Research Article


DOI :10.26650/JTL.2020.0010   IUP :10.26650/JTL.2020.0010    Full Text (PDF)

Controller Design for Roll Motion of a Planing Hull From a Safe Transportation Perspective

Hakan DemirelFuat Alarçin

The issue of safe navigation in the maritime sector is becoming more important day by day. This situation is valid not only in terms of passenger and cargo transportation, but also in different maritime operations. Based on this point, much equipment is used in order to perform safe navigation in ships for different sea states such as wind, wave, etc. This equipment is classified as active and passive systems and can be applied to different types of ships. Active stabilizer systems are frequently used, especially for ship types where speed and maneuverability are high, as instantaneous responses are important. Although there are many active systems used, active roll stabilizer fin systems are the most common. At this point, this paper describes an application of LMI (Linear Matrix Inequality) based robust and saturated H2 state feedback control to roll motion of the planing hull via the fin stabilizer. In the mathematical model, nonlinearities are expressed through damping and restoring terms. Based on the planing hull roll motion mathematical model, we also present a state space model suitable for simulation and control applications. Nondimensional lift coefficients of the fin stabilizer for different angles of attack are calculated with Star CCM+ package software. Both controlled and uncontrolled conditions are examined for the maximum lift coefficient. As a result, the efficiency of the proposed approach for safe transportation was demonstrated with the simulation results and an effective study was carried out by reducing the amplitudes of the roll motion to reasonable levels.

DOI :10.26650/JTL.2020.0010   IUP :10.26650/JTL.2020.0010    Full Text (PDF)

Güvenli Ulaşım Bakış Açısıyla Bir Kayıcı Teknenin Yalpa Hareketi İçin Kontrolcü Dizayni

Hakan DemirelFuat Alarçin

Denizcilik sektöründe güvenli seyir konusu her geçen gün daha da önem kazanmaktadır. Sadece yolcu ve yük taşımacılığı açısından değil, farklı deniz operasyonlarında da bu durum geçerliliğini korumaktadır. Bu noktadan yola çıkarak gemilerde, denizlerde karşılaşılabilecek farklı şiddetteki rüzgar, dalga vb durumlarda güvenli seyir gerçekleştirilebilmesi amacıyla birçok ekipman kullanılmaktadır. Bu ekipmanlar aktif ve pasif sistemler olarak sınıflandırılmakta ve farklı gemi tiplerine uygulanabilmektedir. Özellikle hız ve manevra kabiliyetinin yüksek olduğu gemi türleri için anlık tepkilerin önemli olması nedeniyle aktif dengeleyici sistemler sıklıkla kullanılmaktadır. Kullanılan birçok aktif sistem olmakla beraber, aktif yalpa dengeleyici fin sistemleri en yaygın olanıdır. Bu bağlamda, çalışmada aktif yalpa dengeleyici fin sistemi ile kayıcı bir teknenin yalpa hareketi için, Doğrusal Matris Eşitsizlikleri tabanlı, dayanıklı ve doyumlu H2 durum geri beslemeli kontrol uygulaması tanımlanmaktadır. Matematik modelde doğrusal olmayan ifadeler, sönüm ve doğrultucu moment terimleriyle ifade edilmektedir. Kayıcı teknenin yalpa hareketinin matematik modeline dayalı olarak ayrıca durum-uzay modeli, kontrol uygulaması ve simülasyon için sunulmaktadır. Aktif fin yalpa dengeleyici sistemin farklı açılardaki boyutsuz kaldırma katsayıları Star CCM+ programıyla hesaplanmıştır. Kontrollü ve kontrolsüz durumlardaki yalpa genlikleri maksimum kaldırma katsayısı için incelenmiştir. Sonuç olarak, güvenli bir ulaşım için önerilen yaklaşımın verimliliği simülasyon sonuçlarıyla gösterilmiş ve yalpa hareketinin genlikleri makul seviyelere düşürülerek etkili bir çalışma gerçekleştirilmiştir


PDF View

References

  • Alarcin, F., & Gulez, K. (2007). Rudder roll stabilization for fishing vessel using neural network approach. Ocean engineering, 34(13), 1811-1817. google scholar
  • Bai, R. (2014). Adaptive fuzzy output-feedback method applied to fin control for time-delay ship roll stabilization. Mathematical Problems in Engineering, 2014. google scholar
  • Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory (Vol. 15). Siam. google scholar
  • Chadwick, J. H. (1955). On the stabilization of roll. Transactions of the Society of Naval Architects and Marine Engineers, 63, 237-280. google scholar
  • Dullerud, G. E., & Paganini, F. (2013). A course in robust control theory: a convex approach (Vol. 36). Springer Science & Business Media. google scholar
  • Ghassemi, H., Dadmarzi, F., Ghadimi, P., & Ommani, B. (2010). Neural network-PID controller for roll fin stabilizer. Polish Maritime Research, 17(2), 23-28. google scholar
  • Guo, Z., Lin, Z., Yang, Q., & Li, X. (2012). Research of combined control scheme for fast catamaran motion control using T-foils and interceptors. International Journal of Intelligent Engineering &Systems, 5(2), 1-8. google scholar
  • Hickey, N. A., Johnson, M. A., Katebi, M. R., & Grimble, M. J. (1999, August). PID controller optimisation for fin roll stabilisation. In Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No. 99CH36328) (Vol. 2, pp. 1785-1790). IEEE. google scholar
  • Himeno, Y. (1981). Prediction of ship roll damping-a state of the art. University of Michigan. google scholar
  • Holden, C., Galeazzi, R., Fossen, T. I., & Perez, T. (2009, August). Stabilization of parametric roll resonance with active u-tanks via lyapunov control design. In 2009 European Control Conference (ECC) (pp. 4889-4894). IEEE. google scholar
  • Ikeda, Y. (1978). A prediction method for ship roll damping. Report No. 00405 of the Department of Naval Architecture. google scholar
  • Ikeda, Y., & Katayama, T. (2000, February). Roll damping prediction method for a high-speed planing craft. In Proc. 7th Intl. Conf. Stability of Ships and Ocean Vehicles. google scholar
  • Katayama, T., & Ikeda, Y. (1995). An experimental study on transverse stability loss of planing craft at high speed in calm water. google scholar
  • Ku, C. C., & Li, M. D. (2015). A mixed H 2/passivity performance controller design for a drum-boiler system. Journal of Marine Engineering & Technology, 14(3), 137-145. google scholar
  • Marzouk, O. A., & Nayfeh, A. H. (2009). Control of ship roll using passive and active anti-roll tanks. Ocean engineering, 36(9-10), 661-671. google scholar
  • Peng, X., Jia, S., & Yu, Y. (2014, July). A nonlinear control method based on fuzzy optimization algorithm for rudder roll stabilization. In Proceedings of the 33rd Chinese Control Conference (pp. 7888-7891). IEEE. google scholar
  • Perez, T. (2006). Ship motion control: course keeping and roll stabilisation using rudder and fins. Springer Science & Business Media. google scholar
  • Petersen, I. R., & Hollot, C. V. (1986). A Riccati equation approach to the stabilization of uncertain linear systems. Automatica, 22(4), 397-411. google scholar
  • Qi, Z. G., Jin, H. Z., Liu, W. Y., & Xu, Y. (2014, April). Research on active fin stabilizer at low speed and its application to ship roll stabilization. In OCEANS 2014-TAIPEI (pp. 1-6). IEEE. google scholar
  • Saari, H., & Khichane, E. (2013). Robust rudder roll reduction of container ship. Journal of Automation and Systems Engineering, 7(3), 94-104. google scholar
  • Taylan, M. (1990). Application of nonlinear roll motion model for assessment of ship stability in waves. Florida Institute of Technology. google scholar
  • Townsend, N. C., & Shenoi, R. A. (2013). Control strategies for marine gyrostabilizers. IEEE Journal of Oceanic Engineering, 39(2), 243-255. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Demirel, H., & Alarçin, F. (2020). Controller Design for Roll Motion of a Planing Hull From a Safe Transportation Perspective. Journal of Transportation and Logistics, 5(1), 1-11. https://doi.org/10.26650/JTL.2020.0010


AMA

Demirel H, Alarçin F. Controller Design for Roll Motion of a Planing Hull From a Safe Transportation Perspective. Journal of Transportation and Logistics. 2020;5(1):1-11. https://doi.org/10.26650/JTL.2020.0010


ABNT

Demirel, H.; Alarçin, F. Controller Design for Roll Motion of a Planing Hull From a Safe Transportation Perspective. Journal of Transportation and Logistics, [Publisher Location], v. 5, n. 1, p. 1-11, 2020.


Chicago: Author-Date Style

Demirel, Hakan, and Fuat Alarçin. 2020. “Controller Design for Roll Motion of a Planing Hull From a Safe Transportation Perspective.” Journal of Transportation and Logistics 5, no. 1: 1-11. https://doi.org/10.26650/JTL.2020.0010


Chicago: Humanities Style

Demirel, Hakan, and Fuat Alarçin. Controller Design for Roll Motion of a Planing Hull From a Safe Transportation Perspective.” Journal of Transportation and Logistics 5, no. 1 (Jul. 2022): 1-11. https://doi.org/10.26650/JTL.2020.0010


Harvard: Australian Style

Demirel, H & Alarçin, F 2020, 'Controller Design for Roll Motion of a Planing Hull From a Safe Transportation Perspective', Journal of Transportation and Logistics, vol. 5, no. 1, pp. 1-11, viewed 4 Jul. 2022, https://doi.org/10.26650/JTL.2020.0010


Harvard: Author-Date Style

Demirel, H. and Alarçin, F. (2020) ‘Controller Design for Roll Motion of a Planing Hull From a Safe Transportation Perspective’, Journal of Transportation and Logistics, 5(1), pp. 1-11. https://doi.org/10.26650/JTL.2020.0010 (4 Jul. 2022).


MLA

Demirel, Hakan, and Fuat Alarçin. Controller Design for Roll Motion of a Planing Hull From a Safe Transportation Perspective.” Journal of Transportation and Logistics, vol. 5, no. 1, 2020, pp. 1-11. [Database Container], https://doi.org/10.26650/JTL.2020.0010


Vancouver

Demirel H, Alarçin F. Controller Design for Roll Motion of a Planing Hull From a Safe Transportation Perspective. Journal of Transportation and Logistics [Internet]. 4 Jul. 2022 [cited 4 Jul. 2022];5(1):1-11. Available from: https://doi.org/10.26650/JTL.2020.0010 doi: 10.26650/JTL.2020.0010


ISNAD

Demirel, Hakan - Alarçin, Fuat. Controller Design for Roll Motion of a Planing Hull From a Safe Transportation Perspective”. Journal of Transportation and Logistics 5/1 (Jul. 2022): 1-11. https://doi.org/10.26650/JTL.2020.0010



TIMELINE


Submitted20.02.2020
Accepted12.03.2020
Published Online27.05.2020

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.