Journal of Economic Policy Researches, 10(2), 545-566. https://doi.org/10.26650/JEPR1255062


AMA

Bulut Ş, Ağıralioğlu S. Effects of Environmental Degradation, Economic, and Demographic Variables on Life Expectancy: Panel Data Analysis for High-Income Countries. Journal of Economic Policy Researches. 2023;10(2):545-566. https://doi.org/10.26650/JEPR1255062


ABNT

Bulut, Ş.; Ağıralioğlu, S. Effects of Environmental Degradation, Economic, and Demographic Variables on Life Expectancy: Panel Data Analysis for High-Income Countries. Journal of Economic Policy Researches, [Publisher Location], v. 10, n. 2, p. 545-566, 2023.


Chicago: Author-Date Style

Bulut, Şehadet, and Saltuk Ağıralioğlu. 2023. “Effects of Environmental Degradation, Economic, and Demographic Variables on Life Expectancy: Panel Data Analysis for High-Income Countries.” Journal of Economic Policy Researches 10, no. 2: 545-566. https://doi.org/10.26650/JEPR1255062


Chicago: Humanities Style

Bulut, Şehadet, and Saltuk Ağıralioğlu. Effects of Environmental Degradation, Economic, and Demographic Variables on Life Expectancy: Panel Data Analysis for High-Income Countries.” Journal of Economic Policy Researches 10, no. 2 (Jul. 2024): 545-566. https://doi.org/10.26650/JEPR1255062


Harvard: Australian Style

Bulut, Ş & Ağıralioğlu, S 2023, 'Effects of Environmental Degradation, Economic, and Demographic Variables on Life Expectancy: Panel Data Analysis for High-Income Countries', Journal of Economic Policy Researches, vol. 10, no. 2, pp. 545-566, viewed 25 Jul. 2024, https://doi.org/10.26650/JEPR1255062


Harvard: Author-Date Style

Bulut, Ş. and Ağıralioğlu, S. (2023) ‘Effects of Environmental Degradation, Economic, and Demographic Variables on Life Expectancy: Panel Data Analysis for High-Income Countries’, Journal of Economic Policy Researches, 10(2), pp. 545-566. https://doi.org/10.26650/JEPR1255062 (25 Jul. 2024).


MLA

Bulut, Şehadet, and Saltuk Ağıralioğlu. Effects of Environmental Degradation, Economic, and Demographic Variables on Life Expectancy: Panel Data Analysis for High-Income Countries.” Journal of Economic Policy Researches, vol. 10, no. 2, 2023, pp. 545-566. [Database Container], https://doi.org/10.26650/JEPR1255062


Vancouver

Bulut Ş, Ağıralioğlu S. Effects of Environmental Degradation, Economic, and Demographic Variables on Life Expectancy: Panel Data Analysis for High-Income Countries. Journal of Economic Policy Researches [Internet]. 25 Jul. 2024 [cited 25 Jul. 2024];10(2):545-566. Available from: https://doi.org/10.26650/JEPR1255062 doi: 10.26650/JEPR1255062


ISNAD

Bulut, Şehadet - Ağıralioğlu, Saltuk. Effects of Environmental Degradation, Economic, and Demographic Variables on Life Expectancy: Panel Data Analysis for High-Income Countries”. Journal of Economic Policy Researches 10/2 (Jul. 2024): 545-566. https://doi.org/10.26650/JEPR1255062



TIMELINE


Submitted22.02.2023
Accepted07.07.2023
Published Online02.08.2023

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.