Araştırma Makalesi

DOI :10.26650/EurJBiol.2022.1061858   IUP :10.26650/EurJBiol.2022.1061858    Tam Metin (PDF)

The Effects of SARS CoV-2 nsp13 Mutations on the Structure and Stability of Helicase in Chinese Isolates

Ekrem Akbulut

Objective: Coronavirus Disease 2019 (COVID19) is a viral disease caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2). The high mutation propensity of the SARS CoV-2 genome is one of the biggest threats to the long-term validity of treatment options. Helicases are anti-viral targets because of the vital role they play in the viral life cycle. In this study, changes in the protein structure caused by SARS CoV-2 nsp13 mutations were investigated to contribute to the development of effective antiviral drugs. Materials and Methods: Genome data of 298 individuals located in the China location were examined. The mutant model was built using deep learning algorithms. Model quality assessment was done with QMEAN. Protein stability analyses were performed with DynaMut2 and Cutoff Scanning Matrix stability. Changes in substrate affinity were performed with Haddock v2.4. Results: In this study, twenty-eight mutations in nsp13 were identified (23 sense, 5 missense). The changes in protein structure caused by the five missense mutations (Leu14Phe, Arg15Ser, Arg21Ser, Leu235Phe, Ala454Thr) were modeled. The mutations caused a decrease in the stability of SARS CoV-2 helicase (-0.99, -1.66, -1.15, -0.54, and -0.73 for Leu14Phe, Arg15Ser, Arg21Ser, Leu235Phe, Ala454Thr, respectively). The mutations reduced the helicase's affinity to the substrate. The docking scores for wild-type and mutant helicase were -84.4±1.4 kcal.mol-1 and -71.1±6.7 kcal.mol-1, respectively. Conclusion: Helicase mutations caused a decrease in the protein stability and nucleic acid affinity of the SARS CoV-2 helicase. The results provide important data on the development of potential antivirals and the effect of mutation on the functions of viral proteins.

PDF Görünüm


  • 1. Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indi-an J Pediatr 2020; 87: 281-6. google scholar
  • 2. Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of proba-ble bat origin. Nature 2020; 579: 270-3. google scholar
  • 3. Worldometer. Coronavirus case report. WwwWorldometersInfo/ Coronavirus 2022. google scholar
  • 4. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new corona-virus associated with human respiratory disease in China. Nature 2020; 579: 265-9. google scholar
  • 5. Zito Marino F, De Cristofaro T, Varriale M, Zannini G, Ronchi A, La Mantia E, et al. Variable levels of spike and ORF1ab RNA in post-mortem lung samples of SARS-CoV-2-positive subjects: com-parison between ISH and RT-PCR. Virchows Arch 2022: 1-11. google scholar
  • 6. Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgen-stern D, Yahalom-Ronen Y, et al. The coding capacity of SARS-CoV-2. Nature 2021; 589: 125-30. google scholar
  • 7. Habtemariam S, Nabavi SF, Banach M, Berindan-Neagoe I, Sarkar K, Sil PC, et al. Should We Try SARS-CoV-2 Helicase Inhibitors for COVID-19 Therapy? Arch Med Res 2020; 51: 733-5. google scholar
  • 8. Singleton MR, Dillingham MS, Wigley DB. Structure and mecha-nism of helicases and nucleic acid translocases. Annu Rev Biochem 2007; 76: 23-50. google scholar
  • 9. Ahmad S, Waheed Y, Ismail S, Bhatti S, Abbasi SW, Muhammad K. Structure-based virtual screening identifies multiple stable bind-ing sites at the RecA domains of SARS-CoV-2 helicase enzyme. Molecules 2021; 26: 1446. google scholar
  • 10. Akbulut E. Mutations in the SARS CoV-2 spike protein may cause functional changes in the protein quaternary structure. Turkish J Biochem 2021; 46: 137-44. google scholar
  • 11. Akbulut E. Comparative Genomic and Proteomic Analysis of SARS CoV-2 - with Potential Mutation Probabilities and Drug Targeting. Erzincan Univ J Sci Technol 2020; 13: 1187-97. google scholar
  • 12. Zahradnı'kJ, Marciano S, Shemesh M,Zoler E, Harari D,Chiaravalli J, et al. SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nat Microbiol 2021; 6: 1188-98. google scholar
  • 13. Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30: 3059-66. google scholar
  • 14. Mount DW. Using BLOSUM in sequence alignments. Cold Spring Harb Protoc 2008; 3: pdb-top39. google scholar
  • 15. Jones DT, Taylor WR, Thornton JM. The rapid generation of muta-tion data matrices from protein sequences. Bioinformatics 1992; 8: 275-82. google scholar
  • 16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547-9. google scholar
  • 17. Mirdita M, Ovchinnikov S, Steinegger M. ColabFold - Making protein folding accessible to all. BioRxiv 2021: 2021.08.15.456425. google scholar
  • 18. Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandao-Neto J, et al. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat Com-mun 2021; 12. google scholar
  • 19. Benkert P, Biasini M, Schwede T. Toward the estimation of the abso-lute quality of individual protein structure models. Bioinformatics 2011; 27: 343-50. google scholar
  • 20. Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlic A, Rose PW. NGL viewer: Web-based molecular graphics for large complexes. Bioin-formatics 2018; 34: 3755-8. google scholar
  • 21. Xu J, Zhang Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 2010; 26: 889-95. google scholar
  • 22. Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci 2021; 30: 60-9. google scholar
  • 23. Pires DEV, Ascher DB, Blundell TL. MCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformat-ics 2014; 30: 335-42. google scholar
  • 24. Pires DEV, de Melo-Minardi RC, dos Santos MA, da Silveira CH, San-toro MM, Meira W. Cutoff Scanning Matrix (CSM): Structural classi-fication and function prediction by protein inter-residue distance patterns. BMC Genomics, vol. 12, Springer; 2011,p. 1-11. google scholar
  • 25. Pires DEV, De Melo-Minardi RC, Da Silveira CH, Campos FF, Meira W. ACSM: Noise-free graph-based signatures to large-scale recep-tor-based ligand prediction. Bioinformatics 2013; 29: 855-61. google scholar
  • 26. Jubb HC, Higueruelo AP, Ochoa-Montano B, Pitt WR, Ascher DB, Blundell TL. Arpeggio: A Web Server for Calculating and Visualising Interatomic Interactions in Protein Structures. J Mol Biol 2017; 429: 365-71. google scholar
  • 27. Van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, et al. The HADDOCK2.2 Web Server: User-Friendly In-tegrative Modeling of Biomolecular Complexes. J Mol Biol 2016; 428: 720-5. google scholar
  • 28. Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, et al. Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex. Cell 2020; 182: 1560-1573.e13. google scholar
  • 29. Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, et al. IK-Kepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4: 478-84. doi: 10.1038/ni922. google scholar
  • 30. Xia H, Cao Z, Xie X, Zhang X, Chen JYC, Wang H, et al. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep 2020; 33: 108234. google scholar
  • 31. Nguyen TT, Chang SC, Evnouchidou I, York IA, Zikos C, Rock KL, et al. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat Struct Mol Biol 2011; 18: 604-13. google scholar
  • 32. Wu S, Tian C, Liu P, Guo D, Zheng W, Huang X, et al. Effects of SARS-CoV-2 mutations on protein structures and intraviral protein-pro-tein interactions. J Med Virol 2021; 93: 2132-40. google scholar
  • 33. Akbulut E, Kar B. SARS CoV-2 nsp1 Mutasyonlarının Protein Yapıda Ortaya Çıkardığı Değişimler. Int J Pure Appl Sci 2020; 6: 68-76. google scholar
  • 34. Farkas C, Fuentes-Villalobos F, Garrido JL, Haigh J, Bama MI. Insights on early mutational events in SARS-CoV-2 virus reveal founder ef-fects across geographical regions. PeerJ 2020; 2020: e9255. google scholar
  • 35. Garvin MR, T. Prates E, Pavicic M, Jones P, Amos BK, Geiger A, et al. Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models. Genome Biol 2020; 21: 1-26. google scholar
  • 36. Alouane T, Laamarti M, Essabbar A, Hakmi M, Bouricha EM, Che-mao-Elfihri MW, et al. Genomic diversity and hotspot mutations in 30,983 SARS-CoV-2 genomes: Moving toward a universal vaccine for the “confined virus”? Pathogens 2020; 9: 1-19. google scholar
  • 37. Akbulut E. SARS CoV-2 Spike Glycoprotein Mutations and Changes in Protein Structure. Trak Univ J Nat Sci 2020; 22: 1-11. google scholar
  • 38. Matyasek R, Kovank A. Mutation patterns of human SARS-CoV-2 and bat RATG13 coronavirus genomes are strongly biased towards C>U transitions, indicating rapid evolution in their hosts. Genes (Basel) 2020; 11: 1-13. google scholar
  • 39. Wang R, Hozumi Y, Zheng YH, Yin C, Wei GW. Host immune re-sponse driving SARS-CoV-2 evolution. Viruses 2020; 12: 1095. google scholar
  • 40. Seyran M, Takayama K, Uversky VN, Lundstrom K, Palu G, Sherchan SP, et al. The structural basis of accelerated host cell entry by SARS-CoV-2+. FEBS J 2021; 288: 5010-20. google scholar
  • 41. Feroza B, Banerjee AK, Tripathi PP, Ray U. Two mutations P/L and Y/C in SARS-CoV-2 helicase domain exist together and influence helicase RNA binding. BioRxiv 2020. google scholar
  • 42. Jen J, Wang YC. Zinc finger proteins in cancer progression. J Biomed Sci 2016; 23: 1-9. google scholar
  • 43. Iuchi S. Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 2001; 58: 625-35. google scholar
  • 44. Filippova GN, Ulmer JE, Moore JM, Ward MD, Hu YJ, Neiman PE, et al. Tumor-associated zinc finger mutations in the CTCF transcrip-tion factor selectively alter its DNA-binding specificity. Cancer Res 2002; 62: 48-52. google scholar
  • 45. Takaku M, Grimm SA, Roberts JD, Chrysovergis K, Bennett BD, My-ers P, et al. GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun 2018; 9: 1-14. google scholar
  • 46. Munro D, Ghersi D, Singh M. Two critical positions in zinc finger domains are heavily mutated in three human cancer types. PLoS Comput Biol 2018; 14: e1006290. google scholar
  • 47. Ma J, Chen Y, Wu W, Chen Z. Structure and Function of N-Terminal Zinc Finger Domain of SARS-CoV-2 NSP2. Virol Sin 2021; 36: 110412. google scholar
  • 48. Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, et al. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci U S A 2015; 112: 9436-41. google scholar
  • 49. Halder UC. Predicted antiviral drugs Darunavir, Amprenavir, Rimantadine and Saquinavir can potentially bind to neutralize SARS-CoV-2 conserved proteins. J Biol Res 2021; 28: 1-58. google scholar
  • 50. Berta D, Badaoui M, Martino SA, Buigues PJ, Pisliakov A V., Elgho-bashi-Meinhardt N, et al. Modelling the active SARS-CoV-2 helicase complex as a basis for structure-based inhibitor design. Chem Sci 2021; 12: 13492-505. google scholar


Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın



Akbulut, E. (2022). The Effects of SARS CoV-2 nsp13 Mutations on the Structure and Stability of Helicase in Chinese Isolates. European Journal of Biology, 81(1), 11-17.


Akbulut E. The Effects of SARS CoV-2 nsp13 Mutations on the Structure and Stability of Helicase in Chinese Isolates. European Journal of Biology. 2022;81(1):11-17.


Akbulut, E. The Effects of SARS CoV-2 nsp13 Mutations on the Structure and Stability of Helicase in Chinese Isolates. European Journal of Biology, [Publisher Location], v. 81, n. 1, p. 11-17, 2022.

Chicago: Author-Date Style

Akbulut, Ekrem,. 2022. “The Effects of SARS CoV-2 nsp13 Mutations on the Structure and Stability of Helicase in Chinese Isolates.” European Journal of Biology 81, no. 1: 11-17.

Chicago: Humanities Style

Akbulut, Ekrem,. The Effects of SARS CoV-2 nsp13 Mutations on the Structure and Stability of Helicase in Chinese Isolates.” European Journal of Biology 81, no. 1 (Mar. 2024): 11-17.

Harvard: Australian Style

Akbulut, E 2022, 'The Effects of SARS CoV-2 nsp13 Mutations on the Structure and Stability of Helicase in Chinese Isolates', European Journal of Biology, vol. 81, no. 1, pp. 11-17, viewed 1 Mar. 2024,

Harvard: Author-Date Style

Akbulut, E. (2022) ‘The Effects of SARS CoV-2 nsp13 Mutations on the Structure and Stability of Helicase in Chinese Isolates’, European Journal of Biology, 81(1), pp. 11-17. (1 Mar. 2024).


Akbulut, Ekrem,. The Effects of SARS CoV-2 nsp13 Mutations on the Structure and Stability of Helicase in Chinese Isolates.” European Journal of Biology, vol. 81, no. 1, 2022, pp. 11-17. [Database Container],


Akbulut E. The Effects of SARS CoV-2 nsp13 Mutations on the Structure and Stability of Helicase in Chinese Isolates. European Journal of Biology [Internet]. 1 Mar. 2024 [cited 1 Mar. 2024];81(1):11-17. Available from: doi: 10.26650/EurJBiol.2022.1061858


Akbulut, Ekrem. The Effects of SARS CoV-2 nsp13 Mutations on the Structure and Stability of Helicase in Chinese Isolates”. European Journal of Biology 81/1 (Mar. 2024): 11-17.


Çevrimiçi Yayınlanma13.04.2022


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.