Araştırma Makalesi


DOI :10.26650/ijmath.2025.00023   IUP :10.26650/ijmath.2025.00023    Tam Metin (PDF)

Curvature Relations for Lagrangian Submersions From Globally Conformal Kaehler Manifolds

Beran Pirinççi

In this paper, we derive curvature identities for Lagrangian submersions from globally conformal Kaehler manifolds onto Rieman nian manifolds. Then, we give a relation between the horizontal lift of the curvature tensor of the base manifold and the curvature tensor of a fiber. We examine the necessary and sufficient conditions for the total manifolds of Lagrangian submersions to be Einstein. We also obtain Ricci, scalar, sectional, holomorphic bisectional and holomorphic sectional curvatures for these submer sions. Finally, we give some inequalities involving the scalar and Ricci curvatures, and we also provide Chen-Ricci inequality for Lagrangian submersions from globally conformal Kaehler space forms.


PDF Görünüm

Referanslar

  • Chen, B.-Y., 1993, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel), 60(6), 568–578. google scholar
  • Chen, B.-Y., 1999, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J. 41(1), 33–41. google scholar
  • Chen, B.-Y., 2005, A general optimal inequality for arbitrary Riemannian submanifolds, J. Inequal. Pure Appl. Math. 6(3), Article 77. google scholar
  • D. Chinea, 1985, Almost contact metric submersions, Rendiconti del Circlo Mat. di Palermo Serie II, 34, 89-104. google scholar
  • Çimen Ç., Pirinççi B., Taştan H.M., Ulusoy D., 2024, On locally conformal Kaehler submersions, I. Elec. J. Geo., 17(2), 507-518. google scholar
  • Dragomir, S., Ornea, L., 1998, Locally conformal Kähler geometry, Birkhauser: Boston, Basel, Berlin. google scholar
  • Falcitelli, M., Lanus, S., Pastore, A.M., 2004, Riemannian Submersion and Related Topics, World Scientific Publishing Co. Pte. Ltd.: Singapore google scholar
  • Gray, A., 1967, Pseudo-Riemannian Almost Product Manifolds and Submersions, Journal of Mathematics and Mechanics, (16)7, 715-737. google scholar
  • Gülbahar, M., Eken Meriç, Ş., Kılıç, E., 2017, Sharp inequalities involving the Ricci curvature for Riemannian submersions. Kragujev. J. Math., 41(2), 279–293. google scholar
  • Marrero, J.C., Rocha, J., 1994, Locally conformal Kaehler submersions, Geom. Dedicata, 52(3), 271-289. google scholar
  • O’Neill, B., 1966, The fundamental equations of a submersion, Mich. Math. J., 13, 458–469, google scholar
  • Pirinççi, B., Çimen, Ç., Ulusoy, D., 2023, Clairaut and Einstein conditions for locally conformal Kaehler submersions, Istanbul J. Math., 1(1), 28-39. google scholar
  • Pirinççi, B., 2025, Lagrangian submersions with locally conformal Kähler structures, Mediterr. J. Math., 22, 5. google scholar
  • Şahin, B., 2010, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Central Eur. J. Math., 8(3), 437–447. google scholar
  • Şahin, B., 2017, Riemannian submersions, Riemannian maps in Hermitian geometry, and their application, Elsiever. google scholar
  • Taştan, H.M., 2014, On Lagrangian submersions, Hacettepe J. Math. Stat. 43(6), 993–1000. google scholar
  • Taştan, H.M., Gerdan S., 2016, Clairaut anti-invariant submersions from Sasakian and Kenmotsu manifolds, Mediterr. J. Math., 14(6), 234-251. google scholar
  • Taştan, H.M., 2017, Lagrangian submersions from normal almost contact manifolds, Filomat 31(12), 3885–3895. google scholar
  • Taştan, H.M., Gerdan Aydın, S., 2019, Clairaut anti-invariant submersions from cosymplectic manifolds, Honam Math. J., 41(4), 707-724. google scholar
  • Vaisman, I., 1980, Some curvature properties of locally conformal Kaehler manifolds, Trans. Amer. Math. Soc., 259, 439-447. google scholar
  • Vaisman, I., 1980, On locally and globally K”ahler manifolds, Trans. Amer. Math. Soc., 262(2), 533-542. google scholar
  • Watson, B., 1976, Almost Hermitian submersions, J. Differ. Geom., 11(1), 147–165. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Pirinççi, B. (2025). Curvature Relations for Lagrangian Submersions From Globally Conformal Kaehler Manifolds. Istanbul Journal of Mathematics, 3(1), 20-33. https://doi.org/10.26650/ijmath.2025.00023


AMA

Pirinççi B. Curvature Relations for Lagrangian Submersions From Globally Conformal Kaehler Manifolds. Istanbul Journal of Mathematics. 2025;3(1):20-33. https://doi.org/10.26650/ijmath.2025.00023


ABNT

Pirinççi, B. Curvature Relations for Lagrangian Submersions From Globally Conformal Kaehler Manifolds. Istanbul Journal of Mathematics, [Publisher Location], v. 3, n. 1, p. 20-33, 2025.


Chicago: Author-Date Style

Pirinççi, Beran,. 2025. “Curvature Relations for Lagrangian Submersions From Globally Conformal Kaehler Manifolds.” Istanbul Journal of Mathematics 3, no. 1: 20-33. https://doi.org/10.26650/ijmath.2025.00023


Chicago: Humanities Style

Pirinççi, Beran,. Curvature Relations for Lagrangian Submersions From Globally Conformal Kaehler Manifolds.” Istanbul Journal of Mathematics 3, no. 1 (Jul. 2025): 20-33. https://doi.org/10.26650/ijmath.2025.00023


Harvard: Australian Style

Pirinççi, B 2025, 'Curvature Relations for Lagrangian Submersions From Globally Conformal Kaehler Manifolds', Istanbul Journal of Mathematics, vol. 3, no. 1, pp. 20-33, viewed 20 Jul. 2025, https://doi.org/10.26650/ijmath.2025.00023


Harvard: Author-Date Style

Pirinççi, B. (2025) ‘Curvature Relations for Lagrangian Submersions From Globally Conformal Kaehler Manifolds’, Istanbul Journal of Mathematics, 3(1), pp. 20-33. https://doi.org/10.26650/ijmath.2025.00023 (20 Jul. 2025).


MLA

Pirinççi, Beran,. Curvature Relations for Lagrangian Submersions From Globally Conformal Kaehler Manifolds.” Istanbul Journal of Mathematics, vol. 3, no. 1, 2025, pp. 20-33. [Database Container], https://doi.org/10.26650/ijmath.2025.00023


Vancouver

Pirinççi B. Curvature Relations for Lagrangian Submersions From Globally Conformal Kaehler Manifolds. Istanbul Journal of Mathematics [Internet]. 20 Jul. 2025 [cited 20 Jul. 2025];3(1):20-33. Available from: https://doi.org/10.26650/ijmath.2025.00023 doi: 10.26650/ijmath.2025.00023


ISNAD

Pirinççi, Beran. Curvature Relations for Lagrangian Submersions From Globally Conformal Kaehler Manifolds”. Istanbul Journal of Mathematics 3/1 (Jul. 2025): 20-33. https://doi.org/10.26650/ijmath.2025.00023



ZAMAN ÇİZELGESİ


Gönderim20.04.2025
Kabul02.06.2025
Çevrimiçi Yayınlanma24.06.2025

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ



İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.