Araştırma Makalesi


DOI :10.26650/ekoist.2021.36.984568   IUP :10.26650/ekoist.2021.36.984568    Tam Metin (PDF)

Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi

Fatih KazovaAyça Büyükyılmaz Ercan

2008 küresel finans krizi ile birlikte ortaya çıkan kripto para birimi, geleneksel para sisteminin yerini almak üzere geliştirilen alternatif bir değişim aracı olmuştur. Kripto para birimleri hızlı ve güvenli işlem yapabilmesi, aracı kurumları ortadan kaldırması ve düşük maliyetli olmasından dolayı giderek popüler hale gelmiştir. Ancak kripto para piyasasındaki sert dalgalanmalardan ötürü oluşan yüksek risk-getiri oranı nedeniyle literatürde kripto paraların getirilerinin yanında risklerinin de dikkate alınmasının önemi vurgulanmaktadır. Bu çalışmada pozitif ve negatif şokların kripto para birimlerinin getiri oranlarının volatilitesi üzerindeki etkilerinin araştırılması amaçlanmıştır. Bu doğrultuda piyasa değeri yüksek olan BTC, ETH, XRP, ADA, LTC, BCH, XLM, LINK, TRX ve DOGE kripto para birimleri seçilerek getiri serileri oluşturulmuştur. Bu getiri serilerinin volatiliteleri simetrik ve asimetrik koşullu değişen varyans modelleri kullanılarak analiz edilmiştir. Veri seti dönemi her bir kripto para birimi için değişmekle birlikte en geniş veri seti 01.01.2017-16.01.2021 dönemini kapsamaktadır. Elde edilen bulgular BTC, ADA, LINK getiri serilerinde meydana gelen negatif şokların pozitif şoklara göre volatilite üzerinde daha çok etkisi olduğunu göstermiştir. Diğer taraftan ETH, XRP, LTC, BCH, XLM, TRX, DOGE getiri serilerinde ise pozitif şokların volatilite üzerinde daha büyük bir etkiye sahip olduğu sonucuna ulaşılmıştır. Sonuç olarak bu çalışmada kullanılan veriler için getiri serilerinin volatilitelerinin modellenmesinde asimetrik koşullu değişen varyans modellerinin, simetrik koşullu değişen varyans modellerine göre daha anlamlı sonuçlar verdiğini göstermiştir.

Anahtar Kelimeler: TGARCHEGARCHACGARCHKripto ParaVolatilite
DOI :10.26650/ekoist.2021.36.984568   IUP :10.26650/ekoist.2021.36.984568    Tam Metin (PDF)

Comparative Analysis of the Volatility Structure of Cryptocurrencies

Fatih KazovaAyça Büyükyılmaz Ercan

Cryptocurrency emerged as an alternative medium of exchange developed after the 2008 global financial crisis to replace the traditional money system. Cryptocurrencies have become increasingly popular because of their fast and secure transactions, elimination of intermediaries, and low cost. However, due to the high risk–return ratio arising from sharp fluctuations in the cryptomoney market, studies have emphasized that the risks of cryptocurrencies should be considered in addition to their returns. This study investigates the effects of positive and negative shocks on the volatility of the rates of return on cryptocurrencies. In this direction, a return series was created by choosing BTC, ETH, XRP, ADA, LTC, BCH, XLM, LINK, TRX, and DOGE cryptocurrencies with high market values. The volatility of these return series was analyzed using symmetric and asymmetric conditional heteroskedasticity models. Although the data set period varies for each cryptocurrency, the largest dataset covers the period from January 1, 2017, to January 16, 2021. The findings show that negative shocks in BTC, ADA, and LINK return series have more effect on volatility than positive shocks. Alternatively, it was concluded that positive shocks have a greater effect on volatility in ETH, XRP, LTC, BCH, XLM, TRX, DOGE return series. Therefore, for the data used in this study, it has been shown that the asymmetric conditional heteroskedasticity models give more meaningful results than the symmetric conditional heteroskedasticity models in modeling the volatility of the return series.

Anahtar Kelimeler: TGARCHEGARCHACGARCHCryptocurrencyVolatility

GENİŞLETİLMİŞ ÖZET


The term blockchain was first used in an article published by Satoshi Nakamoto (2008). Blockchain can be defined as a system that keeps all transactions of the users of a system in the network through verification. The database of this system consists of controllable and reliable transactions composed of blocks. The concept of block can be expressed as the storage of data in the blockchain system. The emergence of the blockchain technology led to the creation of cryptocurrencies, which became increasingly popular because of their fast and secure transactions, elimination of middlemen, and low costs. Inflation rates increased, especially during the COVID-19 pandemic, with several countries increasing money printing. Therefore, the use of cryptocurrencies continues to increase because with limited total supply, cryptocurrencies such as Bitcoin are not affected by inflation. Although cryptocurrencies are not affected by inflation, they are highly volatile owing to several factors.

Financial time series can be analyzed using various methods. From a historical perspective, financial time series analyses have primarily used linear models. Over time, nonlinear models have been developed, considering that linear models are insufficient to explain the data. Various sub-models of nonlinear models have also been introduced to the literature in the process. Among these models, conditional heteroskedasticity models are frequently used. When it was first proposed, no successful results could be obtained because conditional heteroskedasticity models did not consider asymmetry. Therefore, conditional heteroskedasticity models that included asymmetry were developed. Better results are obtained by considering asymmetry in financial time series, because it is known that the effect of negative and positive shocks in financial time series returns on volatility is not always the same. This factor is considered with asymmetric models.

Several studies have used conditional heteroskedasticity models for analyzing volatility structures. In this study, cryptocurrencies, which are considered novel and significant part of the world money markets, are analyzed with conditional heteroskedasticity models. In this study, symmetric conditional heteroskedasticity models, such as Autoregressive Conditional Heteroskedasticity (ARCH), Generalized Autoregressive Conditional Heteroskedasticity (GARCH), Autoregressive Conditional Heteroskedasticity in Mean (ARCH-M), Generalized Autoregressive Conditional Heteroskedasticity in Mean (GARCH-M), and Integrated Generalized Autoregressive Conditional Heteroskedasticity(IGARCH), and asymmetric models, such as The Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH), The Threshold Generalized Autoregressive Conditional Heteroskedasticity (TGARCH), The Asymmetric Power Autoregressive Conditional Heteroskedasticity (APARCH), and Asymmetric Component Generalized Autoregressive Conditional Heteroskedasticity (ACGARCH), are discussed. In this study, unit root test, Autoregressive Moving Average (ARMA) models and Autoregressive Conditional Heteroskedasticity Lagrange Multiplier (ARCH LM) test were applied, respectively. Then, using symmetric and asymmetric conditional heteroskedasticity models, the volatility of cryptocurrencies such as BTC, ETH, XRP, ADA, LTC, BCH, LINK, XLM, TRX, and DOGE were estimated. Depending on the estimations, the models that yielded significant results were evaluated according to the Akaike Information Criterion (AIC)and Schwarz Information Criterion (SIC) information criteria and Log Likelihood (LL) values.

In traditional linear regression models, it is assumed that the variance in the estimated model will be constant over time. However, it is seen that the error term variance can change over time due to use of variables such as stocks, inflation rate, cryptocurrencies, and exchange rates in financial time series. This is called the heteroskedasticity. To be able to analyze with conditional heteroskedasticity models, some steps should be followed. The first step is to test whether there is an autocorrelation problem in the data to be analyzed and to use ARMA(p,q) models if necessary. In the second step, the ARCH LM test is applied to the residuals by developing the mean equation to test the ARCH effect in the series. Finally, in the third step, if there is an ARCH effect in the residuals because of the ARCH LM test, the estimation is made using appropriate conditional heteroskedasticity models. After evaluating the estimation results of the established model, it should be revised if necessary. Conditional heteroskedasticity models are divided into symmetric and asymmetric. While symmetric models assume that positive and negative shocks on volatility have the same effect, asymmetric models are based on the assumption that this effect is different.

Among the models used in the study, better results were obtained with EGARCH(1,1), TGARCH(1,1), and ACGARCH(1,1) models. Thus, positive shocks have more effect on volatility in the ETH, XRP, LTC, BCH, XLM, TRX, and DOGE return series, while negative shocks have more effect on BTC, ADA, and LINK return series. 


PDF Görünüm

Referanslar

  • Bollerslev, T. (1986). Generalized Autoregressıve Conditional. Journal of Econometrics 31, 307327. https://doi.org/10.1016/0304-4076(86)90063-1 google scholar
  • Bollerslev, T., Chou, R. Y., ve Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of econometrics, 52(1-2), 5-59. google scholar
  • Chu, J., Chan, S., Nadarajah, S., ve Osterrieder, J. (2017). GARCH modelling of cryptocurrencies. Journal of Risk and Financial Management, 10(4), 17. https://doi.org/10.3390/ jrfm10040017 google scholar
  • Çelik, İ., ve Kahyaoğlu, S. B. (ed.). (2021). Finansal Zaman Serisi Analizi Finansçılar İçin Temel Yaklaşımlar. Gazi Kitabevi, Ankara. google scholar
  • Çil, N. (2018). Finansal Ekonometri. Der Yayınları, İstanbul. google scholar
  • Dai, H. N., Zheng, Z., ve Zhang, Y. (2019). Blockchain for Internet of Things: A survey. IEEE Internet of Things Journal, 6(5), 8076-8094. DOI: 10.1109/JIOT.2019.2920987 google scholar
  • Demirel, B., Bozdağ, E. G., ve İnci, A. G. (2008). Döviz Kurlarındaki Dalgalanmaların Gelen Turist Sayısına Etkisi; Türkiye Örneği. DEU Ulusal İktisat Kongresi. İzmir. google scholar
  • Ding, Z., Granger, C. W., ve Engle, R. F. (1993). A Long Memory Property Of Stock Market Returns and A New Model. Journal Of Empirical Finance, 1(1), 83-106. https://doi.org/10.1016/0927-5398(93)90006-D google scholar
  • Dyhrberg, A. H. (2016). Bitcoin, Gold and The Dollar-A GARCH Volatility Analysis. Finance Research Letters, 16, 85-92. https://doi.org/10.1016/j.frl.2015.10.008 google scholar
  • Enders, W. (2014). Applied Econometric Time Series. (Fourth edition) Wiley, University of Alabama. google scholar
  • Engle, R. F., Lilien, D. M., ve Robins, R. P. (1987). Estimating Time Varying Risk Premia in The Term Structure: The ARCH-M Model. Econometrica: Journal of The Econometric Society, 391407. https://doi.org/10.2307/1913242 google scholar
  • Engle, R. F., ve Bollerslev, T. (1986). Modelling The Persistence of Conditional Variances. Econometric Reviews, 5(1), 1-50. https://doi.org/10.1080/07474938608800095 google scholar
  • Engle, R.F., (1982). “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,” Econometrica Journal of The Econometric Society, vol. 50(4), pp. 987-1007. https://doi.org/10.2307/1912773 google scholar
  • Ertuğrul, M. (2019). Kripto Paralarin Volatilite Dinamiklerinin İncelenmesi: GARCH Modelleri Üzerine Bir Uygulama. Yönetim ve Ekonomi Araştırmaları Dergisi, 17(4), 59-71. https://doi. org/10.11611/yead.555713 google scholar
  • Ghalanos, A. (2020). Introduction To The Rugarch Package. (Version 1.3-1). Manuscript, Accessed, 11. http://cran. r-project. org/web/packages/rugarch. google scholar
  • Glosten, L. R., Jagannathan, R., ve Runkle, D. E. (1993). On The Relation Between The Expected Value And The Volatility of The Nominal Excess Return on Stocks. The Journal of Finance, 48(5), 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x google scholar
  • Güriş, S., ve Çağlayan, E. (2013) Ekonometri Temel Kavramlar, Der Yayınları, İstanbul google scholar
  • Hamilton, J. (1994). Time Series Analysis, Princeton University Press: Princeton, New Jersey. google scholar
  • Harvey, A., ve Sucarrat, G. (2014). EGARCH Models With Fat Tails, Skewness and Leverage. Computational Statistics ve Data Analysis, 76, 320-338. https://doi.org/10.1016/j. csda.2013.09.022 google scholar
  • Katsiampa, P. (2017). A comparison of GARCH models. Economics Letters, 158, 3-6. https://doi. org/10.1016/j.econlet.2017.06.023 google scholar
  • Kayral, İ. E. (2020). En Yüksek Piyasa Değerine Sahip Üç Kripto Paranın Volatilitelerinin Tahmin Edilmesi. Finansal Araştırmalar ve Çalışmalar Dergisi, 12(22), 152-168. google scholar
  • Lee, Gary G. J. and Engle, Robert F., (1993) A Permanent and Transitory Component Model of Stock Return Volatility. Available at SSRN: https://ssrn.com/abstract=5848">https://ssrn.com/abstract=5848 (Erişim Tarihi: 20.04.2021). Available at SSRN: https://ssrn.com/abstract=5848 google scholar
  • Liu, W., ve Morley, B. (2009). Volatility forecasting in the hang seng index using the GARCH approach. Asia-Pacific Financial Markets, 16(1), 51-63. https://doi.org/10.1007/s10690-009-9086-4 google scholar
  • Mandelbrot, B. B. (1963). The variation of certain speculative prices. In Fractals and Scaling in Finance (pp. 371-418). Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2763-0_14 google scholar
  • Mapa, ve Dennis, S. (2004). A Forecast Comparison of Financial Volatility Models: GARCH(1,1) Is Not Enough.The Philippine Statistician, Vol. 53, 1-10. https://mpra.ub.uni-muenchen.de/id/ eprint/21028 google scholar
  • Markowitz, H. (1952). Potfolio Selection. The Journal of Finance Vol. 7 No.1, 77-91. google scholar
  • Merton, R. C. (1980). On Estimating The Expected Return on The Market: An Exploratory İnvestigation. Journal of Financial Economics, 8(4), 323-361. https://doi.org/10.1016/0304-405X(80)90007-0 google scholar
  • Nakamoto, S. (2008). Bitcoin: Apeer-To-Peer Elecktronic Cash System. https://bitcoin.org/bitcoin. pdf (Erişim Tarihi: 20.04.2021). google scholar
  • Narayan, P. K., ve Narayan, S. (2007). Modelling Oil Price Volatility. Energy Policy 35, 65496553. https://doi.org/10.1016/j.enpol.2007.07.020 google scholar
  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347-370. https://doi.org/10.2307/2938260 google scholar
  • Nelson, D. B., ve Cao, C. Q. (1992). Inequality constraints in the univariate GARCH model. Journal of Business ve Economic Statistics, 10(2), 229-235. google scholar
  • Poon, S. H. (2005). A practical Guide to Forecasting Financial Market Volatility. Jhon Wiley ve Sons. England. google scholar
  • Söylemez, Y. (2020). Genelleştirilmiş Otoregresif Koşullu Değişen Varyans Modelleri ile Bitcoin Volatilitesinin Analizi. İşletme Araştırmaları Dergisi, 12(2), 1322-1333 google scholar
  • Tsay, R. S. (2010). Analysis of Financial Time Series. 3rd Edition, John Wiley and Sons., Hoboken. google scholar
  • Ünal, G., ve Uluyol, Ç. (2020). Blok Zinciri Teknolojisi. Bilişim Teknolojileri Dergisi, Cilt:13, Sayı: 2, 167-175. DOI: 10.17671/gazibtd.516990 google scholar
  • https://tr.investing.com/ (Erişim Tarihi: 20.02.2021). google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Kazova, F., & Büyükyılmaz Ercan, A. (2021). Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi. Ekoist: Journal of Econometrics and Statistics, 0(35), 33-57. https://doi.org/10.26650/ekoist.2021.36.984568


AMA

Kazova F, Büyükyılmaz Ercan A. Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi. Ekoist: Journal of Econometrics and Statistics. 2021;0(35):33-57. https://doi.org/10.26650/ekoist.2021.36.984568


ABNT

Kazova, F.; Büyükyılmaz Ercan, A. Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi. Ekoist: Journal of Econometrics and Statistics, [Publisher Location], v. 0, n. 35, p. 33-57, 2021.


Chicago: Author-Date Style

Kazova, Fatih, and Ayça Büyükyılmaz Ercan. 2021. “Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi.” Ekoist: Journal of Econometrics and Statistics 0, no. 35: 33-57. https://doi.org/10.26650/ekoist.2021.36.984568


Chicago: Humanities Style

Kazova, Fatih, and Ayça Büyükyılmaz Ercan. Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi.” Ekoist: Journal of Econometrics and Statistics 0, no. 35 (Jun. 2022): 33-57. https://doi.org/10.26650/ekoist.2021.36.984568


Harvard: Australian Style

Kazova, F & Büyükyılmaz Ercan, A 2021, 'Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi', Ekoist: Journal of Econometrics and Statistics, vol. 0, no. 35, pp. 33-57, viewed 26 Jun. 2022, https://doi.org/10.26650/ekoist.2021.36.984568


Harvard: Author-Date Style

Kazova, F. and Büyükyılmaz Ercan, A. (2021) ‘Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi’, Ekoist: Journal of Econometrics and Statistics, 0(35), pp. 33-57. https://doi.org/10.26650/ekoist.2021.36.984568 (26 Jun. 2022).


MLA

Kazova, Fatih, and Ayça Büyükyılmaz Ercan. Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi.” Ekoist: Journal of Econometrics and Statistics, vol. 0, no. 35, 2021, pp. 33-57. [Database Container], https://doi.org/10.26650/ekoist.2021.36.984568


Vancouver

Kazova F, Büyükyılmaz Ercan A. Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi. Ekoist: Journal of Econometrics and Statistics [Internet]. 26 Jun. 2022 [cited 26 Jun. 2022];0(35):33-57. Available from: https://doi.org/10.26650/ekoist.2021.36.984568 doi: 10.26650/ekoist.2021.36.984568


ISNAD

Kazova, Fatih - Büyükyılmaz Ercan, Ayça. Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi”. Ekoist: Journal of Econometrics and Statistics 0/35 (Jun. 2022): 33-57. https://doi.org/10.26650/ekoist.2021.36.984568



ZAMAN ÇİZELGESİ


Gönderim22.10.2021
Kabul06.12.2021
Çevrimiçi Yayınlanma31.12.2021

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.