Araştırma Makalesi


DOI :10.26650/JTL.2022.1038781   IUP :10.26650/JTL.2022.1038781    Tam Metin (PDF)

Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi

Ertuğrul Ayyıldız

Talebin her geçen gün arttığı lojistik sektöründe hizmet kalitesinin ölçülmesi kritik önem taşımaktadır. Firmaların pazarda rekabet edebilmeleri ve hizmet kalitelerini artırabilmeleri için müşterilerini iyi tanımaları ve beklentilerini doğru analiz ederek iyileştirmeler yapmaları gerekmektedir. Bu bağlamda SERVQUAL modeli hizmet kalitesi ölçümünde sıklıkla tercih edilen etkili araçlardan biridir. Ancak dünyayı etkisi altında pandemi, gelişen teknoloji trendlerin gelişimi ve dönüşümü gibi köklü değişimlerin etkileriyle geleneksel SERVQUAL modeli ile müşterilerin tüm beklentilerini sürece dahil etmek mümkün değildir. Bu yüzden bu çalışmada, SERVQUAL modeli lojistik servis sağlayıcılara yönelik beklentiler dikkate alınarak dört farklı boyutla genişletilmiş ve böylece daha kapsamlı bir çerçeve sunulmuştur. Daha sonra her bir boyutun önem derecesinin belirlemek için çok kriterli karar verme yaklaşımı benimsenmiş ve Best-Worst yöntemi kullanılarak boyutların önem dereceleri belirlenmiştir. Önerilen yöntemin tutarlılığını test etmek için karşılaştırmalı analiz yapılmıştır. Elde edilen sonuçlara göre en önemli hizmet kalitesi boyutu “yanıt verebilirlik” olarak belirlenmiştir. Ayrıca “yeterlik” ve “güvenilirlik” hizmet kalitesini artırmaya yönelik dikkate alınması gereken boyutlardandır. 

DOI :10.26650/JTL.2022.1038781   IUP :10.26650/JTL.2022.1038781    Tam Metin (PDF)

Prioritizing the Service Quality Dimensions of Logistics Service Providers Using SERVQUAL-Based Best–Worst Method

Ertuğrul Ayyıldız

The level of service quality for airline transportation, where demand is increasing daily, is vital and must be determined. For companies to compete in the market and increase their service quality, they must know their customers well, analyze their expectations correctly, and make improvements. In this context, the SERVQUAL model is one of the most preferred and effective tools for measuring service quality. However, customers’ expectations cannot be included in the process using the traditional SERVQUAL model, especially with the effects of radical changes, such as the pandemic, and the development and transformation of emerging technology trends. Therefore, this study extends the traditional SERVQUAL model with four novel dimensions considering the expectations for logistics service providers, thereby providing a more comprehensive framework. Subsequently, the importance level of each dimension is determined and modeled through a multicriteria decision-making problem. Furthermore, the importance levels of the dimensions are determined using the best–worst method. A comparative analysis is conducted to examine the consistency of the proposed method. The results reveal that the most important service quality dimension is “responsiveness.” In addition, the “competence” and “reliability” dimensions should be considered to increase service quality.


GENİŞLETİLMİŞ ÖZET


Quality expresses the customer satisfaction level; it can be elucidated by examining certain service quality indicators. In terms of the service sector, increasing customer satisfaction is a primary goal of quality management. Customer satisfaction is often an expression of subjective feelings arising from the difference between the customers’ expectations of the service and their actual experience. Service-producing businesses must analyze the demands and expectations of their customers appropriately and make improvements accordingly to gain a competitive advantage in the market. However, analyzing and implementing quality expectations are not enough. After providing the service, businesses must monitor whether customer expectations are met and how customers perceive the service using the suitable methods. The level of service quality is measured by evaluating the perceptions of the customer. In particular, in recent years, logistics service providers (LSPs), whose demand has further increased, should handle the demands described as the “voice of the customer” with the proper techniques and update their quality characteristics accordingly. Today, numerous LSPs give more importance to customer satisfaction by providing greater customer service. Therefore, customer satisfaction and service quality evaluations are becoming essential for companies. Thus, improvements determined because of the evaluation of service quality can encourage more customers to use the services provided. Hence, companies must evaluate, monitor, and develop strategies for service quality to increase their service quality and keep customer’s interest vigorous. The logistics service industry focuses on essential services, such as organizing, planning, and controlling the transport of physical goods and additional value-added services. LSPs should evaluate their processes to maintain their current market position and reach more customers. Service quality is a vital element in creating customer satisfaction; hence, it plays an important role in maintaining the companies’ profitability levels. Therefore, measuring service quality is important for companies. This study investigates which dimensions should be considered in this process by focusing on the service performance measurement of LSPs. The SERVQUAL model is employed to gather the dimensions under certain headings and to create a decision hierarchy. In this study, the SERVQUAL model, which is one of the most widely used service quality methodologies, is extended from five to nine main dimensions to adapt to current changes and customer expectations. By adding “Competency,” “Technology,” “Environmental affects,” and “Cost,” we can provide an evaluation framework for the service quality of LSPs. In this study, LSPs’ service quality is evaluated using the SERVQUAL model without ignoring the current problems of the world and digital technological competitive environment. To prioritize the proposed nine new dimensions, this study considered the problem a multicriteria decision-making problem and applied the best–worst method to determine the weights of each service quality. Among the evaluated dimensions, the dimension with the highest weight is “Responsiveness,” whereas the least important dimension is determined as “Environmental impacts.” 


PDF Görünüm

Referanslar

  • Aagja, J. P., & Garg, R. (2010). Measuring perceived service quality for public hospitals (PubHosQual) in the Indian context. International Journal of Pharmaceutical and Healthcare Marketing, 4(1), 60-83. https://doi.org/10.1108/17506121011036033 google scholar
  • Aktas, E., & Ulengin, F. (2005). Outsourcing logistics activities in Turkey. Journal of Enterprise Information Management, 18(3), 316-329. https://doi.org/10.1108/17410390510591996 google scholar
  • Asiamah, N., Frimpong Opuni, F., Aggrey, M., & Adu-Gyamfi, K. (2021). ADAPTED SERVQUAL: A Health Service Quality Scale Incorporating Indicators of Sanitation and Hygiene. Quality Management in Health Care. https://doi.org/10.1097/QMH.0000000000000269 google scholar
  • Awasthi, A., Chauhan, S. S., Omrani, H., & Panahi, A. (2011). A hybrid approach based on SERVQUAL and fuzzy TOPSIS for evaluating transportation service quality. Computers and Industrial Engineering, 61(3), 637-646. https://doi.org/10.1016/j.cie.2011.04.019 google scholar
  • Ayyildiz, E., & Taskin Gumus, A. (2021). Interval-valued Pythagorean fuzzy AHP method-based supply chain performance evaluation by a new extension of SCOR model: SCOR 4.0. Complex & Intelligent Systems, 7(1), 559-576. https://doi.org/10.1007/s40747-020-00221-9 google scholar
  • Ayyildiz, E., Yildiz, A., Taskin Gumus, A., & Ozkan, C. (2021). An Integrated Methodology Using Extended Swara and Dea for the Performance Analysis of Wastewater Treatment Plants: Turkey Case. Environmental Management, 67(3), 449-467. https://doi.org/10.1007/s00267-020-01381-7 google scholar
  • Baber, H. (2019). E-SERVQUAL and its impact on the performance of Islamic Banks in Malaysia from the customer’s perspective. Journal of Asian Finance, Economics and Business, 6(1), 169-175. https://doi. org/10.13106/JAFEB.2019 google scholar
  • Baki, B., Sahin Basfirinci, C., Murat ar, I., & Cilingir, Z. (2009). An application of integrating SERVQUAL and Kano’s model into QFD for logistics services:A case study from Turkey. Asia Pacific Journal of Marketing and Logistics, 21(1), 106-126. https://doi.org/10.1108/13555850910926272 google scholar
  • Chen, D., Faibil, D., & Agyemang, M. (2020). Evaluating critical barriers and pathways to implementation of e-waste formalization management systems in Ghana: a hybrid BWM and fuzzy TOPSIS approach. Environmental Science and Pollution Research, 27(35), 44561-44584. https://doi.org/10.1007/s11356-020-10360-8 google scholar
  • Del Castillo, J. M., & Benitez, F. G. (2012). A Methodology for Modeling and Identifying Users Satisfaction Issues in Public Transport Systems Based on Users Surveys. Procedia - Social and Behavioral Sciences, 54, 1104-1114. https://doi.org/10.1016/j.sbspro.2012.09.825 google scholar
  • Farooq, M. S., Salam, M., Fayolle, A., Jaafar, N., & Ayupp, K. (2018). Impact of service quality on customer satisfaction in Malaysia airlines: A PLS-SEM approach. Journal of Air Transport Management, 67, 169-180. https://doi.org/10.1016/J.JAIRTRAMAN.2017.12.008 google scholar
  • Fei, L., Lu, J., & Feng, Y. (2020). An extended best-worst multi-criteria decision-making method by belief functions and its applications in hospital service evaluation. Computers and Industrial Engineering, 142. https://doi.org/10.1016/J.CIE.2020.106355 google scholar
  • Gupta, H. (2018). Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management, 68, 35-47. https://doi.org/10.1016/j.jairtraman.2017.06.001 google scholar
  • Ilbahar, E., Cebi, S., & Kahraman, C. (2019, August 1). A state-of-the-art review on multi-attribute renewable energy decision making. Energy Strategy Reviews, Vol. 25, pp. 18-33. Elsevier Ltd. https:// doi.org/10.1016/j.esr.2019.04.014 google scholar
  • Johns, N. (1992). Quality Management in the Hospitality Industry: Part 1. Definition and Specification. International Journal of Contemporary Hospitality Management, 4(3), 14-20. https://doi. org/10.1108/09596119210014219 google scholar
  • Kadlubek, M., & Grabara, J. (2015). Customers’ expectations and experiences within chosen aspects of logistic customer service quality. International Journal for Quality Research, 9(2), 265-278. google scholar
  • Kang, D., Jang, W., & Park, Y. (2016). Evaluation of e-commerce websites using fuzzy hierarchical TOPSIS based on E-S-QUAL. Applied Soft Computing Journal, 42, 53-65. https://doi.org/10.1016/j. asoc.2016.01.017 google scholar
  • Kersuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2). google scholar
  • Kheybari, S., Kazemi, M., & Rezaei, J. (2019). Bioethanol facility location selection using best-worst method. Applied Energy, 242, 612-623. https://doi.Org/10.1016/j.apenergy.2019.03.054 google scholar
  • König, C., Caldwell, N. D., & Ghadge, A. (2019). Service provider boundaries in competitive markets: the case of the logistics industry. International Journal of Production Research, 57(18), 5624-5639. https:// doi.org/10.1080/00207543.2018.1535203 google scholar
  • Kyriakopoulos, G. (2011). The role of quality management for effective implementation of customer satisfaction, customer consultation and self-assessment, within service quality schemes: A review. African Journal of Business Management, 5(12), 4901-4915. https://doi.org/10.5897/AJBM10.1584 google scholar
  • Liao, H., Mi, X., Yu, Q., & Luo, L. (2019). Hospital performance evaluation by a hesitant fuzzy linguistic best worst method with inconsistency repairing. Journal of Cleaner Production, 232, 657-671. https:// doi.org/10.1016/j.jclepro.2019.05.308 google scholar
  • Limsomkiat, N., & Vanichchinchai, A. (2019). An analysis of logistics service quality and performance. PervasiveHealth: Pervasive Computing Technologies for Healthcare, 53-56. https://doi. org/10.1145/3364335.3364353 google scholar
  • Maghsoodi, A. I., Saghaei, A., & Hafezalkotob, A. (2019). Service quality measurement model integrating an extended SERVQUAL model and a hybrid decision support system. European Research on Management and Business Economics, 25(3), 151-164. https://doi.org/10.1016/J.IEDEEN.2019.04.004 google scholar
  • Moslem, S., Alkharabsheh, A., Ismael, K., & Duleba, S. (2020). An Integrated Decision Support Model for Evaluating Public Transport Quality. Applied Sciences, 10(12), 4158. https://doi.org/10.3390/app10124158 google scholar
  • Moslem, S., Campisi, T., Szmelter-Jarosz, A., Duleba, S., Nahiduzzaman, K. M., & Tesoriere, G. (2020). Best-worst method for modelling mobility choice after COVID-19: Evidence from Italy. Sustainability (Switzerland), 12(17), 6824. https://doi.org/10.3390/SU12176824 google scholar
  • Mou, Q., Xu, Z., & Liao, H. (2016). An intuitionistic fuzzy multiplicative best-worst method for multi-criteria group decision making. Information Sciences, 374, 224-239. https://doi.org/10.1016/j.ins.2016.08.074 google scholar
  • Mulat, G. W. (2017). The Effects of Service Quality on Customer Satisfaction: A Study among Private Banks in Mekelle Town. European Journal of Business and Management Www.Iiste.Org ISSN, 9(13), 72-79. google scholar
  • Nie, R. xin, Tian, Z. peng, Kwai Sang, C., & Wang, J. qiang. (2020). Implementing healthcare service quality enhancement using a cloud-support QFD model integrated with TODIM method and linguistic distribution assessments. Journal of the Operational Research Society. https://doi.org/10.1080/01605 682.2020.1824554 google scholar
  • Omrani, H., Alizadeh, A., & Amini, M. (2020). A new approach based on BWM and MULTIMOORA methods for calculating semi-human development index: An application for provinces of Iran. Socio-Economic Planning Sciences, 70, 100689. https://doi.org/10.1016/j.seps.2019.02.004 google scholar
  • Pakdil, F., & Aydin, Ö. (2007). Expectations and perceptions in airline services: An analysis using weighted SERVQUAL scores. Journal of Air Transport Management, 13(4), 229-237. https://doi.org/10.1016/J. JAIRTRAMAN.2007.04.001 google scholar
  • Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A Conceptual Model of Service Quality and Its Implications for Future Research. Journal of Marketing, 49(4), 41. https://doi.org/10.2307/1251430 google scholar
  • Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12-40. google scholar
  • Pawitra, T. A., & Tan, K. C. (2001). Integrating Servqual and Kano’s model into QFD for service excellence development. Managing Service Quality: An International Journal, 11(6), 418-430. google scholar
  • Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega (United Kingdom), 53, 49-57. https://doi.org/10.1016/j.omega.2014.11.009 google scholar
  • Rezaei, J., Kothadiya, O., Tavasszy, L., & Kroesen, M. (2018). Quality assessment of airline baggage handling systems using SERVQUAL and BWM. Tourism Management, 66, 85-93. https://doi.org/10.1016/j. tourman.2017.11.009 google scholar
  • Sivakumar, G., Almehdawe, E., & Kabir, G. (2022). Developing a Decision-Making Framework to Improve Healthcare Service Quality during a Pandemic. Applied System Innovation, 5(1), 3. https://doi.org/10.3390/ ASI5010003 google scholar
  • Stefano, N. M., Casarotto Filho, N., Barichello, R., & Sohn, A. P. (2015). A fuzzy SERVQUAL based method for evaluated of service quality in the hotel industry. Procedia CIRP, 30, 433-438. Elsevier B.V https:// doi.org/10.1016/j.procir.2015.02.140 google scholar
  • Suria, H., Ahmad, F. M., & Siti, N. S. (2019). Bus service indicator: The different sight of performance index development. Journal of Physics: Conference Series, 1349(1). https://doi.org/10.1088/1742-6596/1349/1/012049 google scholar
  • Tumsekcali, E., Ayyildiz, E., & Taskin, A. (2021). Interval valued intuitionistic fuzzy AHP-WASPAS based public transportation service quality evaluation by a new extension of SERVQUAL Model: P-SERVQUAL 4.0. Expert Systems with Applications, 186, 115757. https://doi.org/10.1016/J.ESWA.2021.115757 google scholar
  • Wetzel, P., & Hofmann, E. (2020). Toward a Multi-Sided Model of Service Quality for Logistics Service Providers. Administrative Sciences 2020, Vol. 10, Page 79, 10(4), 79. https://doi.org/10.3390/ ADMSCI10040079 google scholar
  • Yalcin Kavus, B., Gulum Tas, P., Ayyildiz, E., & Taskin, A. (2022). A three-level framework to evaluate airline service quality based on interval valued neutrosophic AHP considering the new dimensions. Journal of Air Transport Management, 99, 102179. https://doi.org/10.1016/J.JAIRTRAMAN.2021.102179 google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Ayyıldız, E. (2022). Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi. Journal of Transportation and Logistics, 7(1), 117-135. https://doi.org/10.26650/JTL.2022.1038781


AMA

Ayyıldız E. Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi. Journal of Transportation and Logistics. 2022;7(1):117-135. https://doi.org/10.26650/JTL.2022.1038781


ABNT

Ayyıldız, E. Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi. Journal of Transportation and Logistics, [Publisher Location], v. 7, n. 1, p. 117-135, 2022.


Chicago: Author-Date Style

Ayyıldız, Ertuğrul,. 2022. “Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi.” Journal of Transportation and Logistics 7, no. 1: 117-135. https://doi.org/10.26650/JTL.2022.1038781


Chicago: Humanities Style

Ayyıldız, Ertuğrul,. Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi.” Journal of Transportation and Logistics 7, no. 1 (Dec. 2022): 117-135. https://doi.org/10.26650/JTL.2022.1038781


Harvard: Australian Style

Ayyıldız, E 2022, 'Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi', Journal of Transportation and Logistics, vol. 7, no. 1, pp. 117-135, viewed 7 Dec. 2022, https://doi.org/10.26650/JTL.2022.1038781


Harvard: Author-Date Style

Ayyıldız, E. (2022) ‘Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi’, Journal of Transportation and Logistics, 7(1), pp. 117-135. https://doi.org/10.26650/JTL.2022.1038781 (7 Dec. 2022).


MLA

Ayyıldız, Ertuğrul,. Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi.” Journal of Transportation and Logistics, vol. 7, no. 1, 2022, pp. 117-135. [Database Container], https://doi.org/10.26650/JTL.2022.1038781


Vancouver

Ayyıldız E. Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi. Journal of Transportation and Logistics [Internet]. 7 Dec. 2022 [cited 7 Dec. 2022];7(1):117-135. Available from: https://doi.org/10.26650/JTL.2022.1038781 doi: 10.26650/JTL.2022.1038781


ISNAD

Ayyıldız, Ertuğrul. Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi”. Journal of Transportation and Logistics 7/1 (Dec. 2022): 117-135. https://doi.org/10.26650/JTL.2022.1038781



ZAMAN ÇİZELGESİ


Gönderim20.12.2021
Kabul28.01.2022
Çevrimiçi Yayınlanma31.05.2022

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.