Araştırma Makalesi


DOI :10.26650/JEPR838626   IUP :10.26650/JEPR838626    Tam Metin (PDF)

Ülke Kredi Riski Derecelendirmede: İç Ekonomik Veriler ile Temerrüt Olasılığı İlişkisinin İncelenmesi

Merve Kırkıl

Ülke Kredi Derecelendirme notları finansal piyasalarda büyük bir öneme sahiptir. Derecelendirme notlarının piyasada fon ihtiyacı olanlar ve yatırımcılar arasında ortak bir dilde bilgi aktarımını sağlama fonksiyonu bulunmaktadır. Ülke Kredi Derecelendirme notları, ülkelerin borçlanma maliyetlerini etkilemektedir. Aynı zamanda yabancı yatırımcıların ve fonların ilgili ülkede yatırım yapma kararlarını etkilemektedir. Ülke Riski Derecelendirme yaklaşımlarında; ödemeler dengesi, iç ekonomik göstergeler, dış varlık verileri, finansal sektörün durumu, gelir ve nüfus verileri, kamu maliyesi verileri değerlendirmelerde kullanılmaktadır. Bu çalışmada, iç ekonomik veriler inceleme kapsamına alınarak ülkelerin temerrüt olasılığına olan etkileri araştırılmıştır. Çalışmada lojistik regresyon yöntemi kullanılmıştır. Ülke temerrüt verileri incelenerek kategorik hale getirilmiştir. GSYIH verileri, döviz kuru ve tüketici fiyatları artış oranı verilerinin temerrüt olasılığını açıklama gücünün yüksek olduğu görülmüştür. Çalışmada G20 ülkeleri kapsama alınmış ve 2008-2017 yılları arası incelenmiştir. Çalışma sonucunda, dolar kurundaki artışların ve bu artışlar nedeniyle USD cinsinden GSYIH’nın azalması ülkelerin temerrüt olasılığı artıran bir etken olmuştur.

JEL Classification : E60 , H10 , G20
DOI :10.26650/JEPR838626   IUP :10.26650/JEPR838626    Tam Metin (PDF)

Sovereign Credit Risk Rating: Examining the Relations between Domestic Economy Data and the Probability of Default

Merve Kırkıl

Sovereign credit ratings have gained importance in financial markets. Sovereign ratings have the function of providing necessary information in a common language between market participants who need funds and investors. Sovereign credit ratings affect countries’ borrowing costs. Additionally, ıt affects the decisions of foreign investors and investment funds, to invest in the related country. In sovereign credit risk approaches, various data is used for assessment such as balance of payment, domestic economy indicators, external economy, financial sector status, income and population data, and public finance data. In the scope of this study, the relation between domestic economy indicators and the probability of default are investigated. The logistic regression method was used in the study. The Sovereign default data is analyzed and categorized. It was observed that GDP data, exchange rate, and consumer price growth rate are high explanatory variables that explain the probability of default. G20 countries were included in the study and examined between the years 2008-2017. As a result of the study, the increase in USD exchange rate and a decrease in the GDP in USD have been a factor that increases the probability of default for countries.

JEL Classification : E60 , H10 , G20

GENİŞLETİLMİŞ ÖZET


Sovereign credit ratings are quite important for relevant countries’ access to finance and their credibility in financial markets. Credit rating agencies do not recommend a buy or sell, they only produce ratings for issuers. In practice, investors may prefer to use ratings in order to manage their portfolios. Sovereign ratings provide information about willingness to pay its debt and especially for the debt service quality of the sovereign. Cantor and Packer, investigated the main factors which affect sovereign rating. They also examined the market price and sovereign rating. Afonso continued to study factors of sovereign rating and to expand the scope of whether developed and developing countries produce a similar response to the same rating sub-factors. 

As defined before, a sovereign rating consists of a large variety of information that predicts optimal creditworthiness. The main items are balance of payment, domestic economy indicators, external economy, financial sector status, income and population data, and public finance data. The Sovereign rating methodolgy of credit agencies was investigated in section three. Standard & Poor (S&P) Moody’s, and Fitch are the leaders in credit rating agencies. The S&P rating approach consists of institutional assessment, economic assessment, external assessment, fiscal assessment, and monetary assessment. The institutional and economic profiles and flexibility and performance profiles give sovereign rating results. Moody’s rating approach consists of economic strength, institution and governance strength, fiscal strength, and susceptibility to event risk. Government financial strength and susceptibility to event risks give sovereign rating results. The Fitch rating approach consists of macroeconomic outlook, policies and prospects, public finances, external finances, and structural features. Those agencies use the GDP, GDP growth rates, GDP per capita, and consumer price index, etc. to assess domestic economy profiles. Additionnaly, when the GDP is not concentrated in certain sectors and includes economic diversity as a feature, it increases resistance to economic shocks. It affects the credibility assessment of sovereigns positively. Another important variable is GDP per capita. GDP per capita is used as a measure of income and a high level of value is considered favorably in terms of the credibility of the country.

 The main goal of this study is to indicate the relation between domestic economy indicators and the probability of default. The default data was obtained the Bank of England and the Bank of Canada databases and categorized in order to use for regression. A categorized version of the default data was used as a dependent variable in the model. A broad set of independent variables were analyzed such as the GDP data, GDP growth rate, exchange rate, consumer price growth rate, reserve money status, and gross domestic investments. The logistic regression method was used in the study. Fundamentaly, the logistic regression method returns the probability of realization of the dependent variable Y. After the necessary data optimization was made, an interactive grouping was performed on the data. Within the scope of the study, variables with a correlation above 60% were not included in the regression analysis. In this study, some of the analyzed data was reserved for use in a validation study. Seventy percent of the analyzed data was used for model development and 30% was used for testing the developed model. The exchange rate, consumer price index, gross domestic investments, and the GDP(USD) were used in the model as explanatory variables. The weight of the GDP data in the model was 29%, the consumer price index data was 27%, and the local currency on USD basis was 24%. These three types of data are highly effective in predicting a country’s probability of default. As a result of the study, non default probability was produced. It was observed that when there was an increase in the USD rate level, there is a natural decrease in the GDP levels in USD due to the increase in exchange rates. This situation was reflected in the indicators to increase the probability of default data.


PDF Görünüm

Referanslar

  • Afonso, A. (2003). Understanding the determinants of sovereign debt ratings: Evidence for the two leading agencies. Journal of Economics and Finance, 27(1), 56–74. google scholar
  • Afonso, A., & Gomes, P. (2011). Do Fiscal Imbalances Deteriorate Sovereign Debt Ratings? Revue ´Economique, 62(6):1123–1134. google scholar
  • Afonso, A., Agnello, L., & Furceri, D. (2010). Fiscal policy responsiveness, persistence, and discretion. Public Choice, 145(3-4), 503-530. google scholar
  • Bank of Canada Default Data. (2020, 01 Eylül). Erişim Adresi: https://www.bankofcanada.ca/wp-content/ uploads/2019/09/crag-database-update-27-09-19.xlsx google scholar
  • Beers, D., & de Leon-Manlagnit, P. (2019). The BoC-BoE sovereign default database: what’s new in 2019. google scholar
  • Butler, A., & Fauver, L. (2008). Institutional Environment and Sovereign Credit Ratings, Financial Management Vol. 35, Issue 3. google scholar
  • Cantor, R., & Packer, F. (1995). Sovereign Credit Ratings. Current Issues in Economics and Finance, 1(Jun). google scholar
  • Cantor, R., & Packer, F. (1996). Determinants and Impact of Sovereign Credit Ratings. Economic Policy Review, (Oct):37–53. google scholar
  • Cruces, J. J., & Trebesch, C. (2013). Sovereign defaults: The price of haircuts. American economic Journal: macroeconomics, 5(3), 85–117. google scholar
  • Sas Documentary. (2013). Developing ScoreCards. (2020, 15 Ekim). Erişim Adresi:https://support.sas.com/ documentation/cdl/en/emcsgs/66008/PDF/default/emcsgs.pdf google scholar
  • Eaton, J., & Fernandez, R. (1995). Sovereign Debt, NBER Working Paper Series N:5131. google scholar
  • Field, A., & Miles, J. (2010). Discovering Statistics Using SAS,Sage Publication, London. google scholar
  • Haque, N., Mark, N. C., & Mathieson, D. J. (1998). The Relative Importance of Political and Economic Variables in Creditworthiness Ratings”, IMF Working Paper: 1–13. google scholar
  • Hill, P., Bissoondoyal-Bheenick, E., & Faff, R. (2017). New Evidence on Sovereign to Corporate Credit Rating Spill-overs, IRFA,30104-7. google scholar
  • Infrangilis (2012). Rating Sovereign Raters, Credit Rating Agencies - Political Scapegoats or Misguided Messengers. google scholar
  • Juttner, J.D. & McCarthy, J. (1998). ‘‘Modeling a rating crisis.’’ Mimeo, Macquarie University, Sydney. google scholar
  • Kraay, A., & Nehru, V. (2006). When is external debt sustainable?. The World Bank Economic Review, 20(3), 341–365. google scholar
  • Manasse, P., Roubini, N., & Schimmelpfennig, A. (2003). Predicting Sovereign Debt Crises, WP/03/221. google scholar
  • Manasse, P., & Roubini, N., (2009). “Rules of thumb” for sovereign debt crises. Journal of International Economics, 78(2), 192–205. google scholar
  • Moody’s History A Century of Market Leadership. (2020, 02 Aralık). Erişim Adresi: https://www.moodys.com/ Pages/atc001.aspx google scholar
  • Moody’s Market Segment. (2020, 03 Aralık). Erişim Adresi: https://www.moodys.com/researchandratings google scholar
  • Moody’s Investor Service. (2017). Rating symbols and definitions. (2020, 10 Ekim). Erişim Adresi:https://www. moodys.com/researchdocumentcontentpage.aspx?docid=PBC_79004 google scholar
  • Moody’s Investor Service. (2019). Sovereign Ratings Methodology. (2020,10 Ekim). Erişim Adresi: https://www. moodys.com/researchandratings/methodology/003006001/rating-methodologies/methodology google scholar
  • Panizza, U., Sturzenegger, F., & Zettelmeyer, J. (2009). The Economics and Law of Sovereign Debt and Default, Journal of Economic Literature, 47:3, 1–47. google scholar
  • Fitch Ratings. (2020). Sovereign rating criteria: Master criteria. (2020, 15 Ekim). Erişim Adresi:https://www. fitchratings.com/research/sovereigns/sovereign-rating-criteria-26-10-2020 google scholar
  • S&P Global Ratings. (2018). Guide to Credit Rating Essentials. (2020, 15 Ekim). Erişim Adresi:https://www. spglobal.com/ratings/_divisionassets/pdfs/guide_to_credit_rating_essentials_digital.pdf google scholar
  • Reinhart , M. (2002). Default, Currency Crıses And Sovereıgn Credıt Ratıngs, NBER Working Paper Series N: 8738. google scholar
  • Roubini, N. (2001). Debt Sustainability: How to Assess Whether a Country is Insolvent, New York University. google scholar
  • S&P Global Ratings. (2017). Global Ratings Definitions. (2020, 12 Ekim). Erişim Adresi: https://www.spglobal. com/ratings/en/research/articles/190705-s-p-global-ratings-definitions-504352 google scholar
  • S&P Global Ratings.(2017). Sovereign Rating Methodology. (2020, 12 Ekim). Erişim Adresi: https://www. spratings.com/documents/20184/4432051/Sovereign+Rating+Methodology/5f8c852c-108d-46d2-add1- 4c20c3304725 google scholar
  • Standart&Poors, About S&P Global Ratings. (2020,01 Aralık). Erişim Adresi: https://www.spglobal.com/ratings/ en/about/index.aspx google scholar
  • Steven S. Skiena. (2017). The Data Science Design Manual, Springer, USA. google scholar
  • Trebesch, C. (2009). “The Cost of Aggressive Sovereign Debt Policies: How Much is the Private Sector Affected?” International Monetary Fund (IMF) Working Paper 09/29. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Kırkıl, M. (2021). Ülke Kredi Riski Derecelendirmede: İç Ekonomik Veriler ile Temerrüt Olasılığı İlişkisinin İncelenmesi. İktisat Politikası Araştırmaları Dergisi, 8(1), 57-74. https://doi.org/10.26650/JEPR838626


AMA

Kırkıl M. Ülke Kredi Riski Derecelendirmede: İç Ekonomik Veriler ile Temerrüt Olasılığı İlişkisinin İncelenmesi. İktisat Politikası Araştırmaları Dergisi. 2021;8(1):57-74. https://doi.org/10.26650/JEPR838626


ABNT

Kırkıl, M. Ülke Kredi Riski Derecelendirmede: İç Ekonomik Veriler ile Temerrüt Olasılığı İlişkisinin İncelenmesi. İktisat Politikası Araştırmaları Dergisi, [Publisher Location], v. 8, n. 1, p. 57-74, 2021.


Chicago: Author-Date Style

Kırkıl, Merve,. 2021. “Ülke Kredi Riski Derecelendirmede: İç Ekonomik Veriler ile Temerrüt Olasılığı İlişkisinin İncelenmesi.” İktisat Politikası Araştırmaları Dergisi 8, no. 1: 57-74. https://doi.org/10.26650/JEPR838626


Chicago: Humanities Style

Kırkıl, Merve,. Ülke Kredi Riski Derecelendirmede: İç Ekonomik Veriler ile Temerrüt Olasılığı İlişkisinin İncelenmesi.” İktisat Politikası Araştırmaları Dergisi 8, no. 1 (Sep. 2021): 57-74. https://doi.org/10.26650/JEPR838626


Harvard: Australian Style

Kırkıl, M 2021, 'Ülke Kredi Riski Derecelendirmede: İç Ekonomik Veriler ile Temerrüt Olasılığı İlişkisinin İncelenmesi', İktisat Politikası Araştırmaları Dergisi, vol. 8, no. 1, pp. 57-74, viewed 23 Sep. 2021, https://doi.org/10.26650/JEPR838626


Harvard: Author-Date Style

Kırkıl, M. (2021) ‘Ülke Kredi Riski Derecelendirmede: İç Ekonomik Veriler ile Temerrüt Olasılığı İlişkisinin İncelenmesi’, İktisat Politikası Araştırmaları Dergisi, 8(1), pp. 57-74. https://doi.org/10.26650/JEPR838626 (23 Sep. 2021).


MLA

Kırkıl, Merve,. Ülke Kredi Riski Derecelendirmede: İç Ekonomik Veriler ile Temerrüt Olasılığı İlişkisinin İncelenmesi.” İktisat Politikası Araştırmaları Dergisi, vol. 8, no. 1, 2021, pp. 57-74. [Database Container], https://doi.org/10.26650/JEPR838626


Vancouver

Kırkıl M. Ülke Kredi Riski Derecelendirmede: İç Ekonomik Veriler ile Temerrüt Olasılığı İlişkisinin İncelenmesi. İktisat Politikası Araştırmaları Dergisi [Internet]. 23 Sep. 2021 [cited 23 Sep. 2021];8(1):57-74. Available from: https://doi.org/10.26650/JEPR838626 doi: 10.26650/JEPR838626


ISNAD

Kırkıl, Merve. Ülke Kredi Riski Derecelendirmede: İç Ekonomik Veriler ile Temerrüt Olasılığı İlişkisinin İncelenmesi”. İktisat Politikası Araştırmaları Dergisi 8/1 (Sep. 2021): 57-74. https://doi.org/10.26650/JEPR838626



ZAMAN ÇİZELGESİ


Gönderim10.12.2020
Kabul18.01.2021
Çevrimiçi Yayınlanma29.01.2021

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.