CHAPTER


DOI :10.26650/B/LS17LS30.2025.038.013   IUP :10.26650/B/LS17LS30.2025.038.013    Full Text (PDF)

Induced Pluripotent Stem (iPS) Cell Research in Alzheimer’s Disease

Aslı ErdoğanSeyhun Solakoğlu

Alzheimer’s disease is an irreversible and progressive neurodegenerative disease-causing memory loss and cognitive decline in patients. There are more than 50 million Alzheimer’s patients worldwide. Number of Alzheimer’s disease patients is predicted to continue to increase over the years. However, except for a limited number of drugs only help to relieve the symptoms, there is no cure for Alzheimer’s disease. Animal models or post-mortem brain samples of patients are frequently used to study the mechanism of Alzheimer’s disease. Since animal models do not fully reflect the physiology of the human brain, they cannot accurately reveal the pathology that occurs in Alzheimer’s disease, and accessibility to post-mortem brain samples is limited and free of healthy controls. Induced pluripotent stem (iPS) cell technology offers a great opportunity to overcome these problems. iPS cells, which can be easily produced by reprogramming from adult somatic cells can be differentiated into the desired cell types including the cells of central nervous system. Several groups have developed various methods to differentiate human iPS cells into neurons, astrocytes, oligodendrocytes, and microglia, enabling the investigation of Alzheimer’s disease-related mechanisms in a human model. The fact that iPS cells have no ethical concerns, can be easily obtained, reproduced, and can be transformed into almost any desired cell type makes iPS cells very valuable and highlights them as an unlimited resource that can be used in Alzheimer’s disease modeling, drug trials and stem cell therapies.



References

  • 1. 2022 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2022;18(4):700-89. google scholar
  • 2. Li T, Lu L, Pember E, Li X, Zhang B, Zhu Z. New insights into neuroinflammation involved in pathogenic mechanism of Alzheimer’s disease and its potential for therapeutic intervention. Cells. 2022;11(12):1925. google scholar
  • 3. Alzheimer’s Association of Turkey. Türkiye’de 600.000 aile Alzheimer hastalığı ile mücadele ediyor. 2023 April 12. https://www.alzheimerdernegi.org.tr/türkiyede-600-0 00-aile-alzheimer-hastaligi-ile-mucadele-ediyor/ google scholar
  • Turkish Statistical Institute. ˙Istatistiklerle Yas¸lılar, 2022. released 2023 March 17; 2023 April 12. https://data.tuik.gov.tr/Bulten/Index?p=Istatistiklerle-Yaslilar-2022-49667#: ∼:text=%C3%96l%C3%BCm%20ve%20%C3%B6l%C3%BCm%20nedeni%20istatis tiklerine,y%C4%B1l%C4%B1nda%20%253%2C0%20oldu. google scholar
  • 5. McManus RM. The role of immunity in Alzheimer’s disease. Adv Biology. 2022;6(5):e2101166. google scholar
  • 6. Chiaravalloti A, Koch Ğ, Toniolo S, Belli L, Di Lorenzo F, Ğaudenzi S, et al. Comparison between early-onset and late-onset Alzheimer’s disease patients with amnestic presentation: Csf and 18f-fdg pet study. Dement Ğeriatr Cogn Dis Extra. 2016;6(1):108-19. google scholar
  • 7. Takatori S, Wang W, Iguchi A, Tomita T. Ğenetic risk factors for Alzheimer disease: emerging roles of microglia in disease pathomechanisms. Adv Exp Med Biol. 2019;1118:83-116. google scholar
  • 8. Zheng H, Cheng B, Li Y, Li X, Chen X, Zhang YW. TREM2 in Alzheimer’s disease: microglial survival and energy metabolism. Front Aging Neurosci. 2018;10:395. google scholar
  • 9. Rabinovici ĞD. Late-onset Alzheimer disease. Continuum (Minneap Minn). 2019;25(1):14-33. google scholar
  • 10. Carmona S, Zahs K, Wu E, Dakin K, Bras J, Ğuerreiro R. The role of TREM2 in Alzheimer’s disease and other neurodegenerative diseases. Neurology. 2018;17(8):721-30. google scholar
  • 11. Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Ğenet. 2010;19(R1):R12-20. google scholar
  • 12. Zhou Y, Sun Y, Ma QH, Liu Y. Alzheimer’s disease: Amyloid-based pathogenesis and potential therapies. Cell Stress. 2018;2(7):150-61. google scholar
  • 13. De Strooper B, Iwatsubo T, WolfeMS. Presenilins and y-secretase: Structure, function, and role in Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(1):a006304. google scholar
  • 14. Heppner FL, Ransohoff RM, Becher B. Immune attack: The role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16(6):358-72. google scholar
  • 15. Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17:5-21. google scholar
  • 16. Mamun AA, Uddin MS, Mathew B, Ashraf ĞM. Toxic tau: Structural origins of tau aggregation in Alzheimer’s disease. Neural Regen Res. 2020;15(8):1417-20. google scholar
  • 17. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s Dement. 2016;12(6):719-32. google scholar
  • 18. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157-72. google scholar
  • 19. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(Suppl 2):136-53. google scholar
  • 20. Heneka MT, Carson MJ, Khoury J El, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388-405. google scholar
  • 21. Hensley K. Neuroinflammation in Alzheimer’s disease: Mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis. 2010;21(1):1-14. google scholar
  • 22. Blum-Degen D, Mtiller T, Kuhn W, Geflach M, Przuntek H, Riederer P. Interleukin-l beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 1995;202(1-2):17-20. google scholar
  • 23. Fillit H, Ding W, Buee L, Kalman J, Altstiel L, Lawlor B, et al. Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci Lett. 1991;129(2):318-20. google scholar
  • 24. Huell M, Strauss S, Volk B, Berger M, Bauer J, Huell M, et al. Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer’s disease patients. Acta Neuropathol 1995;89(6):544-51. google scholar
  • 25. Shadfar S, Hwang CJ, Lim MS, Choi DY, Hong JT. Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch Pharm Res. 2015;38(12):2106-19. google scholar
  • 26. Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology. 1997;48(3):626-32. google scholar
  • 27. Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, et al. Acute treatment with the PPARy agonist pioglitazone and ibuprofen reduces glial inflammation and Ap1-42 levels in APPV717I transgenic mice. Brain. 2005;128(6):1442-53. google scholar
  • 28. Kukar T, Prescott S, Eriksen JL, Holloway V, Murphy MP, Koo EH, et al. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice. BMC Neurosci. 2007;8:54. google scholar
  • 29. Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzeriat K, et al. Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs. 2017;31(12):1057-82. google scholar
  • 30. Dansokho C, Heneka MT. Neuroinflammatory responses in Alzheimer’s disease. J Neural Transm (Vienna). 2018;125(5):771-79. google scholar
  • 31. Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, et al. A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol. 2013;47(2):711-25. google scholar
  • 32. Ğrieb P. Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol. 2016;53(3):1741-52. google scholar
  • 33. Dolmetsch R, Ğeschwind DH. The human brain in a dish: The promise of iPSC-derived neurons. Cell. 2011;145(6):831-34. google scholar
  • 34. Wan YW, Al-Ouran R, Mangleburg CĞ, Perumal TM, Lee TV, Allison K, et al. Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models. Cell Rep. 2020;32(2):107908. google scholar
  • 35. Ğalatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci. 2017;20(8):1162-71. google scholar
  • 36. Hasselmann J, Coburn MA, England W, Figueroa Velez DX, Kiani Shabestari S, Tu CH, et al. Development of a chimeric model to study and manipulate human microglia in vivo. Neuron. 2019;103(6):1016-33. google scholar
  • 37. Pocock JM, Piers TM. Modelling microglial function with induced pluripotent stem cells: An update. Nat Rev Neurosci. 2018;19(8):445-52. google scholar
  • 38. Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther. 2019;10(1):68. google scholar
  • 39. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-76. google scholar
  • 40. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-72. google scholar
  • 41. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141-6. google scholar
  • 42. Polo JM, Liu S, Eugenia Figueroa M, Kulalert W, Eminli S, Yong Tan K, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28(8):848-55. google scholar
  • 43. Arber C, Lovejoy C, Wray S. Stem cell models of Alzheimer’s disease: Progress and challenges. Alz Res Therapy. 2017;9(1):42. google scholar
  • 44. Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020;27(4):523-31. google scholar
  • 45. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: A decade of progress. Nat Rev Drug Discov. 2017;16(2):115-30. google scholar
  • 46. Barak M, Fedorova V, Pospisilova V, Raska J, Vochyanova S, Sedmik J, et al. Human iPSC-derived neural models for studying Alzheimer’s disease: from neural stem cells to cerebral organoids. Stem Cell Rev Rep. 2022;18(2):792-820. google scholar
  • 47. Ravi K, Divasha, Hassan S, Pasi R, Mittra S, Kumar R. Neural tube defects: Different types and brief review of neurulation process and its clinical implication. J Family Med Prim Care. 2021;10(12):4383. google scholar
  • 48. Galiakberova AA, Dashinimaev EB. Neural stem cells and methods for their generation from induced pluripotent stem cells in vitro. Front Cell Dev Biol. 2020;8:815. google scholar
  • 49. Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, et al. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther. 2013;4(3):73. google scholar
  • 50. Okada Y, Shimazaki T, Sobue G, Okano H. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev Biol. 2004;275(1):124-42. google scholar
  • 51. Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci. 2004;7(9):1003-9. google scholar
  • 52. Bain G, Ray WJ, Yao M, Gottlieb DI. Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Commun.1996;223(3):691-4. google scholar
  • 53. Sarkar SA, Sharma RP. All-trans-retinoic acid-mediated modulation of p53 during neural differentiation in murine embryonic stem cells. Cell Biol Toxicol. 2002;18(4):243-57. google scholar
  • 54. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, et al. Neurotechnique induction of midbrain dopaminergic neurons from es cells by stromal cell-derived inducing activity. Neuron. 2000;28(1):31-40. google scholar
  • 55. Vazin T, Chen J, Lee CT, Amable R, Freed WJ. Assessment of stromal-derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cells. Stem Cells. 2008;26(6):1517-25. google scholar
  • 56. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA. 2004;101(34):12543-8. google scholar
  • 57. Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol. 2003;21(10):1200-7. google scholar
  • 58. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, Mckay RDĞ. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev. 1996;59(1):89-102. google scholar
  • 59. Zhang P, Xia N, Reijo Pera RA. Directed dopaminergic neuron differentiation from human pluripotent stem cells. J Vis Exp. 2014;(91):51737. google scholar
  • 60. Zeevaert K, Elsafi Mabrouk MH, Wagner W, Ğoetzke R. Cell mechanics in embryoid bodies. Cells. 2020;9(10):2270. google scholar
  • 61. Zhou JM, Chu JX, Chen XJ. An improved protocol that induces human embryonic stem cells to differentiate into neural cells in vitro. Cell Biol Int. 2008;32(1):80-5. google scholar
  • 62. Wilson PĞ, Stice SS. Development and differentiation of neural rosettes derived from human embryonic stem cells. Stem Cell Rev. 2006;2(1):67-77. google scholar
  • 63. Munoz-Sanjuan I, Brivanlou AH. Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci. 2002;3(4):271-80. google scholar
  • 64. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275-80. google scholar
  • 65. Zhang M, Ngo J, Pirozzi F, Sun YP, Wynshaw-Boris A. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Res Ther. 2018;9(1):67. google scholar
  • 66. Mak SK, Huang YA, Iranmanesh S, Vangipuram M, Sundararajan R, Nguyen L, et al. Small molecules greatly improve conversion of human-induced pluripotent stem cells to the neuronal lineage. Stem Cells Int. 2012;2012:140427. google scholar
  • 67. Neely MD, Litt MJ, Tidball AM, Li GG, Aboud AA, Hopkins CR, et al. DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: Comparison of PAX6 and SOX1 expression during neural induction. ACS Chem Neurosci. 2012;3(6):482-91. google scholar
  • 68. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476(7359):220-23. google scholar
  • 69. Zhang Y, Pak CH, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78(5):785-98. google scholar
  • 70. Yang N, Chanda S, Marro S, Ng YH, Janas JA, Haag D, et al. Generation of pure GABAergic neurons by transcription factor programming. Nat Methods. 2017;14(6):621-8. google scholar
  • 71. Nehme R, Zuccaro E, Ghosh SD, Li C, Sherwood JL, Pietilainen O, et al. Combining NGN2 programming with developmental patterning generates human excitatory neurons with NMDAR-mediated synaptic transmission. Cell Rep. 2018;23(8):2509-23. google scholar
  • 72. Chen M, Maimaitili M, Habekost M, Gill KP, Mermet-Joret N, Nabavi S, et al. Rapid generation of regionally specified CNS neurons by sequential patterning and conversion of human induced pluripotent stem cells. Stem Cell Res. 2020;48:101945. google scholar
  • 73. Sofroniew MV, Vinters HV. Astrocytes: Biology and pathology. Acta Neuropathol. 2010;119(1):7-35. google scholar
  • 74. Bonaguidi MA, McGuire T, Hu M, Kan L, Samantha J, Kessler JA. LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development. 2005;132(24):5503-14. google scholar
  • 75. Shaltouki A, Peng J, Liu Q, Rao MS, Zeng X. Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells. 2013;31(5):941-52. google scholar
  • 76. Jiang P, Chen C, Wang R, Chechneva OV, Chung SH, Rao MS, et al. hESC-derived Olig2+ progenitors generate a subtype of astroglia with protective effects against ischaemic brain injury. Nat Commun. 2013;4:2196. google scholar
  • 77. Krencik R, Weick JP, Liu Y, Zhang ZJ, Zhang SC. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol. 2011;29(6):528-34. google scholar
  • 78. Tcw J, Wang M, Pimenova AA, Bowles KR, Hartley BJ, Lacin E, et al. An efficient platform for astrocyte differentiation from human induced pluripotent stem cells. Stem Cell Reports. 2017;9(2):600-14. google scholar
  • 79. Moore S, Meschkat M, Ruhwedel T, Trevisiol A, Tzvetanova ID, Battefeld A, et al. A role of oligodendrocytes in information processing. Nat Commun. 2020;11(1):5497. google scholar
  • 80. Marangon D, Boccazzi M, Lecca D, Fumagalli M. Regulation of oligodendrocyte functions: Targeting lipid metabolism and extracellular matrix for myelin repair. J Clin Med. 2020;9(2):470. google scholar
  • 81. Kang SM, Cho MS, Seo H, Yoon CJ, Oh SK, Choi YM, et al. Efficient induction of oligodendrocytes from human embryonic stem cells. Stem Cells. 2007;25(2):419-24. google scholar
  • 82. Nistor ĞI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Ğlia. 2005;49(3):385-96. google scholar
  • 83. Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 2013;12(2):252-64. google scholar
  • 84. Hu BY, Du ZW, Zhang SC. Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc. 2009;4(11):1614-22. google scholar
  • 85. Akay LA, Effenberger AH, Tsai LH. Cell of all trades: oligodendrocyte precursor cells in synaptic, vascular, and immune function. Ğenes Dev. 2021;35(3-4):180-98. google scholar
  • 86. Mozafari S, Baron-Van Evercooren A. Human stem cell-derived oligodendrocytes: From humanized animal models to cell therapy in myelin diseases. Semin Cell Biol. 2021;116:53-61. google scholar
  • 87. Douvaras P, Fossati V. Ğeneration and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat Protoc. 2015;10(8):1143-54. google scholar
  • 88. Ğreter M, Merad M. Regulation of microglia development and homeostasis. Ğlia. 2013;61(1):121-7. google scholar
  • 89. Tejera D, Heneka MT. Microglia in Alzheimer’s disease: The good, the bad and the ugly. Curr Alzheimer Res. 2016;13(4):370-80. google scholar
  • 90. Frank MG, Fonken LK, Watkins LR, Maier SF. Microglia: Neuroimmune-sensors of stress. Semin Cell Dev Biol. 2019;94:176-85. google scholar
  • 91. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neurosci. 1990;39(1):151-70. google scholar
  • 92. Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol. 2001;101(3):249-55. google scholar
  • 93. Katsumoto A, Lu H, Miranda AS, Ransohoff RM. Ontogeny and functions of central nervous system macrophages. J Immunol. 2014;193(6):2615-21. google scholar
  • 94. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, et al. Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways. Nat Neurosci. 2013;16(3):273-80. google scholar
  • 95. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. 2013;7:45. google scholar
  • 96. Ransohoff RM. A polarizing question: Do M1 and M2 microglia exist. Nat Neurosci. 2016;19(8):987-91. google scholar
  • 97. Lacaud G, Kouskoff V. Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. Exp Hematol. 2017;49:19-24. google scholar
  • 98. Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, et al. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity. 2015;21;42(4):665-78. google scholar
  • 99. Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports. 2017;8(6):1727-42. google scholar
  • 100. Hasselmann J, Blurton-Jones M. Human iPSC-derived microglia: A growing toolset to study the brain’s innate immune cells. Glia. 2020;68(4):721-39. google scholar
  • 101. Haenseler W, Rajendran L. Concise Review: Modeling neurodegenerative diseases with human pluripotent stem cell-derived microglia. Stem Cells. 2019;37(6):724-30. google scholar
  • 102. Konttinen H, Cabral-da-Silva MEC, Ohtonen S, Wojciechowski S, Shakirzyanova A, Caligola S, et al. PSEN1E9, APPswe, and APOE4 confer disparate phenotypes in human ipsc-derived microglia. Stem Cell Reports. 2019;13(4):669-83. google scholar
  • 103. Muffat J, Li Y, Yuan B, Mitalipova M, Omer A, Corcoran S, et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med. 2016;22(11):1358-67. google scholar
  • 104. McQuade A, Coburn M, Tu CH, Hasselmann J, Davtyan H, Blurton-Jones M. Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol Neurodegener. 2018;13(1):67. google scholar
  • 105. Pandya H, Shen MJ, Ichikawa DM, Sedlock AB, Choi Y, Johnson KR, et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci. 2017;20(5):753-9. google scholar
  • 106. Takata K, Kozaki T, Lee CZW, Thion MS, Otsuka M, Lim S, et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity. 2017;47(1):183-98. google scholar
  • 107. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94(2):278-93. google scholar
  • 108. Douvaras P, Sun B, Wang M, Kruglikov I, Lallos Ğ, Zimmer M, et al. Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Reports. 2017;8(6):1516-24. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.