Immunomodulatory Effects of Mesenchymal Stem Cells
Figen Abatay Sel, Fatma Savran OğuzStem cells are a rather unique group of cells among all eukaryotic cells. They have self-renewal capacity, asymmetric division, and regenerative properties. Due to these features, stem cells play critical roles in many biological processes such as regeneration, disease, cancer. Recently, the researchers have been focused on a subgroup of stem cells; mesenchymal stem cells (MSCs). They can be distinguished by three important characteristics: multipotency, adherence to plastics and the presence of specific surface antigens. MSCs have recently gained prominence for their immunomodulatory effects. In particular, MSCs with immunosuppressive activity have a major role in the regulation and suppression of the immune response. Unfortunately, the underlying mechanisms for this resistance have been poorly understood, yet. Studying these mechanisms in detail will enable the development of treatments such as immunotherapy and personalized therapy for autoimmune diseases, and tissue damage. Here, the current state of knowledge for this field of MSCs in the context of the immune system will be discussed.
References
- 1. Ramalho-Santos M, Willenbring H. On the origin of the term ”stem cell”. Cell Stem Cell. 2007;1(1):35-8. google scholar
- 2. Charitos IA, Ballini A, Cantore S, Boccellino M, Di Domenico M, Borsani E, et al. Stem cells: A historical review about biological, religious, and ethical issues. Stem Cells Int. 2021;2021:9978837. google scholar
- 3. Simşek (O. Yetişkin kok hücrelerin dünü ve bugünü. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2012;7(3):231-6. google scholar
- 4. Smithies O, Kim HS. Targeted gene duplication and disruption for analyzing quantitative genetic traits in mice. Proc Natl Acad Sci USA. 1994;91(9):3612-5. google scholar
- 5. Capecchi MR. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell. 1980;22(2 Pt 2):479-88. google scholar
- 6. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6;282(5391):1145-7. Erratum in: Science. 1998;282(5395):1827. google scholar
- 7. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-76. google scholar
- 8. Ğurdon JB, Uehlinger V. ”Fertile” intestine nuclei. Nature. 1966;210(5042):1240-1. google scholar
- 9. Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014 Oct 3;346(6205):1248012. google scholar
- 10. Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol. 2020;17(4):204-32. google scholar
- 11. Ğhazimoradi MH, Khalafizadeh A, Babashah S. A critical review on induced totipotent stem cells: Types and methods. Stem Cell Res. 2022;63:102857. google scholar
- 12. Spangrude ĞJ. When is a stem cell really a stem cell? Bone Marrow Transplant. 2003;32 Suppl 1:S7-11. google scholar
- 13. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315-7. google scholar
- 14. Marone M, De Ritis D, Bonanno Ğ, Mozzetti S, Rutella S, Scambia Ğ, et al. Cell cycle regulation in human hematopoietic stem cells: from isolation to activation. Leuk Lymphoma. 2002;43(3):493-501. google scholar
- 15. Volarevic V, Markovic BS, Ğazdic M, Volarevic A, Jovacic N, Arsenijevic N, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15(1):36-45. google scholar
- 16. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17(4):331-40. google scholar
- 17. Mushahary D, Spittler A, Kasper C, Weber V, Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A. 2018 Jan;93(1):19-31. google scholar
- 18. Sel FA, Oguz FS. Regenerative medicine application of mesenchymal stem cells. Adv Exp Med Biol. 2022;1387:25-42. google scholar
- 19. Merimi M, El-Majzoub R, Lagneaux L, Agha DM, Bouhtit F, Meuleman N, et al. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: current knowledge and future understandings. Front Cell Dev Biol. 2021;9:661532. Published 2021 Aug 18. google scholar
- 20. Li J, Xiao L, He D, Luo Y, Sun H. Mechanism of white matter injury and promising therapeutic strategies of mscs after intracerebral hemorrhage. Front Aging Neurosci. 2021;13:632054. google scholar
- 21. Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41(9):653-64. google scholar
- 22. Mardpour S, Hamidieh AA, Taleahmad S, Sharifzad F, Taghikhani A, Baharvand H. Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. J Cell Physiol. 2019;234(6):8249-58. google scholar
- 23. Thomas H, Jager M, Mauel K, Brandau S, Lask S, Flohe SB. Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferon-gamma secretion. Mediators Inflamm. 2014;2014:143463. google scholar
- 24. Mahmoudi M, Taghavi-Farahabadi M, Rezaei N, Hashemi SM. Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. Int Immunopharmacol. 2019;74:105689. google scholar
- 25. Melief SM, Geutskens SB, Fibbe WE, Roelofs H. Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. Haematologica. 2013;98(6):888-95. google scholar
- 26. Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med. 2013;2(6):455-63. google scholar
- 27. Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang XN. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front Immunol. 2018;9:2538. google scholar
- 28. Tang D, Cao F, Yan C, Fang K,MaJ, Gao L, et al. Extracellular vesicle/macrophage axis: potential targets for inflammatory disease intervention. Front Immunol. 2022;13:705472. google scholar
- 29. Kamal M, Kassem D, Haider KH. Sources and therapeutic strategies of mesenchymal stem cells in regenerative medicine. In: Haider KH. Handbook of Stem Cell Therapy. Singapore: Springer; 2022. pp 23 google scholar
- 30. Löpez-Garcla L, Castro-Manrreza ME. TNF-a and IFN-y Participate in improving the immunoregulatory capacity of mesenchymal stem/stromal cells: Importance of cell-cell contact and extracellular vesicles. Int J Mol Sci. 2021;22(17):9531. google scholar
- 31. Contreras RA, Figueroa FE, Djouad F, Luz-Crawford P. Mesenchymal stem cells regulate the innate and adaptive immune responses dampening arthritis progression. Stem Cells Int. 2016;2016:3162743. google scholar
- 32. Wang WB, Yen ML, Liu KJ, Hsu PJ, Lin MH, Chen PM, et al. Interleukin-25 mediates transcriptional control of PD-L1 via STAT3 in multipotent human mesenchymal stromal cells (hMSCs) to suppress Th17 responses. Stem Cell Reports. 2015;5(3):392-404. google scholar
- 33. Di Tinco R, Bertani Ğ, Pisciotta A, Bertoni L, Pignatti E, Maccaferri M, et al. Role of PD-L1 in licensing immunoregulatory function of dental pulp mesenchymal stem cells. Stem Cell Res Ther. 2021;12(1):598. google scholar
- 34. Davies LC, Heldring N, Kadri N, Le Blanc K. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells. 2017;35(3):766-76. google scholar
- 35. Rad F, Ğhorbani M, Mohammadi Roushandeh A, Habibi Roudkenar M. Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles. Mol Biol Rep. 2019;46(1):1533-49. google scholar
- 36. Del Fattore A, Luciano R, Pascucci L, Ğoffredo BM, Ğiorda E, Scapaticci M, et al. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant. 2015;24(12):2615-27. google scholar
- 37. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells. 2014;6(5):552-70. google scholar
- 38. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24(2):386-98. google scholar
- 39. Saldanha-Araujo F, Ferreira FI, Palma PV, Araujo AĞ, Queiroz RH, Covas DT, et al. Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res. 2011;7(1):66-74. google scholar
- 40. Lee HJ, Kim SN, Jeon MS, Yi T, Song SU. ICOSL expression in human bone marrow-derived mesenchymal stem cells promotes induction of regulatory T cells. Sci Rep. 2017;7:44486. google scholar
- 41. De Miguel MP, Fuentes-Julian S, Blazquez-Martınez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12(5):574-91. google scholar
- 42. Yan L, Zheng D, Xu RH. Critical role of tumor necrosis factor signaling in mesenchymal stem cell-based therapy for autoimmune and inflammatory diseases. Front Immunol. 2018;9:1658. google scholar
- 43. Dabrowska S, Andrzejewska A, Janowski M, Lukomska B. Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: Therapeutic outlook for inflammatory and degenerative diseases. Front Immunol. 2021;11:591065. google scholar
- 44. de AraUjo Farias V, Carrillo-Gaivez AB, Martın F, Anderson P. TGF-p and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev. 2018;43:25-37. google scholar
- 45. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol. 2006;177(4):2080-7. google scholar
- 46. Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018;8(5):1399-410. google scholar
- 47. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells. 2008;26(1):151-62. google scholar
- 48. Ma YH, Liang QY, Ding Y, Han I, Zeng X. Multimodal repair of spinal cord injury with mesenchymal stem cells. Neurospine. 2022 Sep;19(3):616-29. google scholar
- 49. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15. google scholar
- 50. Kohler BM, Gunther J, Kaudewitz D, Lorenz HM. Current therapeutic options in the treatment of rheumatoid arthritis. J Clin Med. 2019;8(7):938. google scholar
- 51. Wang L, Huang S, Li S, Li M, Shi J, Bai W, et al. Efficacy and safety of umbilical cord mesenchymal stem cell therapy for rheumatoid arthritis patients: a prospective phase I/II study. Drug Des Devel Ther. 2019;13:4331-40. google scholar
- 52. Vij R, Stebbings KA, Kim H, Park H, Chang D. Safety and efficacy of autologous, adipose-derived mesenchymal stem cells in patients with rheumatoid arthritis: a phase I/IIa, open-label, non-randomized pilot trial. Stem Cell Res Ther. 2022;13(1):88. google scholar
- 53. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162(1):1-11. google scholar
- 54. Petrou P, Kassis I, Levin N, Paul F, Backner Y, Benoliel T, et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain. 2020;143(12):3574-88. google scholar
- 55. Petrou P, Kassis I, Ğinzberg A, Hallimi M, Karussis D. Effects of mesenchymal stem cell transplantation on cerebrospinal fluid biomarkers in progressive multiple sclerosis. Stem Cells Transl Med. 2022;11(1):55-8. google scholar
- 56. Berard JA, Freedman MS, Marrie RA, Marriott JJ, Atkins HL, Szwajcer D, et al. Mesenchymal stem cell therapy and cognition in MS: preliminary findings from a phase II clinical trial. Mult Scler Relat Disord. 2022;61:103779. google scholar
- 57. Cohen JA, Lublin FD, Lock C, Pelletier D, Chitnis T, Mehra M, et al. Evaluation of neurotrophic factor secreting mesenchymal stem cells in progressive multiple sclerosis. Mult Scler. 2023;29(1):92-106. google scholar
- 58. Chellappan DK, Sivam NS, Teoh KX, Leong WP, Fui TZ, Chooi K, et al. Ğene therapy and type 1 diabetes mellitus. Biomed Pharmacother. 2018;108:1188-200. google scholar
- 59. Izadi M, Sadr Hashemi Nejad A, Moazenchi M, Masoumi S, Rabbani A, Kompani F, et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther. 2022;13(1):264. google scholar
- 60. Cai J, Wu Z, Xu X, Liao L, Chen J, Huang L, et al. Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: A pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care. 2016;39(1):149-57. google scholar
- 61. Wu Z, Xu X, Cai J, Chen J, Huang L, Wu W, et al. Prevention of chronic diabetic complications in type 1 diabetes by co-transplantation of umbilical cord mesenchymal stromal cells and autologous bone marrow: a pilot randomized controlled open-label clinical study with 8-year follow-up. Cytotherapy. 2022;24(4):421-7. google scholar
- 62. Lu J, Shen SM, Ling Q, Wang B, Li LR, Zhang W, et al. One repeated transplantation of allogeneic umbilical cord mesenchymal stromal cells in type 1 diabetes: an open parallel controlled clinical study. Stem Cell Res Ther. 2021;12(1):340. google scholar
- 63. Fortuna G, Brennan MT. Systemic lupus erythematosus: epidemiology, pathophysiology, manifestations, and management. Dent Clin North Am. 2013;57(4):631-55. google scholar
- 64. Li X, Wang D, Liang J, Zhang H, Sun L. Mesenchymal SCT ameliorates refractory cytopenia in patients with systemic lupus erythematosus. Bone Marrow Transplant. 2013;48(4):544-50. google scholar
- 65. Chen C, Liang J, Yao G, Chen H, Shi B, Zhang Z, et al. Mesenchymal stem cells upregulate Treg cells via sHLA-G in SLE patients. Int Immunopharmacol. 2017;44:234-41. google scholar
- 66. Wang D, Feng X, Lu L, Konkel JE, Zhang H, Chen Z, et al. A CD8 T cell/indoleamine 2,3-dioxygenase axis is required for mesenchymal stem cell suppression of human systemic lupus erythematosus. Arthritis Rheumatol. 2014;66(8):2234-45. google scholar