BÖLÜM


DOI :10.26650/B/SS10.2021.013.18   IUP :10.26650/B/SS10.2021.013.18    Tam Metin (PDF)

BİST Banka Endeksi İçinde Faaliyet Gösteren Mevduat Bankalarının Endeks Volatilitesinin Markov Rejim Değişim Modelleriyle İncelenmesi

Selahattin GürişNazan Şak

Bu çalışmada Türk bankacılık sistemi içinde faaliyet gösteren ve BİST banka içinde yer alan 9 mevduat bankasının endeks getiri değerlerindeki volatiliteyi modelleyebilmek ve finansal piyasalardaki hareketlerini öngörebilmek amacıyla 02.01.2008-07.06.2018 tarihleri arasındaki günlük kapanış fiyatlarından yararlanılarak logaritmik getiriler hesaplanmış, bu serilerden hareketle 9 mevduat bankasına ait serilerin volatilite yapısı koşullu değişen varyans modelleri (GARCH, EGARCH) ve Markov Switching koşullu değişen varyans modelleriyle (MSGARCH, MS-EGARCH) incelenmiştir. Yapılan bu incelemeyle, bankacılık sisteminde kazandıran kaybettiren dönemlerin dikkate alındığı rejim değişim modelleriyle, rejim değişimlerini dikkate almadan elde edilecek modellerin sonuçları karşılaştırılarak BİST Banka endeksi içinde faaliyet gösteren 9 mevduat bankasının endeksindeki volatilitenin rejimsel değişimlerden etkilenip etkilenmediği incelenmek istenmiştir. Bu amaçla, serilerin farklı dağılımsal özellikleri modele katılarak, iki ve üç rejimli modeller tahmin edilmiş; tahmin edilen koşullu değişen varyans modellerinden en uygun model belirlenmeye çalışılmıştır. Tahmin sırasında Ardia, Bluteau, Boudt, Catania, Peterson, ve Trottier (2018)’in MSGARCH modülü kullanılmıştır. Analiz sırasında, volatiliteyi açıklamak için en çok olabilirlik (ML) tahmin yöntemi ile uyum iyiliği ölçülerinden yararlanılarak elde edilen model tahmin sonuçları sunulmuştur. Çalışmanın bulguları, genel olarak getiri serilerinin asimetri ve rejim değişim etkileri taşıdığını göstermektedir.


DOI :10.26650/B/SS10.2021.013.18   IUP :10.26650/B/SS10.2021.013.18    Tam Metin (PDF)

Investigation of the Index Volatility of Deposit Banks Operating in the BİST Bank Index Using Markov Regime Switching Models

Selahattin GürişNazan Şak

Purpose

As an indicator of volatility in stock prices, the identification of model volatility is important for predicting movements in financial markets and making successful investment decisions. This study determined autoregressive conditional heteroskedasticity models to explain the volatility structure of nine deposit banks in the BIST Bank Index.

Data

Within the scope of the study, models were estimated using the stock index return values of Akbank, Denizbank, Garanti Bank, Halkbank, İşbank, QNB Finansbank, Şekerbank, Vakıfbank, and Yapı Kredi Bank. For this purpose, logarithmic returns were calculated by using daily closing prices between 02.01.2008 and 07.06.2018.

Methodology

The model that best describes the volatility in the stock return values of the banks was estimated using single and multi-regime models. The symmetrical generalized autoregressive conditional heteroskedasticity (GARCH) model was developed by Bollerslev (1986), and the asymmetric exponential generalized autoregressive conditional heteroskedasticity (EGARCH) model was introduced by Nelson (1991). Markov switching conditional variance models, which add different regime states to the model, can be formed in both symmetric and asymmetric structures. This study used the MSGARCH module developed by Ardia, Bluteau, Boudt, Catania, Peterson, and Trottier (2018). During the estimation, both single- and multiregime models were estimated using the maximum likelihood estimation method considering the different distribution characteristics specific to financial time series.

Results

The analysis revealed that the daily average return of the nine banks in the BIST Bank Index is very close to zero, and standard deviations are between 2,277182 and 3,252496. İşbank had the lowest standard deviation, and Denizbank had the highest standard deviation. Before modeling the volatility in the return series using GARCH models, an ARCH test was used to determine whether the series had heteroskedasticity. For this purpose, mean equations were estimated using an autoregressive moving average model structure, and the ARCH test was applied. The null hypothesis suggesting that there is no ARCH effect in the return series was rejected at a 1% significance level based on the ARCH-LM test results. In this case, the volatility in the series can be examined with conditional variance models. Parameter and information criteria values were also used in the estimation of the model.

Conclusion

This study determined the models that best explain volatility. These models include the ged distributed MSEGARCH model for Akbank; the skewed ged distributed MSGARCH model for Denizbank; the t distributed EGARCH (1,1,1) model for Garanti bank; the t distributed GARCH (1,1) model for Halkbank; the ged distributed MSEGARCH model for İşbank; the skewed ged distributed MSGARCH model for QNB Finansbank; the normal distributed MSEGARCH model for Yapı Kredi Bank; the ged distributed MSEGARCH model for Şekerbank; and the t distributed EGARCH (1,1,1) model for Vakıfbank.

This analysis determined that the return series of banks other than Halkbank have an asymmetric effect or regime switching. When the predicted models are examined, the series generally implies a regime switching effect. Therefore, if different regime features are ignored during estimation, the estimation results may be biased. As a result of the analysis, it has been determined that the return series of the banks have similar characteristics, although they do not have exactly the same model structures. It can be said that these different results in the modeling between banks are due to the policies implemented by the banks or their structural characteristics.



Referanslar

  • Ardia, D., Bluteau, K., Boudt, K., Catania, L., Peterson, B., & Trottier D.A. (2018). Markov Switching GARCH models in R: The MSGARCH package, 1-39. https://www.researchgate.net/publication/325359792_Markov-Switching_GARCH_Models_in_R_The_MSGARCH_Package google scholar
  • Ardia, D., Bluteau, K., Boudt, K., Catania, L., Peterson, B., & Trottier D.A. (2018). Package MSGARCH, 1-32. https://cran.r-project.org/web/packages/MSGARCH/MSGARCH.pdf. google scholar
  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-27. google scholar
  • Büberkökü, Ö. (2018). Küresel Finans Krizinin Mevduat Bankalarının Sistematik Risk Düzeyi Üzerindeki Etkisinin İncelenmesi: AR(p)-DCC-FIGARCH (p,d,q) ve Asimetrik AR(p)-DBEKK-GARCH (p,q) Modellerine Dayalı Bir Analiz. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 33(1), 39-73. google scholar
  • Chakroun, M.A. & Gallali, M. I. (2016). Contagion between Islamic and Conventional Banking: A GJR DCC-GARCH and VAR Analysis. International Business Research; 9(10), 115-126. google scholar
  • Çelik, İ. E. (2019). Assessing The Impact Of Bank Risk Factors On Turkish Bank’s Stock Returns Using The Egarch-M Model. Üçüncü Sektör Sosyal Ekonomi Dergisi, 54(2), 811-827. google scholar
  • Çil Yavuz, N. (2014). Finansal Ekonometri. Der Yayınevi: İstanbul. google scholar
  • Demirelli, E. (2010). Finansal kırılganlıklar: Türk bankacılık sektörü üzerine uygulama. Elektronik Sosyal Bilimler Dergisi, 9(33), 122-140. google scholar
  • Derindere Köseoğlu, S. (2010). 1997-2010 dönemi Türk bankacılık sektörü risk analizi. Niğde Üniversitesi İ.İ.B.F Dergisi, 3(2), 119-134. google scholar
  • Dickey, D., & Fuller, W. (1979). Distribution of the Estimators for Autoregressive Time Series with A Unit Root. Journal of The American Statistical Association, 74, 427-431. google scholar
  • Fernandez, C., & Steel, M. F. J. (1998). On bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93, 359-371. doi:10.1080/01621459.1998.10474117. google scholar
  • Gümrah, Ü. ve Konuk, S. (2018). Zamanla değişen beta: Borsa İstanbul bankacılık sektörü uygulaması. Ekonomik ve Sosyal Araştırmalar Dergisi, 14(1), 51-66. google scholar
  • Haas, M., Mittnik, S., & Paolella, MS. (2004). A new approach to Markov-switching GARCH models. Journal of Financial Econometrics, 2, 493-530. http://doi.org/10.1093/jjfinec/nbh020. google scholar
  • Karahanoğlu, İ. ve Ercan, H. (2015). BNK10 endeksindeki kaldıraç etkisinin genelleştirilmiş otoregresif koşullu varyans modeli ile analiz edilmesi. Uluslararası Alanya İşletme Fakültesi Dergisi,7(3), 169-181. google scholar
  • Kula, V. ve Baykut, E. (2017). BIST banka endeksi’nin (XBANK) volatilite yapısının Markov rejim değişimi GARCH modeli (MSGARCH) ile analizi. Bankacılar Dergisi, 102, 89-110. google scholar
  • Marcucci, J. (2005). Forecasting Stock Market Volatility with Regime-Switching GARCH Models. Studies in Nonlinear Dynamics & Econometrics, 9(4), 1-42. google scholar
  • Nelson, B. D. (1991). Conditional heteroscedasticitiy in asset return: A new approach. Econometrica, 59, 347-370. google scholar
  • Phillips, P. C., & Perron, P. (1988). Testing for a Unit Root in Time Series Regression. Biometrika, 75, 335-346. google scholar


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.