Epigenetic Regulation of HLA-G Expression in Mesenchymal Stem Cells
Şule Karataş, Fatma Savran OğuzMesenchymal stem cells (MSCs) are multipotent stem cells morphologically similar to fibroblasts. Thanks to their ability to transform into different cell types and immune-regulatory properties, they make important contributions to regenerative medicine and immunotherapy treatment protocols. One of the most unique molecules involved in the immunomodulation of human MSCs is the nonclassical MHC-I molecule, human leukocyte antigen G (HLA-G). Unlike classical MHC I molecules, HLA-G shows a limited tissue distribution. This limited expression pattern may be explained by the fact that its transcriptional regulation differs from that of classical MHC I molecules. Here, the regulation of HLA-G expression in MSCs is discussed specifically through epigenetic mechanisms.
References
- 1. Ben-Ami E, Berrih-Aknin S, Miller A. Mesenchymalstem cells as an immunomodulatory therapeutc strategy for autoimmune diseases. AutoimmunityRev. 2011;10:410-5. google scholar
- 2. Davies JE, Walker JT, Keating A. Concise Review: Wharton’s Jelly: The rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med. 2017;6(7):1620-30. google scholar
- 3. Crisan M, Yap S, Casteilla L, ChenCW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301-13. google scholar
- 4. Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, et al. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci. 2014;71(8):1353-74. google scholar
- 5. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7. google scholar
- 6. Mattar P, Bieback K. Comparing the immunomodulatory properties of bone marrow, adipose tissue, and birth-associated tissue mesenchymal stromal cells. Front Immunol. 2015;6:560. google scholar
- 7. Najar M, Raicevic Ğ, Fayyad-Kazan H, Bron D, Toungouz M, Lagneaux L. Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells. Cytotherapy. 2016;18(2):160-71. google scholar
- 8. Selmani Z, Naji A, Ğaiffe E, Obert L, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F. HLA-Ğ is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation. 2009;87(9 Suppl):S62-6. google scholar
- 9. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103(12):4619-21. google scholar
- 10. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815-22. google scholar
- 11. Dazzi F, Lopes L, Weng L. Mesenchymal stromal cells: a key player in ’innate tolerance’? Immunology. 2012;137(3):206-13. google scholar
- 12. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726-36. google scholar
- 13. Naji A, Rouas-Freiss N, Durrbach A, Carosella ED, Sensebe L, Deschaseaux F. Concise review: combining human leukocyte antigen Ğ and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells. 2013;31(11):2296-303. google scholar
- 14. Melief SM, Ğeutskens SB, Fibbe WE, Roelofs H. Multipotent stromal cells skew monocytes towards an anti-inflammatory function: the link with key immunoregulatory molecules. Haematologica. 2013 Sep;98(9):e121-2. google scholar
- 15. Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J. HLA-Ğ: An immune checkpoint molecule. Adv Immunol 2015;127:33-144. google scholar
- 16. Rouas-Freiss N, Goncalves RM, Menier C, Dausset J, Carosella ED. Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc. Natl Acad Sci USA. 1997;94:11520-5. google scholar
- 17. Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R. A class I antigen, HLA-G, expressed in human trophoblasts. Science. 1990;248(4952):220-3. google scholar
- 18. Braud VM, Allan DS, McMichael AJ. Functions of nonclassical MHC and non-MHC-encoded class I molecules. Curr Opin Immunol. 1999;11(1):100-8. google scholar
- 19. Riteau B, Rouas-Freiss N, Menier C, Paul P, Dausset J, Carosella ED. HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol. 2001;166(8):5018-26. google scholar
- 20. Riteau B, Menier C, Khalil-Daher I, Sedlik C, Dausset J, Rouas-Freiss N, Carosella ED. HLA-G inhibits the allogeneic proliferative response. J Reprod Immunol. 1999;43(2):203-11. google scholar
- 21. Loustau M, Anna F, Drean R, Lecomte M, Langlade-Demoyen P, Caumartin J. HLA-G neo-expression on tumors. Front Immunol.2020;11:1685. google scholar
- 22. Lila N, Amrein C, Guillemain R, Chevalier P, Latremouille C, Fabiani JN, Dausset J, Carosella ED, Carpentier A. Human leukocyte antigen-G expression after heart transplantation is associated with a reduced incidence of rejection. Circulation. 2002;105(16):1949-54. google scholar
- 23. Selmani Z, Naji A, Zidi I, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26(1):212-22. google scholar
- 24. Agaugue S, Carosella ED, Rouas-Freiss N. Role of HLA-G in tumor escape through expansion of myeloid-derived suppressor cells and cytokinic balance in favor of Th2 versus Th1/Th17. Blood. 2011;117(26):7021-31. google scholar
- 25. Rizzo R, Campioni D, Stignani M, et al. A functional role for soluble HLA-G antigens in immune modulation mediated by mesenchymal stromal cells. Cytotherapy. 2008;10(4):364-37. google scholar
- 26. McQuown SC, Wood MA. Epigenetic regulation in substance use disorders. Curr Psychiatry Rep. 2010;12(2):145-53. google scholar
- 27. Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407-12. google scholar
- 28. Nafee TM, Farrell WE, Carroll WD, et al. Epigenetic control of fetal gene expression. BJOG. 2008; 115: 158-68. google scholar
- 29. Jurisicova A, Casper RF, MacLusky NJ, et al. HLA-Ğ expression during preimplantation human embryo development. Proc Natl Acad Sci USA. 1996;93:161-5. google scholar
- 30. Menicucci A, Noci I, Fuzzi B, et al. Non-classic sHLA class I in human oocyte culture medium. Hum. Immunol. 1999; 60: 1054-7. google scholar
- 31. Chelbi ST, Vaiman D. Ğenetic and epigenetic factors contribute to the onset of preeclampsia. Mol Cell Endocrinol. 2008;282:120-9. google scholar
- 32. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148-59. google scholar
- 33. Cedar, H. DNA methylation and gene activity. Cell. 1988;53:3-4. google scholar
- 34. Newell-Price J, Clark AJ, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab. 2000;11(4):142-8. google scholar
- 35. Prokhortchouk E, Defossez PA. The cell biology of DNA methylation in mammals. Biochim Biophys Acta. 2008;1783(11):2167-73. google scholar
- 36. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Ğenet. 2008;9(6):465-76. google scholar
- 37. Ciechomska M, Roszkowski L, Maslinski W. DNA Methylation as a future therapeutic and diagnostic target in rheumatoid arthritis. Cells. 2019;8(9):953. google scholar
- 38. Klose RJ, Bird AP. Ğenomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89-97. google scholar
- 39. Brena RM, Huang TH, Plass C. Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med. 2006;84:365-77. google scholar
- 40. Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell. 1999;11:2291-301. google scholar
- 41. Swales AK, Spears N. Ğenomic imprinting and reproduction. Reproduction. 2005;130:389-99. google scholar
- 42. Polakova K, Bandzuchova E, Tirpakova J, et al. Modulation of HLA-Ğ expression. Neoplasma. 2007;54:455-62. google scholar
- 43. Moreau P, Mouillot G, Rousseau P, et al. HLA-G gene repression is reversed by demethylation. Proc Natl Acad Sci USA. 2003;100:1191-6. google scholar
- 44. Mouillot G, Marcou C, Rousseau P, et al. HLA-G gene activation in tumor cells involves cis-acting epigenetic changes. Int J Cancer. 2005;113:928-36. google scholar
- 45. Manaster I, Goldman-Wohl D, Greenfield C, Nachmani D, Tsukerman P, Hamani Y, Yagel S, Mandelboim O. MiRNA-mediated control of HLA-G expression and function. PLoS One. 2012;7(3):e33395. google scholar
- 46. Zhu XM, Han T, Sargent IL, Yin GW, Yao YQ. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol. 2009;200(6):661.e1-7. google scholar
- 47. Zhang X, Yu L, Ding Y. Human leukocyte antigen G and miR-148a are associated with the pathogenesis of intrahepatic cholestasis of pregnancy. Exp Ther Med. 2014;8(6):1701-6. google scholar
- 48. Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: paradoxes of passaging. Exp Hematol. 2004;32(5):414-25. google scholar
- 49. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75:389-97. google scholar
- 50. Shi M, Zhang Z, Xu R, Lin H, Fu J, Zou Z, et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med. 2012;1(10):725-31. google scholar
- 51. Boucraut J, Guillaudeux T, Alizadeh M, Boretto J, Chimini G, Malecaze F, Semana G, Fauchet R, Pontarotti P, Le Bouteiller P. HLA-E is the only class I gene that escapes CpG methylation and is transcriptionally active in the trophoblast-derived human cell line JAR. Immunogenetics. 1993;38:117-30. google scholar
- 52. Castelli EC, Veiga-Castelli LC, Yaghi L, Moreau P, Donadi EA. Transcriptional and posttranscriptional regulations of the HLA-G gene. J Immunol Res. 2014;2014:734068. google scholar
- 53. Liu L, Wang L, Zhao L, He C, Wang G. The role of HLA-G in Tumor escape: Manipulating the phenotype and function of immune cells. Front Oncol. 2020;10:597468. google scholar
- 54. LI, En. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3(9):662-73. google scholar
- 55. Yen BL, Hwa HL, Hsu PJ, Chen PM, Wang LT, Jiang SS, et al. HLA-G expression in human mesenchymal stem cells (MSCs) is related to unique methylation pattern in the proximal promoter as well as gene body DNA. Int J Mol Sci. 2020;21(14):5075. google scholar
- 56. Verloes A, Spits C, Vercammen M, Geens M, LeMaoult J, Sermon K, et al. The role of methylation, DNA polymorphisms and microRNAs on HLA-G expression in human embryonic stem cells. Stem Cell Res. 2017;19:118-27. google scholar
- 57. Nasef A, Mathieu N, Chapel A, Frick J, Francois S, Mazurier C, et al. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation. 2007;84(2):231-7. google scholar
- 58. Teklemariam T, Purandare B, Zhao L, Hantash BM. Inhibition of DNA methylation enhances HLA-G expression in human mesenchymal stem cells. Biochem Biophys Res Commun. 2014;452(3):753-9. google scholar