CHAPTER


DOI :10.26650/B/LS17LS30.2025.038.011   IUP :10.26650/B/LS17LS30.2025.038.011    Full Text (PDF)

Stem Cells in Regenerative Medicine

Selin Fulya Toprak YalçınSelçuk Sözer Tokdemir

The advancements in understanding stem cell characteristics and potential opened new opportunities for its application with various modalities in therapy. The regenerative capacity of stem cells has revealed great promise for eradicating many diseases by transplanting healthy or genetically engineered stem cells into patients. However, there is still a way to go with significant challenges; in the near future, the power of science and hard work will inevitably succeed.



References

  • 1. Haeckel EHPA. Natürliche Schopfüngsgeschichte. Reimer G, Editor. 1st Edition. Berlin: 1868; pp. 521-551. google scholar
  • 2. Ramalho-Santos M, Willenbring H. On the origin of the term ”stem cell”. Cell Stem Cell. 2007;1(1):35-8. google scholar
  • 3. Pappenheim A. Ueber entwickelüng ünd ausbildung der erythroblasten. Arch für Pathol Anat Physiol für Klin Med, 1896;145(3):587-643. google scholar
  • 4. Thomas ED. A history of haemopoietic cell transplantation. Br J Haematol. 1999;105(2):330-9. google scholar
  • 5. Sozer S Ciürea, S, Hoffman R. Hematopoietic stem cell and regenerative medicine. In: Mao JJ, Vünjak-Novakovic G, Mikos G, Atala A. Translational Approaches in Tissüe Engineering and Regenerative Medicine: Artech Hoüse Püblishers; 2007. p. 49-68. google scholar
  • 6. Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity düring woünd healing. Nat Cell Biol. 2019;21(1):18-24. google scholar
  • 7. Pellicciari C, Mangiarotti R, Bottone MG, Danova M, Wang E. Identification of resting cells by düal-parameter flow cytometry of statin expression and DNA content. Cytometry. 1995;21(4):329-37. google scholar
  • 8. Hardy K, Handyside AH, Winston RM. The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development. 1989;107(3):597-604. google scholar
  • 9. Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev. 2003;13(5):543-50. google scholar
  • 10. Worku MG. Pluripotent and multipotent stem cells and current therapeutic applications: review. Stem Cells Cloning. 2021;14:3-7. google scholar
  • 11. Bhartiya D, Boheler KR, Rameshwar P. Multipotent to pluripotent properties of adult stem cells. Stem Cells Int. 2013;2013:813780. google scholar
  • 12. Tokdemir SS. Hematopoietik kok hücre: dünü, bugünü ve yarını [Hematopoietic stem cells: past, present and fütüre] In: Gürol AÖ, Kokhücre ve transplantasyon immünolojisi 1. Baskı. Ankara: Türkiye Klinikleri; 2019. p. 69-78. google scholar
  • 13. Haas S, Trümpp A, Milsom MD. Caüses and conseqüences of hematopoietic stem cell heterogeneity. Cell Stem Cell. 2018;22(5):627-38. google scholar
  • 14. Jü YS, Martincorena I, Gerstüng M, Petljak M, Alexandrov LB, Rahbari R, et al. Somatic mütations reveal asymmetric cellülar dynamics in the early hüman embryo. Natüre. 2017;543(7647):714-8 google scholar
  • 15. Cüllen SM, Mayle A, Rossi L, Goodell MA. Chapter Two - Hematopoietic stem cell development: an epigenetic joürney. In: Rendl M, editor. Cürrent Topics in Developmental Biology. 107: Academic Press; 2014. p. 39-75. google scholar
  • 16. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, et al. Chromatin state dynamics düring blood formation. Science. 2014;345(6199):943-9. google scholar
  • 17. Lipka DB, Wang Q, Cabezas-Wallscheid N, Klimmeck D, Weichenhan D, Herrmann C, et al. Identification of DNA methylation changes at cis-regülatory elements düring early steps of HSC differentiation üsing tagmentation-based whole genome bisülfite seqüencing. Cell Cycle. 2014;13(22):3476-87. google scholar
  • 18. Urban N, Cheüng TH. Stem cell qüiescence: the challenging path to activation. Development. 2021;148(3):dev165084. google scholar
  • 19. Shahriyari L, Komarova NL. Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer? PLoS Öne. 2013;8(10):e76195. google scholar
  • 20. Knoblich JA. Mechanisms of asymmetric stem cell division. Cell. 2008;132(4):583-97. google scholar
  • 21. de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol. 2023 May; 24(5):334-54. google scholar
  • 22. Chacon-Martinez CA, Koester J, Wickstrom SA. Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development. 2018;145(15):dev165399. google scholar
  • 23. Yoshimoto M, Koenig JM. Stem cells: potential therapy for neonatal injury? Clin Perinatol. 2015;42(3):597-612. google scholar
  • 24. Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph Karl L, et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013;154(5):1112-26. google scholar
  • 25. Catlin SN, Busque L, Gale RE, Guttorp P, Abkowitz JL. The replication rate of human hematopoietic stem cells in vivo. Blood. 2011;117(17):4460-6. google scholar
  • 26. Dancey JT, Deubelbeiss KA, Harker LA, Finch CA. Neutrophil kinetics in man. The Journal of Clinical Investigation. 1976;58(3):705-15. google scholar
  • 27. Bhattacharya D, Czechowicz A, Ooi AG, Rossi DJ, Bryder D, Weissman IL. Niche recycling through division-independent egress of hematopoietic stem cells. J Exp Med. 2009;206(12):2837-50. google scholar
  • 28. Wilson A, Laurenti E, Oser G, Van Der Wath RC, Blanco-Bose W, Jaworski M, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008;135(6):1118-29. google scholar
  • 29. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506(7488):328-33. google scholar
  • 30. Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol. 2014;15(4):243-56. google scholar
  • 31. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol. 2017;19(4):271-81. google scholar
  • 32. Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature. 2013;494(7437):323-7. google scholar
  • 33. Ho TT, Warr MR, Adelman ER, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543(7644):205-10. google scholar
  • 34. Wilson A, Laurenti E, Oser G, Van Der Wath RC, Blanco-Bose W, Jaworski M, et al. Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair. Cell. 2008;135(6):1118-29. google scholar
  • 35. Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F, et al. A Distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell. 2010;7(2):186-97. google scholar
  • 36. Van Galen P, Kreso A, Mbong N, Kent DG, Fitzmaurice T, Chambers JE, et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature. 2014;510(7504):268-72. google scholar
  • 37. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. Quiescent hematopoietic stem cells are activated by IFNy in response to chronic infection. Nature. 2010;465(7299):793-7. google scholar
  • 38. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho Y-J, et al. Clonal dynamics of native haematopoiesis. Nature. 2014;514(7522):322-7. google scholar
  • 39. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075-9. google scholar
  • 40. Eaves CJ. Hematopoietic Stem Cells: concepts, definitions, and new reality. Blood. 2015;125(17):2605-13. google scholar
  • 41. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598-611. google scholar
  • 42. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327-34. google scholar
  • 43. Kocana CC, Toprak SF, Sozer S. Extracellular genetic materials and their application in clinical practice. Cancer Genetics. 2021;252-3:48-63. google scholar
  • 44. Kocana CC, Toprak SF, Yasa B, Hekimoglu H, Tokdemir SS. Cell Free DNA and genometastasis. Experimed. 2019;9(2):69-74. google scholar
  • 45. Eguizabal C, Montserrat N, Veiga A, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine. Semin Reprod Med. 2013;31(1):82-94. google scholar
  • 46. Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs. 2009;24(2):98-105. google scholar
  • 47. Srijaya TC, Ramasamy TS, Kasim NH. Advancing stem cell therapy from bench to bedside: lessons from drug therapies. J Transl Med. 2014;12:243. google scholar
  • 48. Jacobson LO, Marks EK, et al. The role of the spleen in radiation injury. Proc Soc Exp Biol Med. 1949;70(4):740-42. google scholar
  • 49. Jacobson LO, Simmons EL, Marks EK, Eldredge JH. Recovery from Radiation Injury. Science. 1951;113(2940):510-1. google scholar
  • 50. Jacobson LO, Simmons EL, Marks EK, Gaston EO, Robson MJ, Eldredge JH. Further studies on recovery from radiation injury. The Journal of Laboratory and Clinical Medicine. 1951;37(5):683-97. google scholar
  • 51. Stem Cells Market Size, Share & Trends Analysis Report by Product (Mesenchymal, Adult, iPSCs), By Application, By Technology (Cell Acquisition, Cryopreservation), By Therapy, By Region, And Segment Forecasts, 2021-2028. google scholar
  • 52. Ji Y, Hu C, Chen Z, Li Y, Dai J, Zhang J, et al. Clinical trials of stem cell-based therapies for pediatric diseases: a comprehensive analysis of trials registered on clinical trials.gov and the ICTRP portal site. Stem Cell Res Ther. 2022;13(1):307. google scholar
  • 53. Imamura T, Cui L, Teng R, Johkura K, Okouchi Y, Asanuma K, et al. Embryonic stem cell-derived embryoid bodies in three-dimensional culture system form hepatocyte-like cells in vitro and in vivo. Tissue Eng. 2004;10(11-12):1716-24. google scholar
  • 54. Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30(3):204-13. google scholar
  • 55. English K, Wood KJ. Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Curr Opin Organ Transplant. 2011;16(1):90-5. google scholar
  • 56. Rikhtegar R, Yousefi M, Dolati S, Kasmaei HD, Charsouei S, Nouri M, et al. Stem cell-based cell therapy for neuroprotection in stroke: A review. J Cell Biochem. 2019;120(6):8849-62 google scholar
  • 57. Yang L, Hu ZM, Jiang FX, Wang W. Stem cell therapy for insulin-dependent diabetes: Are we still on the road? World J Stem Cells. 2022;14(7):503-12. google scholar
  • 58. Terashvili M, Bosnjak ZJ. Stem cell therapies in cardiovascular disease. J Cardiothorac Vasc Anesth. 2019;33(1):209-22. google scholar
  • 59. Sivandzade F, Cucullo L. Regenerative stem cell therapy for neurodegenerative diseases: an overview. Int J Mol Sci. 2021;22(4):2153. google scholar
  • 60. Toh WS, Lee EH, Cao T. Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev Rep. 2011;7(3):544-59. google scholar
  • 61. Huang G, Ye S, Zhou X, Liu D, Ying QL. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci. 2015;72(9):1741-57. google scholar
  • 62. Li J, Luanpitpong S, Kheolamai P. Editorial: Adult stem cells for regenerative medicine: from cell fate to clinical applications. Front Cell Dev Biol. 2022;10:1069665. google scholar
  • 63. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue derived MSC. Cell Commun Signal. 2011;9:12. google scholar
  • 64. McCormick JB, Huso HA. Stem cells and ethics: current issues. J Cardiovasc Transl Res. 2010;3(2):122-7. google scholar
  • 65. Bhartiya D. Pluripotent stem cells in adult tissues: struggling to be acknowledged over two decades. Stem Cell Rev Rep. 2017;13(6):713-24. google scholar
  • 66. El-Kadiry AE, Rafei M, Shammaa R. Cell Therapy: Types, regulation, and clinical benefits. Front Med (Lausanne). 2021;8:756029. google scholar
  • 67. Lee JY, Hong SH. Hematopoietic stem cells and their roles in tissue regeneration. Int J Stem Cells. 2020;13(1):1-12. google scholar
  • 68. Diaz-Garcia D, Filipova A, Garza-Veloz I, Martinez-Fierro ML. A Beginner’s introduction to skin stem cells and wound healing. Int J Mol Sci. 2021;22(20):11030. google scholar
  • 69. Liu DD, He JQ, Sinha R, Eastman AE, Toland AM, Morri M, et al. Purification and characterization of human neural stem and progenitor cells. Cell. 2023;186(6):1179-94 e15. google scholar
  • 70. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal stem cell migration and tissue repair. Cells. 2019;8(8). google scholar
  • 71. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641-50. google scholar
  • 72. Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022;13(1):366. google scholar
  • 73. Kulus M, Sibiak R, Stefanska K, Zdun M, Wieczorkiewicz M, Piotrowska-Kempisty H, et al. Mesenchymal stem/stromal cells derived from human and animal perinatal tissues-origins, characteristics, signaling pathways, and clinical trials. Cells. 2021;10(12):3278. google scholar
  • 74. Huang Y, Wu Q, Tam PKH. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications. Int J Mol Sci. 2022;23(17):10023. google scholar
  • 75. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res. 2015;116(8):1413-30. google scholar
  • 76. Merimi M, El-Majzoub R, Lagneaux L, Moussa Agha D, Bouhtit F, Meuleman N, et al. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: Current knowledge and future understandings. Front Cell Dev Biol. 2021;9:661532. google scholar
  • 77. Urrutia DN, Caviedes P, Mardones R, Minguell JJ, Vega-Letter AM, Jofre CM. Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: an approach for their use in neural regeneration therapies. PLoS One. 2019;14(3):e0213032. google scholar
  • 78. Son JW, Park J, Kim YE, Ha J, Park DW, Chang MS, et al. Glia-like cells from late-passage human MSCs protect against ischemic stroke through IGFBP-4. Mol Neurobiol. 2019;56(11):7617-30. google scholar
  • 79. Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int. 2018;2018:3057624. google scholar
  • 80. Seo Y, Kang MJ, Kim HS. Strategies to potentiate paracrine therapeutic efficacy of mesenchymal stem cells in inflammatory diseases. Int J Mol Sci. 2021;22(7):3397. google scholar
  • 81. Hu JC, Zheng CX, Sui BD, Liu WJ, Jin Y. Mesenchymal stem cell-derived exosomes: A novel and potential remedy for cutaneous wound healing and regeneration. World J Stem Cells. 2022;14(5):318-29. google scholar
  • 82. Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457-78. google scholar
  • 83. Al-Ghadban S, Artiles M, Bunnell BA. Adipose stem cells in regenerative medicine: looking forward. Front Bioeng Biotechnol. 2021;9:837464. google scholar
  • 84. Choi YS, Park YB, Ha CW, KimJA, HeoJC, HanWJ, et al. Different characteristics of mesenchymal stem cells isolated from different layers of full-term placenta. PLoS One. 2017;12(2):e0172642. google scholar
  • 85. Gschweng E, De Oliveira S, Kohn DB. Hematopoietic stem cells for cancer immunotherapy. Immunol Rev. 2014;257(1):237-49. google scholar
  • 86. Torre P, Flores AI. Current status and future prospects of perinatal stem cells. Genes (Basel). 2020;12(1):6. google scholar
  • 87. Torre P, Flores AI. Current status and future prospects of perinatal stem cells. Genes (Basel). 2020;12(1):6. google scholar
  • 88. Goodman JW, Hodgson GS. Evidence for stem cells in the peripheral blood of mice. Blood. 1962;19(6):702-14. google scholar
  • 89. Socinski MA, Cannistra SA, Elias A, Antman KH, Schnipper L, Griffin JD. Granulocyte-macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet. 1988;1(8596):1194-8. google scholar
  • 90. Dührsen U, Villeval JL, Boyd J, Kannourakis G, Morstyn G, Metcalf D. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood. 1988;72(6):2074-81. google scholar
  • 91. Saurabh Chhabra MHaPNH. Indications, outcomes, and donor selection for allogeneic hematopoietic cell transplantation for hematologic malignancies in adults. In: Ronald Hoffman EB, Leslie Silberstein, Helen Heslop, Jeffrey Weitz, Mohamed Salama, Syed Abutalib, Hematology: Basic Principles and Practice. Elsevier; p. 2022-512. google scholar
  • 92. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med. 1996;335(3):157-66. google scholar
  • 93. Meissner TB, Schulze HS, Dale SM. Immune Editing: Overcoming immune barriers in stem cell transplantation. Curr Stem Cell Rep. 2022;8(4):206-18. google scholar
  • 94. Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S. Induced pluripotent stem cells: Reprogramming platforms and applications in cell replacement therapy. Biores Open Access. 2020;9(1):121-36. google scholar
  • 95. Kim JS, Choi HW, Choi S, Do JT. Reprogrammed pluripotent stem cells from somatic cells. IntJ Stem Cells. 2011;4(1):1-8. google scholar
  • 96. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-76. google scholar
  • 97. Patel M, Yang S. Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Rev Rep. 2010;6(3):367-80. google scholar
  • 98. Chang EA, Jin SW, Nam MH, Kim SD. Human induced pluripotent stem cells: Clinical significance and applications in neurologic diseases. J Korean Neurosurg Soc. 2019;62(5):493-501. google scholar
  • 99. Cai B, Sun S, Li Z, Zhang X, Ke Y, Yang J, et al. Application of CRISPR/Cas9 technologies combined with iPSCs in the study and treatment of retinal degenerative diseases. Human genetics. 2018;137(9):679-88. google scholar
  • 100. Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol. 2015;3:2. google scholar
  • 101. Ye L, Ni X, Zhao ZA, Lei W, Hu S. The Application of Induced Pluripotent Stem Cells in Cardiac Disease Modeling and Drug Testing. J Cardiovasc Transl Res. 2018;11(5):366-74. google scholar
  • 102. Medvedev SP, Shevchenko AI, Zakian SM. Induced pluripotent stem cells: Problems and advantages when applying them in regenerative medicine. Acta Naturae. 2010;2(2):18-28. google scholar
  • 103. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009;136(5):964-77. google scholar
  • 104. Wan XX, Zhang DY, Khan MA, Zheng SY, Hu XM, Zhang Q, et al. Stem cell transplantation in the treatment of type 1 Diabetes Mellitus: From insulin replacement to Beta-cell replacement. Front Endocrinol (Lausanne). 2022;13:859638. google scholar
  • 105. Fontcuberta-PiSunyer M, Garcia-Alaman A, Prades E, Tellez N, Alves-Figueiredo H, Ramos-Rodriguez M, et al. Direct reprogramming of human fibroblasts into insulin-producing cells using transcription factors. Commun Biol. 2023;6(1):256. google scholar
  • 106. Papapetrou EP. Modeling myeloid malignancies with patient-derived iPSCs. Exp Hematol. 2019;71:77-84. google scholar
  • 107. Reilly A, Doulatov S. Induced pluripotent stem cell models of myeloid malignancies and clonal evolution. Stem Cell Res. 2021;52:102195. google scholar
  • 108. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499(7459):481-4. google scholar
  • 109. Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29. google scholar
  • 110. Petrosyan A, Martins PN, Solez K, Uygun BE, Gorantla VS, Orlando G. Regenerative medicine applications: An overview of clinical trials. Front Bioeng Biotechnol. 2022;10:942750. google scholar
  • 111. Karch SB, Fineschi V, Francia P, Scopetti M, Padovano M, Manetti F, et al. Role of induced pluripotent stem cells in diagnostic cardiology. World J Stem Cells. 2021;13(5):331-41. google scholar
  • 112. Guo Y, Yu Y, Hu S, Chen Y, Shen Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis. 2020;11(5):349. google scholar
  • 113. Liu C, Han D, Liang P, Li Y, Cao F. The current dilemma and breakthrough of stem cell therapy in ischemic heart disease. Front Cell Dev Biol. 2021;9:636136. google scholar
  • 114. Giuseppina Onesti M, Carella S, Ceccarelli S, Marchese C, Scuderi N. The use of human adipose-derived stem cells in the treatment of physiological and pathological vulvar dystrophies. Stem Cells Int. 2016;2016:2561461. google scholar
  • 115. Matthews J, Eplin D, Savani B, Leon BGC, Matheny L. Managing endocrine disorders in adults after hematopoietic stem cell transplantation. Clin Hematol Int. 2019;1(4):180-8. google scholar
  • 116. Huang Q, Huang Y, Liu J. Mesenchymal-stem cells: An excellent candidate for the treatment of diabetes mellitus. Int J Endocrinol. 2021;2021:9938658. google scholar
  • 117. Choi H, Shinohara M, Ibuki M, Nishikawa M, Sakai Y. Differentiation of human-induced pluripotent stem cell-derived endocrine progenitors to islet-like cells using a dialysis suspension culture system. Cells. 2021;10(8):2017. google scholar
  • 118. Ye S, Zhu ZL. Stem cell therapy for thyroid diseases: Progress and challenges. Curr Ther Res Clin Exp. 2022;96:100665. google scholar
  • 119. Ramirez-Renteria C, Espinosa-De-Los-Monteros AL, Etual EC, Marrero-Rodriguez D, Castellanos G, Arreola-Rosales R, et al. From ACTH-Dependent to ACTH-independent Cushing’s Syndrome from a malignant mixed corticomedullary adrenal tumor: Potential role of embryonic stem cells. Case Rep Endocrinol. 2020;2020:4768281. google scholar
  • 120. Berebichez-Fridman R, Gomez-Garcia R, Granados-Montiel J, Berebichez-Fastlicht E, Olivos-Meza A, Granados J, et al. The holy grail of orthopedic surgery: mesenchymal stem cells-their current uses and potential applications. Stem Cells Int. 2017;2017:2638305. google scholar
  • 121. Yanagisawa T, Ouchi T, Shibata S, Negishi T, Okano H. Glycosaminoglycans promote osteogenesis from human induced pluripotent stem cells via neural crest induction. Biochem Biophys Res Commun. 2022;603:49-56. google scholar
  • 122. Amiri MA, Lavaee F, Danesteh H. Use of stem cells in bone regeneration in cleft palate patients: review and recommendations. J Korean Assoc Oral Maxillofac Surg. 2022;48(2):71-8. google scholar
  • 123. Taketani T, Oyama C, Mihara A, Tanabe Y, Abe M, Hirade T, et al. Ex vivo expanded allogeneic mesenchymal cells with bone marrow transplantation improved osteogenesis in infants with severe hypophosphatasia. Cell Transplant. 2015;24(10):1931-43. google scholar
  • 124. Khaddour K, Hana CK, Mewawalla P. Hematopoietic stem cell transplantation. StatPearls. Treasure Island (FL) 2023. google scholar
  • 125. Shang Y, Guan H, Zhou F. Biological characteristics of umbilical cord mesenchymal stem cells and its therapeutic potential for hematological disorders. Front Cell Dev Biol. 2021;9:570179. google scholar
  • 126. Zhou X, Jin N, Wang F, Chen B. Mesenchymal stem cells: a promising way in therapies of graft-versus-host disease. Cancer Cell Int. 2020;20:114. google scholar
  • 127. Pratumkaew P, Issaragrisil S, Luanpitpong S. Induced pluripotent stem cells as a tool for modeling hematologic disorders and as a potential source for cell-based therapies. Cells. 2021;10(11):3250. google scholar
  • 128. Zhao L, Liu JW, Shi HY, Ma YM. Neural stem cell therapy for brain disease. World J Stem Cells. 2021;13(9):1278-92. google scholar
  • 129. De Vasconcelos P, Lacerda JF. Hematopoietic stem cell transplantation for neurological disorders: a focus on inborn errors of metabolism. Front Cell Neurosci. 2022;16:895511. google scholar
  • 130. Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal stem cells for neurological disorders. Adv Sci (Weinh). 2021;8(7):2002944. google scholar
  • 131. Tamouza R, Volt F, Richard JR, Wu CL, Bouassida J, Boukouaci W, et al. Possible effect of the use of mesenchymal stromal cells in the treatment of autism spectrum disorders: A Review. Front Cell Dev Biol. 2022;10:809686. google scholar
  • 132. Eggenberger S, Boucard C, Schoeberlein A, Guzman R, Limacher A, Surbek D, et al. Stem cell treatment and cerebral palsy: Systemic review and meta-analysis. World J Stem Cells. 2019;11(10):891-903. google scholar
  • 133. Xie N, Tang B. The Application of human iPSCs in neurological diseases: From bench to bedside. Stem Cells Int. 2016;2016:6484713. google scholar
  • 134. Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer’s disease. World J Stem Cells. 2020;12(8):787-802. google scholar
  • 135. Borges I, Sena I, Azevedo P, Andreotti J, Almeida V, Paiva A, et al. Lung as a niche for hematopoietic progenitors. Stem Cell Rev Rep. 2017;13(5):567-74. google scholar
  • 136. Astashchanka A, Ryan J, Lin E, Nokes B, Jamieson C, Kligerman S, et al. Pulmonary complications in hematopoietic stem cell transplant recipients-A clinician primer. J Clin Med. 2021;10(15):3227. google scholar
  • 137. Nasri A, Foisset F, Ahmed E, Lahmar Z, Vachier I, Jorgensen C, et al. Roles of mesenchymal cells in the lung: from lung development to chronic obstructive pulmonary disease. Cells. 2021;10(12):3467. google scholar
  • 138. Doherty DF, Roets L, Krasnodembskaya AD. The role of lung resident mesenchymal stromal cells in the pathogenesis and repair of chronic lung disease. Stem Cells. 2023;41(5):431-43. google scholar
  • 139. Calvert BA, Ryan Firth AL. Application of iPSC to modelling of respiratory diseases. Adv Exp Med Biol. 2020;1237:1-16. google scholar
  • 140. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: A Report From the American Heart Association. Circulation. 2017;135(10):e146-603. google scholar
  • 141. Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, et al. Regenerative medicine for the treatment of ischemic heart disease; status and future perspectives. Front Cell Dev Biol. 2021;9:704903. google scholar
  • 142. Kadota S, Tanaka Y, Shiba Y. Heart regeneration using pluripotent stem cells. J Cardiol. 2020;76(5):459-63. google scholar
  • 143. Nasser MI, Qi X, Zhu S, He Y, Zhao M, Guo H, et al. Current situation and future of stem cells in cardiovascular medicine. Biomed Pharmacother. 2020;132:110813. google scholar
  • 144. Krishna KA, Krishna KS, Berrocal R, Rao KS, Sambasiva Rao KR. Myocardial infarction and stem cells. J Pharm Bioallied Sci. 2011;3(2):182-8. google scholar
  • 145. Okamoto R, Matsumoto T, Watanabe M. Regeneration of the intestinal epithelia: regulation of bone marrow-derived epithelial cell differentiation towards secretory lineage cells. Hum Cell. 2006;19(2):71-5. google scholar
  • 146. Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol. 2019;16(1):19-34. google scholar
  • 147. Roda G, Chien Ng S, Kotze PG, Argollo M, Panaccione R, Spinelli A, et al. Crohn’s disease. Nat Rev Dis Primers. 2020;6(1):22. google scholar
  • 148. Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, et al. Ulcerative colitis. Nat Rev Dis Primers. 2020;6(1):74. google scholar
  • 149. Greco R, Bondanza A, Oliveira MC, Badoglio M, Burman J, Piehl F, et al. Autologous hematopoietic stem cell transplantation in neuromyelitis optica: a registry study of the EBMT Autoimmune Diseases Working Party. Mult Scler. 2015;21(2):189-97. google scholar
  • 150. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18(2):175-89. google scholar
  • 151. Lapisatepun W, Chotirosniramit A, Udomsin K, Lapisatepun W, Chanthima P, Boonsri S, et al. Around the world: adult living donor liver transplantation in Thailand. Transplantation. 2022;106(3):421-4. google scholar
  • 152. Wang J, Sun M, Liu W, Li Y, Li M. Stem cell-based therapies for liver diseases: an overview and update. Tissue Eng Regen Med. 2019;16(2):107-18. google scholar
  • 153. Yang X, Meng Y, Han Z, Ye F, Wei L, Zong C. Mesenchymal stem cell therapy for liver disease: full of chances and challenges. Cell Biosci. 2020;10:123. google scholar
  • 154. Calore E, Marzollo A, Cananzi M, Pizzi M, Rugge M, Rossin S, et al. Haploidentical stem cell transplantation cures autoimmune hepatitis and cerebrovascular disease in a patient with sickle cell disease. Bone Marrow Transplant. 2018;53(5):644-6. google scholar
  • 155. Hu C, Zhao L, Zhang L, Bao Q, Li L. Mesenchymal stem cell-based cell-free strategies: safe and effective treatments for liver injury. Stem Cell Res Ther. 2020;11(1):377. google scholar
  • 156. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072. google scholar
  • 157. Sellam J, Berenbaum F. Is osteoarthritis a metabolic disease? Joint Bone Spine. 2013;80(6):568-73. google scholar
  • 158. Katz JN, Neogi T, Callahan LF, Block JA, Conaghan PG, Simon LS, et al. Disease modification in osteoarthritis; pathways to drug approval. Osteoarthr Cartil Open. 2020;2(2):100059. google scholar
  • 159. Kubsik-Gidlewska A, Klupinski K, Krochmalski M, Krochmalski J, Klimkiewicz P, Woldanska-Okonska M. CD34+ stem cell treatment for knee osteoarthritis: a treatment and rehabilitation algorithm. J Rehabil Med Clin Commun. 2018;3:1000012. google scholar
  • 160. Jevotovsky DS, Alfonso AR, Einhorn TA, Chiu ES. Osteoarthritis and stem cell therapy in humans: a systematic review. Osteoarthritis Cartilage. 2018;26(6):711-29. google scholar
  • 161. Im GI. Current status of regenerative medicine in osteoarthritis. Bone Joint Res. 2021 Feb;10(2):134-6. google scholar
  • 162. Liu H, Li R, Liu T, Yang L, Yin G, Xie Q. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020;11:1912. google scholar
  • 163. Miyaki S, Lotz MK. Extracellular vesicles in cartilage homeostasis and osteoarthritis. Curr Opin Rheumatol. 2018;30(1):129-35. google scholar
  • 164. Wiggers TG, Winters M, Van Den Boom NA, Haisma HJ, Moen MH. Autologous stem cell therapy in knee osteoarthritis: a systematic review of randomised controlled trials. Br J Sports Med. 2021;55(20):1161-69. google scholar
  • 165. Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, et al. Advances in cancer immunotherapy 2019 - latest trends. J Exp Clin Cancer Res. 2019;38(1):268. google scholar
  • 166. Chu DT, Nguyen TT, Tien NLB, Tran DK, Jeong JH, Anh PG, et al. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications. Cells. 2020;9(3):563. google scholar
  • 167. Casper J, Wolff D, Knauf W, Blau IW, Ruutu T, Volin L, et al. Allogeneic hematopoietic stem-cell transplantation in patients with hematologic malignancies after dose-escalated treosulfan/fludarabine conditioning. J Clin Oncol. 2010;28(20):3344-51. google scholar
  • 168. Miliotou AN, Papadopoulou LC. CAR T-cell Therapy: A new era in cancer immunotherapy. Curr Pharm Biotechnol. 2018;19(1):5-18. google scholar
  • 169. Lee RH, Oh JY, Choi H, Bazhanov N. Therapeutic factors secreted by mesenchymal stromal cells and tissue repair. J Cell Biochem. 2011;112(11):3073-8. google scholar
  • 170. Sage EK, Thakrar RM, Janes SM. Genetically modified mesenchymal stromal cells in cancer therapy. Cytotherapy. 2016;18(11):1435-45. google scholar
  • 171. Berry DA, Ueno NT, Johnson MM, Lei X, Caputo J, Smith DA, et al. High-dose chemotherapy with autologous hematopoietic stem-cell transplantation in metastatic breast cancer: overview of six randomized trials. J Clin Oncol. 2011;29(24):3224-31. google scholar
  • 172. Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells. 2021;10(7). google scholar
  • 173. Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol. 2020;8:43. google scholar
  • 174. Ho CT, Wu MH, Chen MJ, Lin SP, Yen YT, Hung SC. Combination of mesenchymal stem cell-delivered oncolytic virus with prodrug activation increases efficacy and safety of colorectal cancer therapy. Biomedicines. 2021;9(5). google scholar
  • 175. Moreno R. Mesenchymal stem cells and oncolytic viruses: joining forces against cancer. J Immunother Cancer. 2021;9(2):e001684. google scholar
  • 176. Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: An update. J Cent Nerv Syst Dis. 2020;12:1179573520907397. google scholar
  • 177. Yu DX, Marchetto MC, Gage FH. Therapeutic translation of iPSCs for treating neurological disease. Cell Stem Cell. 2013;12(6):678-88. google scholar
  • 178. Doetsch F. The glial identity of neural stem cells. Nat Neurosci. 2003;6(11):1127-234. google scholar
  • 179. Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7(1):272. google scholar
  • 180. Miller AJ, Dye BR, Ferrer-Torres D, Hill DR, Overeem AW, Shea LD, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 2019;14(2):518-40. google scholar
  • 181. Khoshdel-Rad N, Ahmadi A, Moghadasali R. Kidney organoids: current knowledge and future directions. Cell Tissue Res. 2022;387(2):207-24. google scholar
  • 182. Nienhuis AW. Development of gene therapy for blood disorders: an update. Blood. 2013;122(9):1556-64. google scholar
  • 183. Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH, et al. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. Cancer Commun (Lond). 2022;42(12):1257-87. google scholar
  • 184. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602-7. google scholar
  • 185. Pham PV. Stem cell drugs: the next generation of pharmaceutical products. Biomedical Research and Therapy. 2016:3(10):857-71. google scholar
  • 186. Mukherjee S, Yadav G, Kumar R. Recent trends in stem cell-based therapies and applications of artificial intelligence in regenerative medicine. World J Stem Cells. 2021;13(6):521-41. google scholar
  • 187. Coelho MB, Cabral JM, Karp JM. Intraoperative stem cell therapy. Annu Rev Biomed Eng. 2012;14:325-49. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.