Review Article


DOI :10.26650/Tr-ENT.2023.1425530   IUP :10.26650/Tr-ENT.2023.1425530    Full Text (PDF)

Hospital Infections and Microbiota

Songül Türk AydınZerrin Aktaş

The human body hosts complex communities of microorganisms, collectively known as the “microbiota,” predominantly in the lower intestine. This microbiota, which consists of bacteria, viruses, and fungi, plays a vital role in the breakdown of various nutrients and maintenance of homeostasis. The microbiome, which represents the collective genetic content of these microorganisms, is intricately associated with human health and disease. Healthcare-associated infections (HCAIs), a major public health problem, contribute to high morbidity and mortality. Exposure to antibiotics, a primary risk factor for diseases, disrupts the microbiota and compromises its protective role. Age-related changes in the microbiota affect the onset and progression of various diseases by affecting the functional capacity and fitness of the host. Inanimate surfaces in built environments contribute to HCAIs by serving as potential reservoirs for microorganisms. Promising results have been observed with fecal microbiota transplantation (FMT) for treating Clostridium difficile infection, which is often associated with healthcare facilities. FMT prevents disease recurrence by restoring a healthy colonic microbiota and breaking the dysbiotic cycle. Furthermore, microbiota-based interventions have the potential to control emerging multidrug-resistant pathogens such as vancomycin-resistant enterococci and carbapenem-resistant Enterobacteriaceae.


PDF View

References

  • 1. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012;336(6086):1268-73. google scholar
  • 2. Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut 2019;68(6):1108-14. google scholar
  • 3. Salandre A, Delannoy J, Goudiaby MTB, Barbut F, Thomas M, Waligora-Dupriet AJ, et al. A simple in vitro test to select stools for fecal microbiota transplantation to limit intestinal carriage of extensively drug-resistant bacteria. Microorganisms 2023;11(11):2753. google scholar
  • 4. Seong H, Lee SK, Cheon JH, Yong DE, Koh H, Kang YK, et al. Fecal microbiota transplantation for multidrug-resistant organism: Efficacy and Response prediction. J Infect 2020;81(5):719-25. google scholar
  • 5. Iebba V, Totino V, Gagliardi A, Santangelo F, Cacciotti F, Trancassini M, et al. Eubiosis and dysbiosis: the two sides of the microbiota. New Microbiologica 2016;39(1):1-12. google scholar
  • 6. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Medicine 2016;8(1):51. google scholar
  • 7. Bair KL, Campagnari AA. Moraxella catarrhalis promotes stable polymicrobial biofilms with the major otopathogens. Front Microbiol 2020;10:3006. google scholar
  • 8. Öksüz L. Anaerobic bacteria isolated from clinical specimens in a university hospital and resistance of anaerobic gram-negative rods to antibiotics. J Ist Faculty Med 2020;83(4):397-406. google scholar
  • 9. Araos R, D’Agata EMC. The human microbiota and infection prevention. Infect Control Hosp Epidemiol 2019;40(5):585-89. google scholar
  • 10. Dahiya D, Nigam PS. Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota—brain axis and cognition: restoration by intake of probiotics and synbiotics. Int J Mol Sci 2023;24(4):3074. google scholar
  • 11. Kahraman EP, Altındiş M. Hastane infeksiyonlarını önlemede mikrobiyotanın rolü. Flora 2018;23(4):159-66. google scholar
  • 12. Nnadozie CF, Odume ON. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environ Pollut 2019;254:113067. google scholar
  • 13. Taylor SL, Papanicolas LE, Richards A, Ababor F, Kang WX, Choo JM, et al. Ear microbiota and middle ear disease: a longitudinal pilot study of Aboriginal children in a remote south Australian setting. BMC Microbiology 2022;22(1):24. google scholar
  • 14. Küçük MP, Ülger F. Mikrobiyota ve yoğun bakım. Turk J Intensive Care 2019;17:122-9. google scholar
  • 15. Ribeiro CFA, Silveira GGOS, Candido ES, Cardoso MH, Carvalho CME, Franco OL. Effects of antibiotic treatment on gut microbiota and how to overcome its negative impacts on human health. ACS Infect Dis 2020;6(10):2544-59. google scholar
  • 16. Ilyas F, Burbridge B, Babyn P. Health care-associated infections and the radiology department. J Med Imag Radiation Sci 2019;50(4):596-606. google scholar
  • 17. Masedaa E, Mensa J, Va^ac JC, Gomez-Herreras JI, Ramasco F, Samsof E, et al. Bugs, hosts and ICU environment: Countering pan-resistance in nosocomial microbiota and treating bacterial infections in the critical care setting. Rev Esp Anestesiol Reanim 2014;61(3):1-19. google scholar
  • 18. Christoff AP, Sereia AFR, Hernandes C, Oliveira LFV. Uncovering the hidden microbiota in hospital and built environments: New approaches and solutions. Exp Biol Med 2019;244(6):534-42. google scholar
  • 19. Buonomo EL, Petri WA. The microbiota and immune response during Clostridium difficile infection. Anaerobe 2016;41:79-84. google scholar
  • 20. Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, et al. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023;8(1):201. google scholar
  • 21. Ross CL, Spinler JK, Savidge TC. Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection. Anaerobe 2016;41:37-43. google scholar
  • 22. Sereia AFR, Christoff AP, Cruz GNF, Cunha PA, Cruz GCK, Tartari DC, et al. Healthcare-associated infections-related bacteriome and antimicrobial resistance profiling: assessing contamination hotspots in a developing country public hospital. Front Microbiol 2021;12:711471. google scholar
  • 23. Pirzadian J, Harteveld SP, Ramdutt SN, Wamel WJB, Klaassen CHW, Vos CM, et al. Novel use of culturomics to identify the microbiota in hospital sink drains with and without persistent VIM-positive Pseudomonas aeruginosa. Sci Rep 2020;10:17052. google scholar
  • 24. Türel Ö. Hastane enfeksiyonlarının önlenmesinde probiyotiklerin rolü nedir? Klinik Tıp Pediatri Dergisi 2018;10(5):14-8. google scholar
  • 25. Guern RL, Grandjean T, Stabler S, Bauduin M, Gosset P, Kipnis E, et al. Gut colonisation with multidrug-resistant Klebsiella pneumoniae worsens Pseudomonas aeruginosa lung infection. Nat Commun 2023;14(1):78. google scholar
  • 26. Bacci G, Rossi A, Armanini F, Cangioli L, Fino ID, Segata N, et al. Lung and gut microbiota changes associated with Pseudomonas aeruginosa infection in mouse models of cystic fibrosis. Int J Mol Sci 2021;22(22):12169. google scholar
  • 27. Zhu S, Li X, Song L, Huang Y, Xiao Y, Chu Q, et al. Stachyose inhibits vancomycin-resistant enterococcus colonization and affects gut microbiota in mice. Microbial Pathogenesis 2021;159:105094. google scholar
  • 28. Belga S, Chiang D, Kabbani D, Abraldes JG, Cervera C. The direct and indirect effects of vancomycin-resistant enterococci colonization in liver transplant candidates and recipients. Expert Rev Anti Infect Ther 2019;17(5):363-73. google scholar
  • 29. Kim SG, Becattini S, Moody TU, Shliaha PV, Littmann ER, Seok R, et al. Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus. Nature 2019;572:665-9. google scholar
  • 30. Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nature Immunology 2019;20(10):1279-90. google scholar
  • 31. Zhao Y, Sun H, Chen Y, Niu Q, Dong Y, Li M, et al. Butyrate protects against MRSA pneumonia via regulating gut-lung microbiota and alveolar macrophage M2 polarization. mBio 2023;14(5):e0198723. google scholar
  • 32. Bessesen MT, Kotter CV, Wagner BD, Adams JC, Kingery S, Benoit JB, et al. MRSA colonization and the nasal microbiome in adults at high risk of colonization and infection. J Infect 2015;71(6):649-57. google scholar
  • 33. Liu Y, Yang K, Jia Y, Shi J, Tong Z, Fang D, et al. Gut microbiome alterations in high-fat-diet-fed mice are associated with antibiotic tolerance. Nature Microbiol 2021;6:874-84. google scholar
  • 34. Zawadzka-Gtos L. Microbiota and antibiotic therapy in rhinosinusitis. Otolaryngol Pol 2023;77(5):36-42. google scholar
  • 35. Popa D, Neamtu B, Mihalache M, Boicean A, Banciu A, Banciu DD, et al. Fecal microbiota transplant in severe and non-severe clostridioides difficile infection. Is There a Role of FMT in Primary Severe CDI?. J Clin Med 2021;10(24):5822. google scholar
  • 36. Sohn KM, Cheon S, Kim YS. Can Fecal Microbiota Transplantation (FMT) Eradicate Fecal Colonization with Vancomycin-Resistant Enterococci (VRE)? Infect Control Hosp Epidemiol 2016;37(12):1519-21. google scholar
  • 37. Quraishi MN, Widlak M, Bhala N, Moore D, Price M, Sharma N, et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther 2017;46(5):479-93. google scholar
  • 38. Liubakka A, Vaughn BP. Clostridium difficile Infection and Fecal Microbiota Transplant. AACN Adv Crit Care 2016;27(3):324-37. google scholar
  • 39. Jalanka J, Hillamaa A, Satokari R, Mattila E, Anttila VJ, Arkkila P. The long-term effects of faecal microbiota transplantation for gastrointestinal symptoms and general health in patients with recurrent Clostridium difficile infection. Aliment Pharmacol Ther 2018;47(3):371-9. google scholar
  • 40. Davido B, Batista R, Fessi H, Michelon H, Escaut L, Lawrence C, et al. Fecal microbiota transplantation to eradicate vancomycin-resistant enterococci colonization in case of an outbreak. Med Mal Infect 2019;49(3):214-8. google scholar
  • 41. Dinh A, Fessi H, Duran C, Batista R, Michelon H, Bouchand F, et al. Clearance of Carbapenem-resistant Enterobacteriaceae versus Vancomycin-resistant enterococci carriage after fecal microbiota transplant: a prospective comparative study. J Hosp Infect 2018;99(4):481-6. google scholar
  • 42. Ueckermann V, Hoosien E, Villiers ND, Geldenhuys J. Fecal Microbial Transplantation for the Treatment of Persistent Multidrug-Resistant Klebsiella pneumoniae Infection in a Critically Ill Patient. Case Rep Infect Dis 2020;2020:8462659. google scholar
  • 43. Magruder M, Sholi AN, Gong C, Zhang L, Edusei E, Huang J, et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat Commun 2019;10(1):5521. google scholar
  • 44. Worby CJ, Schreiber IV HL, Straub TJ, Dijk LR, Bronson RA, Olson BS, et al. Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nat Microbiol 2022;7(5):630-9. google scholar
  • 45. Vendrik KEW, Meij TGJ, Bökenkamp A, Ooijevaar RE, Groenewegen B, Hendrickx APA, et al. Transmission of Antibiotic-Susceptible Escherichia coli Causing Urinary Tract Infections in a Fecal Microbiota Transplantation Recipient: Consequences for Donor Screening? Open Forum Infect Dis 2022;9(7):ofac324. google scholar
  • 46. Wang Y, He Y, Liang Y, Liu H, Chen X, Kulyar MFA, et al. Fecal microbiota transplantation attenuates Escherichia coli infected outgrowth by modulating the intestinal microbiome. Microbial Cell Factories 2023;22:30. google scholar
  • 47. Scillato M, Spitale A, Mongelli G, Privitera GF, Mangano K, Cianci A, et al. Antimicrobial properties of Lactobacillus cell-free supernatants against multidrug-resistant urogenital pathogens. Microbiology Open 2021;10(2):e1173. google scholar
  • 48. Gürer EE, Savran Oğuz F, Beşışık Kalayoğlu S, Aktaş Z,Gülbaş Z, Öncül MO, et al. Gut microbiota effects in hematopoietic stem cell transplant patients. J Ist Faculty Med 2022;85(3):296-304. google scholar
  • 49. Bilinski J, Grzesiowski P, Sorensen N, Madry K, Muszynski J, Robak K, et al. Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: Results of a prospective, single-center study. Clin Infect Dis 2017;65(3):364-70. google scholar
  • 50. Petrosillo N, Taglietti F, Granata G. Treatment options for colistin resistant Klebsiella pneumoniae: present and future. J Clin Med 2019;8(7):934. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Türk Aydın, S., & Aktaş, Z. (2024). Hospital Infections and Microbiota. The Turkish Journal of Ear Nose and Throat, 34(1), 24-29. https://doi.org/10.26650/Tr-ENT.2023.1425530


AMA

Türk Aydın S, Aktaş Z. Hospital Infections and Microbiota. The Turkish Journal of Ear Nose and Throat. 2024;34(1):24-29. https://doi.org/10.26650/Tr-ENT.2023.1425530


ABNT

Türk Aydın, S.; Aktaş, Z. Hospital Infections and Microbiota. The Turkish Journal of Ear Nose and Throat, [Publisher Location], v. 34, n. 1, p. 24-29, 2024.


Chicago: Author-Date Style

Türk Aydın, Songül, and Zerrin Aktaş. 2024. “Hospital Infections and Microbiota.” The Turkish Journal of Ear Nose and Throat 34, no. 1: 24-29. https://doi.org/10.26650/Tr-ENT.2023.1425530


Chicago: Humanities Style

Türk Aydın, Songül, and Zerrin Aktaş. Hospital Infections and Microbiota.” The Turkish Journal of Ear Nose and Throat 34, no. 1 (Dec. 2024): 24-29. https://doi.org/10.26650/Tr-ENT.2023.1425530


Harvard: Australian Style

Türk Aydın, S & Aktaş, Z 2024, 'Hospital Infections and Microbiota', The Turkish Journal of Ear Nose and Throat, vol. 34, no. 1, pp. 24-29, viewed 14 Dec. 2024, https://doi.org/10.26650/Tr-ENT.2023.1425530


Harvard: Author-Date Style

Türk Aydın, S. and Aktaş, Z. (2024) ‘Hospital Infections and Microbiota’, The Turkish Journal of Ear Nose and Throat, 34(1), pp. 24-29. https://doi.org/10.26650/Tr-ENT.2023.1425530 (14 Dec. 2024).


MLA

Türk Aydın, Songül, and Zerrin Aktaş. Hospital Infections and Microbiota.” The Turkish Journal of Ear Nose and Throat, vol. 34, no. 1, 2024, pp. 24-29. [Database Container], https://doi.org/10.26650/Tr-ENT.2023.1425530


Vancouver

Türk Aydın S, Aktaş Z. Hospital Infections and Microbiota. The Turkish Journal of Ear Nose and Throat [Internet]. 14 Dec. 2024 [cited 14 Dec. 2024];34(1):24-29. Available from: https://doi.org/10.26650/Tr-ENT.2023.1425530 doi: 10.26650/Tr-ENT.2023.1425530


ISNAD

Türk Aydın, Songül - Aktaş, Zerrin. Hospital Infections and Microbiota”. The Turkish Journal of Ear Nose and Throat 34/1 (Dec. 2024): 24-29. https://doi.org/10.26650/Tr-ENT.2023.1425530



TIMELINE


Submitted07.02.2024
Accepted11.03.2024
Published Online22.03.2024

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.