CHAPTER


DOI :10.26650/B/SS53.2024.015.40   IUP :10.26650/B/SS53.2024.015.40    Full Text (PDF)

Data Management and Data Analytics Applications in the Conceptual Framework of Information Science

Özgür Külcü

The ability to record, store and reuse information differentiated us from all living things. In the process, it became more fluid and interactive as it became free from its source of information. Information services also moved from source to relationships and even syntheses. Traditional information services maintain their weight in life. On the other hand, information becomes a means of communication, management and verification. Research on data and data sources, which are the building blocks of knowledge, is increasing rapidly.

In this context, theoretical and applied studies on the management of information itself, and then the information carriers, are explained in this framework, and the relations of the field of information and records management with the arts and humanities, social sciences, behavioral sciences and natural sciences are explained. In the changing scope of information science, it is necessary to evaluate the scope, format, use of content and all the complex issues surrounding it as a whole, from the emergence of data to its transformation into knowledge. In this context, using descriptive techniques, data management, data analytics, business intelligence and machine learning studies are explained within the framework of information science, and data analytics components that can be used within the scope of information services are introduced.

Within the framework of information science, data management, data analytics, business intelligence and machine learning studies are among the data analytics components that can be used within the scope of information services. Data analytics has become a learnable and applicable research field even for ordinary people who do not have a technical background in information systems and software applications. New approaches in machine learning, computer-based vision systems and developments in natural language processing open new horizons for information science. In this study, it is tried to define the basic components of data management in information science and to explain data analytics techniques that can be used in information services.


DOI :10.26650/B/SS53.2024.015.40   IUP :10.26650/B/SS53.2024.015.40    Full Text (PDF)

Bilgi Bilimin Kavramsal Çerçevesinde Veri Yönetimi ve Veri Analitiği Uygulamaları

Özgür Külcü

Bilgiyi kaydetme, saklama ve tekrar kullanma becerisi bizi tüm canlılardan farklılaştırdı. Süreçte bilgi kaynağından özgürleştikçe daha akışkan ve etkileşimli hale geldi. Bilgi hizmetleri de kaynaktan ilişkilere ve hatta sentezlere yöneldi. Geleneksel bilgi hizmetleri yaşamda ağırlığını koruyor. Öte yandan bilgi, iletişim, yönetme ve doğrulama aracına dönüşüyor. Bilginin yapı taşı olan veri ve veri kaynaklarına dönük araştırmalar hızla artıyor. 

Çalışmada bu çerçevede önceleri bilgi taşıyıcıları ardından bilginin kendisinin yönetimine dönük teorik ve uygulamalı çalışmalar anlatılmakta, bilgi ve belge yönetimi alanının sanat ve insanlık bilimleri, sosyal bilimler, davranış bilimleri ve doğa bilimleri ile ilişkileri açıklanmaktadır. Bilgi bilimin değişen kapsamı içerisinde, verinin ortaya çıkışından bilgiye dönüşümüne içeriğin kapsamı, formatı, kullanımı ve onu çevreleyen karmaşık tüm konuların bir bütün olarak değerlendirmesi gerekmektedir. Bu kapsamda çalışmada betimsel teknikler kullanılarak bilgi bilim çerçevesinde veri yönetimi, veri analitiği, iş zekâsı ve makine öğrenme çalışmalarının neler olduğu anlatılmakta, bilgi hizmetleri kapsamında kullanılabilecek veri analitiği bileşenleri tanıtılmaktadır.

Bilgi bilim çerçevesinde veri yönetimi, veri analitiği, iş zekâsı ve makine öğrenme çalışmaları bilgi hizmetleri kapsamında kullanılabilecek veri analitiği bileşenleri arasındadır. Veri analitiği, bilgi sistemleri ve yazılım uygulamaları konusunda teknik alt yapıya sahip olmayan sıradan insanlar için bile öğrenilebilir ve uygulanabilir bir araştırma alanı olmaya başlamıştır. Makine öğrenmede yeni yaklaşımlar, bilgisayara dayalı görü sistemleri ve doğal dil işleme alanındaki gelişmeler bilgi bilime yeni ufuklar açmaktadır. Çalışmada bilgi bilimde veri yönetimi temel bileşenleri tanımlanmaya, bilgi hizmetlerinde kullanılabilecek veri analitiği teknikleri açıklamaya çalışılmaktadır.



References

  • Abbott, D. (2008). What is digital curation. Erişim adresi: www.dcc.ac.uk/resources/briefing-papers/ introduc-tion-curation/what-digital-curation. google scholar
  • AGIMO. (2013). AGIMO Big Data Strategy - Issues Paper. Erişim adresi: www.finance.gov.au/files/ 2013/03/ Big-Data-Strategy-Issues-Paper1.pdf. google scholar
  • Ajis, A.F., Baharin, S.H. (2019). Dark Data Management as frontier of Information. Erişim adresi: https://iee-explore.ieee.org/document/8743915 google scholar
  • Ayankoya, K..,Calitz, A.P., Greyling, J. (2014). Intrinsic relations between data science, big data, business analytics and datafication. ACM International Conference Proceeding Series 28 (2014), 192-198. google scholar
  • Bates, M. (2015). The information professions: knowledge, memory, heritage. Information Research, 7 (1). Erişim adresi: www.informationr.net/ir/20-1/paper655.html#.WRx98jfTVLM (accessed 9 February 2018). google scholar
  • Boulton, G. (2014, December). Open data and the future of science. Septentrio conference series (no. 1). Erişim adresi: https://septentrio.uit.no/index.php/SCS/article/view/3231. google scholar
  • Business Intelligence Improved by Data Mining Algorithms and Big Data Systems: An Overview of Different Tools Asslied in Industrial Research. Computer Science and Information Technology 7 (1): 1-21, 2019. google scholar
  • CA. (2016). Canada Capitalizing on Big Data. Erişim adresi: http://www.sshrc-crsh.gc.ca/news_room-salle_de_ presse/latest_ news-nouvell es_recentes/big_data_consultation-donnees_massives_consultation-eng.aspx. google scholar
  • Carole, L. P. (2008). Research practices and research libraries: Working toward high impact information services. Erişim adresi: https://www.ideals.illinois.edu/ bitstream/handle/2142/9742/researchpracticieslibraries.sst. pdf?sequence=3. google scholar
  • Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188. google scholar
  • Clark, T, D, Jones, M, C ve Armstrong, C, P. (2007). The dynamic structure of management sussort systems: theory development, research focus, and direction. MIS Quarterly, 31 (3) (2007), ss. 579-615 google scholar
  • Chung, W. (2014). BizPro: Extracting and categorizing business intelligence fac- tors from textual news articles. International Journal of Information Management 34: 272-284. google scholar
  • CNSF. (2015). National Science Foundation China. Retrieved from http://www.nsfc.gov.cn/. European Commission. 2014. Commission urges governments to embrace potential of big data. Erişim adresi: europa.eu/rapid/press-release_IP-14-769_en.htm. google scholar
  • Cunningham, A. (2016). Describing archives in context: Peter J Scott and the Australian “series” system. In V. Lemieux (Ed.), Building trust in information: Perspectives on the frontiers of provenance (ss. 49-58). Berlin: Springer-Verlag, Research Triangle Park, NC. google scholar
  • Çakın, İ. (2012). Bilgi profesyonellerinin eğitiminde 40 yıl: Hacettepe Üniver sitesinin lisans programındaki değişiklikler. Türk Kütüphaneciliği, 26(2), 262-290. google scholar
  • Delen, D. Moscato,G., Toma, I.L. (2018). The impact of real-time business intelligence and advanced analytics on the behaviour of business decision makers. 2018 International Conference on Information Management and Processing (ICIMP). IEEE Xplore: 29 March 2018, DOI: 10.1109/ICIMP1.2018.8325840. google scholar
  • Delen, D. (2014). Real-World Data Mining: Asslied Business Analytics and Decision Making. New Jersey:Pe-arson Education, Inc. google scholar
  • Digital Curation Centre (2005). Digital curation and preservation: defining the research agenda for the next decad. Erişim adresi: www.dcc.ac.uk/sites/default/files/documents/data-forum/documents/events/Warwi-ck_Introduction.pdf . google scholar
  • Diebold, F. X. (2012). A personal perspective on the origin(s) and develop- ment of “big data”: The phenomenon, the term, and the discipline (Scholarly Paper No. ID 2202843). Social Science Research Network. Erişim adresi: http://papers.ssrn.com/sol3/papers.cfm?abstract id=2202843. google scholar
  • Dingwall, G., Marciano, R., Moore, R., & McLellan, E. (2007). From data to records: Preserving the geographic information system of the city of Vancouver. Archivaria, 64, 181-198. google scholar
  • Duranti, L., & Michetti, G. (2015). The archival method: Rediscovering a research tradition. In A. Gilliland, A. Lau, & A. McKemmish (Eds.), Research in the archival multiverse. Clayton, Victoria, Australia: Monash University Publishing. google scholar
  • Eckerson, W. (2010). Performance Dashboards: Measuring Monitoring and Managing Your Business. John Wiley & Sons, Inc. google scholar
  • Elragal. A. (2014). ERP and big data: the inept couple, Procedia Technology, Vol. 16, 242-249. google scholar
  • Eroshkin, S.Yu., Kameneva, N.A., Kovkov, D.V., Sukhoruko A.I. (2017). Conceptual system in the modern information management Procedia Computer Science 103 (2017) 609 - 612. II. International Symposium Intelligent Systems, INTELS 16, 5-7 October 2016, Moscow. google scholar
  • European Commission. (2014). Commission urges governments to embrace potential of big data. Erişim adresi: europa.eu/rapid/press-release_IP-14-769_en.htm. google scholar
  • Fairfielda, J. and Shteina, H. (2014). Big data, big problems: Emerging issues in the ethics of data science and journalism. Journal of Mass Media Ethics 29, 1 (2014), 38-51. google scholar
  • Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analysis. National Science Review, 1(2), 293-314. google scholar
  • Feldman, R. (2013). Techniques and asslications for sentiment analysis. Communi- cations of the ACM, 56(4), 82-89. google scholar
  • Ferran, N., Mor, E., & Minguillon, J. (2005). Towards personalization in digital libraries through ontologies. Library Management, 26(4/5), 206-217. google scholar
  • Foley, E. ve Guillemette, M, G. (2010). What is Business Intelligence. International Journal of Business In-telligence Research, vol. 1, no. 4. google scholar
  • Fresa, A., Justrell, B., Prandoni, C. (2015). Digital curation and quality standards for memory institutions: PREFORMA research Project. Archival Science (2015) 15: 191-216. google scholar
  • Gandomi, A. Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35 (2): 137-144. google scholar
  • Gopalakrishnan, S., Kessler, E., & Scillitoe, J. (2010). Navigating the innovation landscape: past research, present practice, and future trends. Organ. Manag. J., 7: 262-277. google scholar
  • Hahn, U., & Mani, I. (2000). The challenges of automatic summarization. Computer, 33(11), 29-36. google scholar
  • Heard, J., & Marciano, R. (2011). A system for scalable visualization of geographic archival records. In Proce-edings of the 1st IEEE Symposium on Large-Scale Data Analysis and Visualization (ss. 121-122). Erişim adresi: http://www.slideshare.net/richardjmarciano/a-system-for-scalablevisualization-of-geographic-arc-hival-records/ google scholar
  • Hey, T. , Tansley, S. and Tolle, K. (2009). The Fourth Paradigm: Data-Intensive Scientific Discovery. Erişim adresi: http://research.microsoft.com/en-us/collaboration/fourthparadigm/: 2032-2033. google scholar
  • Higgins, S. (2017). Time to become our own profession?. Digital Preservation Coalition Blog. Erişim adresi: www.dpconline.org/blog/time-to-become-our-own-profession google scholar
  • Higgins, S. (2018). Digital curation: the development of a discipline within information science. Journal of Documentation, 74 (6): 1318-1338. google scholar
  • Hirtle, P.B. (2008). The history and current state of digital preservation in the United States, in Westbrooks, E. and Jenkins, K. (Eds), Metadata and Digital Collections: A Festschrift in google scholar
  • Huang, R. H., & Li, B. Y. (2016). Data literacy education: Expansion of information lit-eracy instruction in the big data era. Document, Information & Knowledge, 1, 21-27. google scholar
  • Jiang, J. (2012). Information extraction from text. In C. C. Aggarwal, & C. Zhai (Eds.), Mining text data (ss. 11-41). United States: Springer. google scholar
  • Janssen, H. van der Voort, A. Wahyudi. (2012). Factors influencing big data decision-making quality”, Journal of Business Research, vol. 70, ss. 338-345. google scholar
  • Johnson, A. P. (2002). A Short guide to action research. Boston: Allyn & Bacon. google scholar
  • Katerina B., Dimovski, V. (2019). Business intelligence and analytics for value creation: The role of absorptive capacity. International Journal of Information Management (46):93-103 google scholar
  • Kelly, K. (2012). The quantified century. In Quantified Self Conference. Retrieved from http://quantifiedself. com/conference/Palo-Alto-2012. google scholar
  • Khan, R. A.and S. M. K. Quadri. (2012). Business intelligence: an integrated assroach, Business Intelligence Journal, Vol.5, No.1, 64-70. google scholar
  • Kooiman, J. (2015E). Fish for life, interactive governance for fisheries. Amsterdam: Amsterdam University Press. google scholar
  • Kourentzes, N., Petropoulos, F. and Trapero, J.R. (2014), “Improving forecasting by estimating time series structural components across multiple frequencies”, International Journal of Forecasting, Vol. 30 No. 2, ss. 291-302. google scholar
  • Kwon, O., Lee, N., & Shin, B. (2014). Data quality management, data usage expe- rience and acquisition inten-tion of big data analytics. International Journal of Information Management, 34(3), 387-394. google scholar
  • Külcü, Ö. (2018). Bilgi Kuramı ve Bilgi Yönetimi. İstanbul. Hiper Yayın. google scholar
  • Labrinidis, A., & Jagadish, H. V. (2012). Challenges and ossortunities with big data. Proceedings of the VLDB Endowment, 5(12), 2032-2033. google scholar
  • Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. 6(70). META Group Research Note. google scholar
  • Lemieux, V. (2012). Using information visualization and visual analytics to achieve a more sustainable future for archives: A survey and critical analysis of some developments. Comma, 2012(2), 5570. google scholar
  • Lemieux, V. (2014). Towards a ‘third order’ archival interface: Research notes on some theoretical and practical implications of visual explorations in the Canadian context of financial electronic records. Archivaria, 78, 53-93. google scholar
  • Li, S., Jiao, F. Zhang, Y., Xu, X. (2019). Problems and Changes in Digital Libraries in the Age of Big Data From the Perspective of User Services. The Journal of Academic Librarianship. 45 (1): 22-30. google scholar
  • Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1-167. google scholar
  • Longbing, C. (2017). Data Science: A Comprehensive Overview. ACM Computing Surveys. 50 (3): 43.1-43.42 google scholar
  • Loukides, M. (2011). The Evolution of Data Products. O’Reilly, Cambridge. google scholar
  • Marciano, R., Lemieux, V., Hedges, M., Esteva, M., Underwood, W., Kurtz, M. & Conrad, google scholar
  • Muntean, M., Sabau, G., Bologa, A., Surcel, T. and Florea, A. (2013), “Performance dashboards for universities”, 2nd International Conference on Manufacturing Engineering, Quality and Production Systems, ss. 206-211. google scholar
  • Massaro, A., Vitti, V., Galiano, A., Morelli, A. (2019). Business Intelligence Improved by Data Mining Algo-rithms and Big Data Systems: An Overview of Different Tools Asslied in Industrial Research. Computer Science and Information Technology 7(1): 1-21 google scholar
  • Massaro, A., Vitti, V. Lisco, P., Galiano, A., Savino, N. (2019). A business intelligence platform implemented in a big data system embedding data mining: a case of study. International Journal of Data Mining & Knowledge Management Process (IJDKP) 9 (1): 1-20. google scholar
  • Mills, G. E. (2003). Action research: A guide for the teacher researcher. NJ: Merrill/Prentice Hall. google scholar
  • Ong, I., Siew, P. and Wong, S. (2011), “A five-layered business intelligence architecture”, Communications of the IBIMA, ss. 1-11. google scholar
  • Salo, D. (2010). Retooling libraries for the data challenge. Ariadne, 64. google scholar
  • Scholtz, B., Calitz, A and Haupt, H. (2016). A business intelligence framework for sustainability information management in higher education. International Journal of Sustainability in Higher Education19 (2): 266-290 google scholar
  • Shera, J. H. (1968). An epistemological foundation for library science. FRONTIERS OF LIBRARIANSHIP- 193 SYRACUSE UNIVERSITY (8), 7-&. Shepherd, S., Bunn, J., Flinn, A and Lomas, E. (2019). Open govern-ment data: critical information management perspectives. Records Management Journal 291(1/2): 152-167. google scholar
  • Skeina, S. S. (2017). The Data Science Design Manual. New York: Springer. google scholar
  • Sixin, X., Yayuan Y.,Jiang, Y. (2017). A New Governance Architecture for Government Information Resources based on Big Data Ecological Environment in China. 2017 IEEE International Symposium on Multimedi. DOI 10.1109/ISM.2017.103: 524-530 google scholar
  • UK. (2016). UK Big Data. Erişim adresi: http://www.rcuk.ac.uk/research/infrastructure/big-data/. google scholar
  • USD2D. (2016). US National Consortium for Data Science. Erişim adresi: data2discovery.org. google scholar
  • UN. (2010). United Nation Global Pulse Projects. Erişim adresi: http://www.unglobalpulse.org/. google scholar
  • USNSF. 2012. US Big Data Research Initiative. Erişim adresi: http://www.nsf.gov/cise/news/bigdata.jsp. google scholar
  • Uthayasankar, S. Kamal, M., Irani, Z., Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research (70), January 2017: 263-286 google scholar
  • Uzuner, Y. (2005). Özel eğitimden örneklerle eylem araştırmaları. Ankara Üniversitesi Eğitim Fakültesi Özel Eğitim Dergisi, 6(2), 1 - 12. google scholar
  • TechAmerica Foundation’s Federal Big Data Commission. (2012). Demystifying big data: A practical guide to transforming the business of Government. Erişim adresi: http://www.techamerica.org/Docs/fileManager. cfm?f=techamerica- bigdatareport-final.pdf google scholar
  • Tonta, Y. (2012). Kütüphanecilik ve bilgi bilim eğitiminde gelişmeler ve program değişiklikleri. Türk Kütüp-haneicliği 26 (2): 227-261) google scholar
  • Uslu, M. (2016). Veri Biliminde Veri Analitiği Tipleri. Erişim adresi:https://kod5.org/veri-biliminde-veri-ana-litigi-tipleri/. google scholar
  • Xu, S., Du, W., Wang, C., & Liu, D. (2017). The library big data research: Status and libraries in China. Library Work and Study, 7, 46-50. google scholar
  • Wang, X. Y. (2015). Analysis of and reflection on the asslication of big data in university libraries. Journal of Academic Library and Information Science, 33(1), 55-60. google scholar
  • Winling, L., Connolly, N., Nelson, R., & Marciano R. (2017). Integrating the Depression-era history of race and redlining. In I. Gregory & D. Lafreniere (Eds.), Routledge handbook of spatial history, (ss. 502-524). New York, NY: Routledge. google scholar
  • Wu, K., Su, X. N., & Deng, S. H. (2013). Big data, cloud computing and user behavior analysis. Digital Library Forum. 6. Digital Library Forum (ss. 19-23). google scholar
  • Wu, X. et al. (2008). Top 10 algorithms in data mining, Knowl. Inf. Syst., v.14, 1-37. google scholar
  • Wyk, J., Walt, I. (2018). A Research Data Management Readiness Training Toolkit. International Data Week 2018, SciDataCon 2018 Conference, 5-9 November 2018, Gaborone, Botswana. google scholar
  • Yigitbasioglu, O.M. and Velcu, O. (2012), “A review of dashboards in performance management: implications for design and research”, International Journal of Accounting Information Systems, Vol. 13 No. 1, ss. 41-59. google scholar
  • Yiu, C. (2012). The Big Data Ossortunity. Erişim adresi: http://www.policyexchange.org.uk/images/publications/ thessortunity.pdf. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.