Araştırma Makalesi

DOI :10.26650/ekoist.2022.36.1024567   IUP :10.26650/ekoist.2022.36.1024567    Tam Metin (PDF)

Mekânsal Ekonometri Tabanlı Karma Sıralama Önerisi: Avrupa Ekonomik Özgürlükler Örneği

Serkan Cahit DinçNecati Alp Erilli

Veri Sıralama ve Endeks çalışmaları, verilerin anlaşılmasını, analiz edilmesini veya görselleştirilmesini kolaylaştırmak için anlamlı bir düzende düzenlenmesini içeren herhangi bir işlemdir. Araştırma verileriyle çalışırken sıralama, verilerin anlatıldığı öykünün anlaşılmasını kolaylaştıran bir biçimde verileri görselleştirmek için kullanılan yaygın bir yöntem olarak karşımıza çıkmaktadır. Bu çalışmada, Ekonomik Özgürlükler gibi farklı yargı alanlarındaki politik-ekonomik kurumların kalitesinin birleşik bir ölçü sıralaması için Mekânsal Ekonometri, Bulanık Kümeleme Analizi ve Çok Kriterli Karar Verme konularını içeren hibrit bir yöntem önerilmiştir. Önerilen yöntem Heritage Vakfı Ekonomik Özgürlük verileri üzerinde hesaplanmış ve 2019, 2020 ve 2021 yılları için karşılaştırılmıştır. Elde edilen sonuçlar ile orijinal sonuçlar arasında %92’lik korelasyon katsayısı hesaplanmıştır. Önerilen yöntemin benzersosyo-ekonomik sıralama ve endeks çalışmalarında başarılı bir şekilde kullanılabileceği görülmüştür.

DOI :10.26650/ekoist.2022.36.1024567   IUP :10.26650/ekoist.2022.36.1024567    Tam Metin (PDF)

Hybrid Ranking Proposal Based on Spatial Econometrics: An Example of European Economic Freedoms

Serkan Cahit DinçNecati Alp Erilli

Data sorting and index research are any processesthatinclude arranging data in a meaningful orderto aid comprehension, analysis, or visualization. When working with research data, sorting is a frequent strategy for displaying data in a way that makesthe story that the data tells more understandable. In thisresearch, a hybrid method involving spatial econometrics, fuzzy clustering analysis, and multicriteria decision making was proposed for a unified measure ranking of the quality of political–economic institutions in different jurisdictions such as economic freedoms. The suggested technique was calculated and compared using the Heritage Foundation economic freedom statistics for the years 2019, 2020, and 2021. Between the derived findings and original results, a correlation coefficient of 92% was computed. The proposed strategy is effective in comparable socioeconomic ranking and index research.


An index can be defined in statistical research as a measure of change in a representative sample of individual data points, or as a composite measure that combines many indicators. Indices, sometimes known as composite indicators, are used to summarize and categorize individual data. In this manner, the researcher can evaluate the subject under investigation using criteria, such as good to poor, strong to weak, remote close, and make conclusions regarding the study subject. In this research, a new index ranking calculation is proposed using economic freedom data. In the proposed method, a hybrid approach was presented, in which spatial econometrics, fuzzy C-means from fuzzy clustering analysis methods, and COPRAS methods from multicriteria decision-making (MCDM) methods are used together. The purpose of this strategy is to calculate a sorting method with spatial connection coefficients as input, fuzzy C-means, and data as the output of the process and COPRAS method.

The subject of economic freedom is a concept that covers the entire concepts of freedom of choice, exchange, and competition, and protection of property. In other words, economic independence may be defined as an individual managing their property and labor without regard for the constraints imposed by the state or other groups. It is the most basic right of individuals to engage in economic activities using their rights over their property within legal frameworks and gains as a result of these activities in the areas they desire. Governments should also protect people’s property rights and enable free movement of labor, capital, products, and services that enable activities like production, consumption, and investment. There are independent organizations, such as the Fraser Institute, The Heritage Foundation, the Cato Institute, and Freedom House that work on measuring economic freedom around the world. With the studies they issue each year, these organizations examine the state of countries in terms of economic freedom. Governments and business companies may monitor the changes in the nations of interest for each year and accordingly launch or amend their investments based on these reports released under various data categories.

Spatial econometrics is a subscience of econometrics that focuses on combining spatial influence with econometric methods. This discipline of study is primarily concerned with spatial effects, which show the pattern of spatial decoupling. The interaction between the geographic domain, which is described in terms of spaces, horizontal cross section dependency, which is a subset of spatial dependence, and cross sectional heterogeneity, which is a subset of spatial heterogeneity, may result in. The dependency structure can be related to distance and location, and this structure can be seen in a geographical area, as well as in an economic or social network area. 

Clustering analysis is one of the most widely used methods in classification studies. Clustering analysis is a method for classifying the units analyzed in research by grouping them according to their resemblance, identifying the common qualities of the units, and making broad assumptions about these classes. The purpose here is to categorize ungrouped data based on similarities and assist the researcher in obtaining relevant and valuable summary information. Fuzzy clustering is recommended as an appropriate method if the sets are not fully and precisely separated from each other or there are suspicious situations in which set some observations are elements.

Fuzzy sets, collections of observations in which the membership record is specified between 0 and 1, decide each observation function. Observations that have a high degree of membership in the same cluster are quite comparable. Each observation does not have to be included in only one set in fuzzy clustering. In this method, observations belong to clusters with certain degrees of membership, and information about the observations’ membership to other clusters is obtained.

MCDM methods are used when it is necessary to assess a large number of alternatives under a large number of criteria.

Individuals, corporations, and organizations encounter multidimensional choice challenges in their daily lives. Managers frequently make judgments when several factors and competing goals (criteria) must be met. MCDM techniques consist of approaches and methods that try to reach a possible “best/appropriate” solution that meets multiple conflicting criteria. Decision-makers can make scientific and more successful decisions using MCDM techniques to overcome such problems.

A hybrid technique integrating geographical econometrics, fuzzy clustering analysis, and MCDM was developed in this work for a unified measure ranking of the quality of political–economic institutions in various jurisdictions, such as economic liberties. The proposed method was calculated on the Heritage Foundation economic freedom data and compared for the years 2019, 2020, and 2021. The suggested method’s rankings for three separate eras were calculated as 88.6%, 91.7%, and 92.7%, with correlation values with the original Heritage Foundation rankings. These high correlation values were also found to be significant at 1%. The high correlation values of the findings acquired in the index sorting research developed to suggest that the proposed hybrid approach may then be employed in additional index computations, according to the results. 

PDF Görünüm


  • Acarer, T. & Dinçer, E. (2019). Çok kriterli karar alma yöntemleriyle Türkiye ve Avrupa Birliği üyesi ülkelerin ticari ilişki analizi: ENTROPİ ve COPRAS yaklaşımı. Sosyal Bilimler Araştırma Dergisi, 8 (3), 219-240. google scholar
  • Anselin, L. & Bera, A.K. (1998). Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics (Chapter: 7). Statistics Textbooks and Mono-graphs, 237-290. Marcel Dekker: New York. google scholar
  • Anselin, L. & Hudak, S. (1992). Spatial Econometrics in Practice: A Review of Software Options. Regional Science and Urban Economics, Volume 22, 3, p. 509-536. google scholar
  • Anselin, L. (1998). Spatial Econometrics: Methods and Models. Kluwer Academic Publisher. google scholar
  • Anselin, L. (2001). Spatial Econometrics: Companion to Theoretical Econometrics. Blackwell Scientific Publications, Oxford. google scholar
  • Anselin, L. (2003). An Introduction to Spatial Regression Analysis in R. University of Illinois, Urbana-Champaign. google scholar
  • Anselin, L. & Rey, S. (1992). Properties of Tests for Spatial Dependence in Linear Regression Models. Geographical Analysis, 23 (2), 117. google scholar
  • Atalay, A. & Tortum, A. (2010). Türkiye’deki İllerin 1997-2006 Yılları Arası Trafik Kazalarına Göre Kümeleme Analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16(3), 19972006. google scholar
  • Ayçin, E. (2020). Çok Kriterli Karar Verme: Bilgisayar Uygulamalı Çözümler. 2. Baskı, Nobel Yayıncılık, Ankara. google scholar
  • Badri, A.K. & Sheshgelani, A.P. (2017). Economic Freedom and FDI in Selected Developing Countries. Noble International Journal of Economics and Financial Research, Vol. 2 (5), 82-87. google scholar
  • Bahtiyar, E. (2019). Ekonomik Özgürlükler ve Vergi Gelirleri Arasındaki İlişki: OECD Ülkeleri Örneği. Yayınlanmamış Doktora Tezi, Uşak Üniversitesi, Sosyal Bilimler Ens., Maliye Ana Bilim Dalı, Uşak. google scholar
  • Balazs, B., Janos, A. & Balazs, F. (2005). Fuzzy Clustering and Data Analysis Toolbox For Use with Matlab. Veszprem, Hungary. google scholar
  • Bezdek, J.C., 1974. Cluster validity with fuzzy sets. J. Cybern. 3, 58-73. google scholar
  • Carlsson, F. & Lundström, S. (2002) Economic Freedom and Growth: Decomposing the Effects, Public Choice, 112, pp. 335-344. google scholar
  • Darmofal, D. (2006). Spatial Econometrics and Political Science. In: Annual Meeting of Southern Political Science Association, Atlanta, GA, p. 6. google scholar
  • Dave, R.N. (1996). Validating fuzzy partition obtained through c-shells clustering, Pattern Recognition Lett., 613-623 google scholar
  • Dinç, S.C. (2021). Türkiye’de illerin covid-19 toplam vaka sayılarını etkileyen belirleyicilerinin mekânsal ekonometrik analizi. Yayınlanmamış Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi, Sosyal Bilimler Ens., Ekonometri Ana Bilim Dalı, Sivas. google scholar
  • Elhorst, J.P. (2010). Applied Spatial Econometrics: Raising the Bar. Spatial Econometrics Analysis, 5 (1), 9-28. google scholar
  • Elhorst, J.P. (2014). Linear Spatial Dependence Models for Cross-Section Data. Spatial Econometrics from Cross-Sectional Data to Spatial Panels (Berlin, Heidelberg: Springer), p.5-37. google scholar
  • Er, F. & Yıldız, E. (2018). Türkiye Girişimci ve Yenilikçi Üniversite Endeksi 2016 ve 2017 Sonuçlarının ORESTE ve Faktör Analizi ile İncelenmesi. Alphanumeric Journal, vol.6-2, 293310. google scholar
  • Erilli, N.A. (2014). TR72 bölgesi ilçelerinin sosyo-ekonomik verilere göre bulanık kümeleme analizi ile sınıflandırılması, Ekonomik ve Sosyal Araştırmalar Dergisi, Cilt. 10, Sayı: 2, 33-45. google scholar
  • Erilli, N.A. (2018). Proposed Index Calculation for Economics Ranking, Balkan JETSS, vol.1, 94-102. google scholar
  • Erilli, N.A., Yolcu, U., Egrioglu, E., Aladag, C.H., & Oner, Y. (2011). Determining the Most Proper Number of Cluster in Fuzzy Clustering by Artificial Neural Networks. Expert Systems with Applications, 38(3), 2248-2252. google scholar
  • Ersungur, Ş.M. & Topçuoğlu, A. (2014). Kalkınma Planlarının Yoksulluğu Azaltmadaki Etkisi Üzerine Bir Analiz. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 18(2), 299-317. google scholar
  • Feulner, E.J. (2010). 2010 Index of Economic Freedom, (Preface. Miller, T. ve Holmes, K. R. (Eds.)) Washington D.C: The Heritage Foundation. google scholar
  • Giray, S., Yorulmaz, Ö. & Ergüt, Ö. (2016). Ülkelerin Gini Katsayısı, Göç, Suç ve Mutluluk Değişkenleri Açısından Bulanık ve Dayanıklı Kümeleme Metotları ile Sınıflandırılması, Journal of Awareness, 1 (2), 1-16. google scholar
  • Gumprecht, D. (2007). Spatial Method in Econometrics. Unpublished PhD thesis, WU Vienna University of Economics and Business, 6-15. google scholar
  • Gülden, T. & Karakış, E. (2019). OECD Ülkelerinin Ekonomik Özgürlüklerine Göre Kümeleme Analizi ile Sınıflandırılması. S.C.Ü. İktisadi ve İdari Bilimler Dergisi, 20 (2). google scholar
  • Güneş, M. & İncekırık, A. (2016). Ege bölgesinde faaliyet gösteren KOSGEB kapsamındaki farklı ölçeklerdeki şirketlerin (KOBİ) bulanık kümeleme analizi ile gruplandırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(4), 314-323. google scholar
  • Gwartney, J. & Lawson, R. (2003). The Concept and Measurement of Economic Freedom. European Journal of Political Economy, 19, 405-430. google scholar
  • Gwartney, J.G., Lawson, R.A. & Holcombe R.G. (1999) Economic Freedom and the Environment for Economic Growth, Journal of Institutional and Theoretical Economics, vol.155, No. 4, pp. 643-663 google scholar
  • Höppner, F., Klawonn, F., Rudolf, K., & Runkler, T. (1999). Fuzzy Cluster Analysis: Methods for Classification Data Analysis and Image Recognition. John Wiley & Sons, 5-75. google scholar
  • İncekırık, A., İşçi Güneri, Ö. & Durmuş, B. (2021). Classification of Cancer Types by Cluster Analysis Methods. Alphanumeric journal, Volume 9, Issue 1, p. 125-142. google scholar
  • Kirilchuk, I., Rykunova, V. & Panskov, V. (2018). Features of calculation and analysis of ekology-ekonomic index of the region on the example of kursk region. 18th International Multidisciplinary Scientific GeoConference SGEM. google scholar
  • Lerman, R.I. & Yitzhaki, S. (1984). A note on the calculation and interpretation of the Gini index. Economics Letters, Volume 15, Issues 3-4, 363-368. google scholar
  • Lesage, J.P. (1999). The Theory and Practice of Spatial Econometrics. University of Toledo, Ohio, p. 2-11. google scholar
  • Mansoori, E.G. (2011). FRBC: A Fuzzy Rule-Based Clustering Algorithm. IEEE Transactıons on Fuzzy Systems, 19(5), 960-971. google scholar
  • Manski, C.F. (1993). Identification of Endogenous Social Effects: The Reflection Problem. The Review of Economic Studies, 60 (3): 531-542. google scholar
  • Miller, T., Kim, A. B. & Roberts, J.M. (2019). 2019 Index of Economic Freedom, Washington: The Heritage Foundation. google scholar
  • Mola, S.E. (2019). Ekonomik Özgürlüklerin Ekonomik Büyümeye Etkisi: Gelişmiş ve Gelişmekte Olan Ülkeler Panel Veri Analizi. Yayınlanmamış Yüksek Lisans Tezi, Gazi Üniversitesi, Sosyal Bilimler Ens., Ekonometri Ana Bilim Dalı, Ankara. google scholar
  • Ord, J.K. (1975). Estimation Methods for Models of Spatial Interaction, Journal of the American Statistical Association, 70-126. google scholar
  • Sel, A. (2021). Avrupa Bölgesi Ülkelerinin Enerji Kullanımları Açısından Bulanık Kümeleme Analizi ile Anaizi. Tokat Gaziosmanpaşa Üniversitesi Sosyal Bilimler Araştırmaları Dergisi, Haziran, 121-135. google scholar
  • Sonora, R. J. (2008). On the Impacts of Economic Freedom on International Trade Flows: Asymmetries and Freedom Components. University of Zagreb Faculty of Economics and Business Working Paper Series, 08-05. google scholar
  • Sucu, M.B. (2017). Yükselen Piyasa Ekonomilerinde Ekonomik Özgürlük, Büyüme ve Kalkınma İlişkisi: Bir Panel Veri Analizi. Bulletin of Economic Theory and Analysis. Vol 2.2, Sayfa: 135167. google scholar
  • Tatlı, S. (2019). Mekansal Ekonometrik Modeller ve Türkiye’de İç Göçün Belirleyicilerinin Analizi. Yayınlanmamış Yüksek Lisans Tezi, İstanbul Üniversitesi, Sosyal Bilimler Ens., Ekonometri Ana Bilim Dalı, İstanbul. google scholar
  • Tatlıdil, H. (2002). Uygulamalı Çok Değişkenli İstatistiksel Analiz, Akademi Matbaası, Ankara. google scholar
  • The Heritage Foundation (2019). Highlights of 2019 Index of Economic Freedom Report. (Erişim Tarihi: Mart, 2021). google scholar
  • Tunçsiper, B. & Biçen, Ö. F. (2015). Ekonomik Özgürlükler ve Ekonomik Büyüme: Yükselen Piyasa Ekonomileri Üzerine Bir İnceleme. International Conference on Eurasian Economies, SESSION 7E: Kalkınma II, 884-890. google scholar
  • Uysal, D. (2004). Türkiye’de Piyasa Ekonomisi ve Ekonomik Özgürlükler. Konya: Çizgi Kitabevi. google scholar
  • Vega, S.H. & Elhorst, J.P. (2013). On Spatial Econometric Models, Spillover Effects, and W. 53rd ERSA Congress, Palermo, Italy, p. 24. google scholar
  • Viton, P.A. (2010). Notes on Spatial Econometric Models. City and Regional Planning. p. 5 google scholar
  • Vu, H.T. (2010). The Relationship between Economic Freedom and Economic Growth: The Transistion Process in Vietnam and China. Honors College Capstone Experience/Thesis Projects. Paper 257. google scholar
  • Zavadskas, E. & Kaklauskas, A. (1996). Pastatq sistemotechninis jvertinimas [eng. Systemic-technical assessment of buildings]. Vilnius: Technika. google scholar
  • Zeren, F. (2011). Mekansal Ekonometri ve Mekânsal Panel Ekonometri Yaklaşımlari: AB Üye Ülkeleri İçin Gelir Yakınsama Hipotezi Üzerine Bir Uygulama. Yayınlanmamış Doktora Tezi, İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, Ekonometri Anabilim Dalı. google scholar
  • Zeren, F. (2019). Mekansal Ekonometri. İstanbul: DER Kitabevi. google scholar


Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın



Dinç, S.C., & Erilli, N.A. (2022). Mekânsal Ekonometri Tabanlı Karma Sıralama Önerisi: Avrupa Ekonomik Özgürlükler Örneği. EKOIST Journal of Econometrics and Statistics, 0(36), 205-233.


Dinç S C, Erilli N A. Mekânsal Ekonometri Tabanlı Karma Sıralama Önerisi: Avrupa Ekonomik Özgürlükler Örneği. EKOIST Journal of Econometrics and Statistics. 2022;0(36):205-233.


Dinç, S.C.; Erilli, N.A. Mekânsal Ekonometri Tabanlı Karma Sıralama Önerisi: Avrupa Ekonomik Özgürlükler Örneği. EKOIST Journal of Econometrics and Statistics, [Publisher Location], v. 0, n. 36, p. 205-233, 2022.

Chicago: Author-Date Style

Dinç, Serkan Cahit, and Necati Alp Erilli. 2022. “Mekânsal Ekonometri Tabanlı Karma Sıralama Önerisi: Avrupa Ekonomik Özgürlükler Örneği.” EKOIST Journal of Econometrics and Statistics 0, no. 36: 205-233.

Chicago: Humanities Style

Dinç, Serkan Cahit, and Necati Alp Erilli. Mekânsal Ekonometri Tabanlı Karma Sıralama Önerisi: Avrupa Ekonomik Özgürlükler Örneği.” EKOIST Journal of Econometrics and Statistics 0, no. 36 (Jul. 2024): 205-233.

Harvard: Australian Style

Dinç, SC & Erilli, NA 2022, 'Mekânsal Ekonometri Tabanlı Karma Sıralama Önerisi: Avrupa Ekonomik Özgürlükler Örneği', EKOIST Journal of Econometrics and Statistics, vol. 0, no. 36, pp. 205-233, viewed 13 Jul. 2024,

Harvard: Author-Date Style

Dinç, S.C. and Erilli, N.A. (2022) ‘Mekânsal Ekonometri Tabanlı Karma Sıralama Önerisi: Avrupa Ekonomik Özgürlükler Örneği’, EKOIST Journal of Econometrics and Statistics, 0(36), pp. 205-233. (13 Jul. 2024).


Dinç, Serkan Cahit, and Necati Alp Erilli. Mekânsal Ekonometri Tabanlı Karma Sıralama Önerisi: Avrupa Ekonomik Özgürlükler Örneği.” EKOIST Journal of Econometrics and Statistics, vol. 0, no. 36, 2022, pp. 205-233. [Database Container],


Dinç SC, Erilli NA. Mekânsal Ekonometri Tabanlı Karma Sıralama Önerisi: Avrupa Ekonomik Özgürlükler Örneği. EKOIST Journal of Econometrics and Statistics [Internet]. 13 Jul. 2024 [cited 13 Jul. 2024];0(36):205-233. Available from: doi: 10.26650/ekoist.2022.36.1024567


Dinç, SerkanCahit - Erilli, NecatiAlp. Mekânsal Ekonometri Tabanlı Karma Sıralama Önerisi: Avrupa Ekonomik Özgürlükler Örneği”. EKOIST Journal of Econometrics and Statistics 0/36 (Jul. 2024): 205-233.


Çevrimiçi Yayınlanma23.05.2022


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.