CHAPTER


DOI :10.26650/B/LSB44.2024.037.009   IUP :10.26650/B/LSB44.2024.037.009    Full Text (PDF)

Electroencephalographic Investigation of Brain Functions

Sevcan Ayaş KöksalEmine Elif TülayBanu Femir GürtunaMesut CanlıNuh YılmazZeliha MaturTamer Demiralp

Electroencephalogram (EEG) as a non-invasive method of measuring brain’s electrical activity has been widely used for investigating many neuroscientific and clinical questions. Generated mainly by the post-synaptic potentials on the apical dendrites of the cortical pyramidal neurons, it represents the synchronized inputs from a wide variety of local and/or distant sources to the main output cells of the cortex and reflects the neuronal activity with a high temporal resolution. Despite the poor spatial resolution and ill-defined inverse problem of estimating the generator locations, the high temporal resolution of the EEG signal allows for precisely detecting transient brain signals such as epileptic spikes or event-related potentials (ERP) as well as for precisely characterizing the neural synchronization patterns in specific frequency bands. While the analysis of the ongoing EEG is based on the statistical characterization of rhythmic components, event-related EEG signals temporally associated with specific sensory, motor, or cognitive events, can be characterized both as transient ERP wave components in time-domain or as event-related oscillations (ERO) in the frequency domain. Such EEG analyses have provided important information about the functional organization of the healthy brain. Additionally, beyond the fundamental clinical use of the EEG in the diagnosis of the epilepsy, the ERPs and EROs allowed for a range of further clinical investigations on the neural mechanisms of various neuropsychiatric disorders. This chapter will present basic concepts, measurement and analysis methods of the EEG, and an overview with few sample studies for the use of the EEG for basic neuroscientific and clinical questions.



References

  • 1. Caton R. Electrical currents of the brain. J Nerv Ment 1875;2(4):610. google scholar
  • 2. Berger H. Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr 1929;87: 527-570. google scholar
  • 3. Buzsaki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 2010;13(6):407-420. google scholar
  • 4. Niedermeyer E, da Silva FL, editors. Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins; 2005. google scholar
  • 5. Menon V, Crottaz-Herbette S. Combined EEG and fMRI studies of human brain function. Int Rev Neurobio 2005;66:291-321. google scholar
  • 6. Cohen MX. Where does EEG come from and what does it mean? Trends Neurosci 2017;40(4):208-218. google scholar
  • 7. Başar E. EEG-Brain Dynamics. Elsevier-North-Holland Biomedical Press; 1980. google scholar
  • 8. Başar E. A review of gamma oscillations in healthy subjects and in cognitive impairment. Int J Psychop-hysiol 2013;90(2): 99-117. google scholar
  • 9. Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. Oxford University Press, USA; 2006. google scholar
  • 10. Smith SJ. EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neuro-surg Psychiatry 2005;76(2): ii 2-7. google scholar
  • 11. Nadler JV, Spencer DD. What is a seizure focus? Adv Exp Med Biol 2014;813:55-62. google scholar
  • 12. Anyanwu C, Motamedi GK. Diagnosis and Surgical Treatment of Drug-Resistant Epilepsy. Brain Sci 2018;8(4):49. google scholar
  • 13. Kucewicz MT, Cimbalnik J, Matsumoto JY, Brinkmann BH, Bower MR, Vasoli V, et al. High frequency oscillations are associated with cognitive processing in human recognition memory. Brain 2014;137(Pt 8):2231-44. google scholar
  • 14. Dawson GD. A summation technique for the detection of small evoked potentials. Clin Neurophysiol 1954;6: 65-84. google scholar
  • 15. Ritter W, Ford JM, Gaillard AWK, Harter MR, Kutas M, Naatanen R, et al. Cognition and Event-Related Potentials. Ann N Y Acad Sci 1984;425(1 Brain and Inf):24-38. google scholar
  • 16. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 2007;118(10):2128-48. google scholar
  • 17. Falkenstein M, Hoormann J, Hohnsbein, J. ERP components in Go/Nogo tasks and their relation to inhi-bition. Acta psychologica 1999;101(2-3):267-291. google scholar
  • 18. Gajewski PD, Hanisch E, Falkenstein M, Thönes S, Wascher E. What does the n-back task measure as we get older? Relations between working-memory measures and other cognitive functions across the lifespan. Front. Psychol 2018;9:2208. google scholar
  • 19. Naatanen R, Paavilainen P, Titinen H, Jiang D, Alho K. Attention and mismatch negativity. Psychophysiol 1993;30(5): 436-450. google scholar
  • 20. Bentin S, Allison T, Puce A, Perez E, McCarthy G. Electrophysiological Studies of Face Perception in Humans. J Cogn Neurosci 1996;8(6):551-565. google scholar
  • 21. Luck SJ. Electrophysiological Correlates of the Focusing of Attention within Complex Visual Scenes: N2pc and Related ERP Components. Oxford University Press; 2011. google scholar
  • 22. Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Sci 1965;150(3700): 1187-1188. google scholar
  • 23. Gajewski PD, Falkenstein M. Effects of task complexity on ERP components in Go/Nogo tasks. Int J Psychophysiol 2013;87(3): 273-278. google scholar
  • 24. Palermo R, Rhodes G. Are you always on my mind? A review of how face perception and attention interact. Neuropsychologia 2007;45(1):75-92. google scholar
  • 25. Hinojosa JA, Mercado F, Carretié L. N170 sensitivity to facial expression: A meta-analysis. Neurosci Bio behav Rev 2015;55:498-509. google scholar
  • 26. Friederici AD. Event-related brain potential studies in language. Curr Neurol Neurosci Rep 2004;4:466-470. google scholar
  • 27. Naatanen R. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiol 2001;38(1):1-21. google scholar
  • 28. Kutas M, Hillyard SA. Reading senseless sentences: Brain potentials reflect sematic incongruity. Sci 1980;207:203-205. google scholar
  • 29. Kluender R, Kutas M. Bridging the gap: Evidence from ERPs on the processing of unbounded dependen-cies. J Cogn Neurosci 1993;5(2):196-214. google scholar
  • 30. Osterhout L, Holcomb PJ. Event-related brain potentials elicited by syntactic anomaly. J Mem Lang 1992;31:785-806. google scholar
  • 31. Ayaş-Köksal S. Investigation of Syntactic Processing and Verbal Working Memory through Event-Related Potentials. Istanbul University, Institute of Health Science, Department of Neuroscience. PhD Thesis, 2023. google scholar
  • 32. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci;2011. google scholar
  • 33. Hanagasi HA, Gurvit IH, Ermutlu N, Kaptanoglu G, Karamursel S, Idrisoglu HA, et al. Cognitive impa-irment in amyotrophic lateral sclerosis: evidence from neuropsychological investigation and event-related potentials. Cogn Brain Res 2002;14(2): 234-244. google scholar
  • 34. Demiralp T, Üçok A, Devrim M, Isoglu-Alkaç Ü, Tecer A, Polich, J. N2 and P3 components of event-re-lated potential in first-episode schizophrenic patients: scalp topography, medication, and latency effects. Psychiatry Res 2002;111(2-3):167-179. google scholar
  • 35. Golob EJ, Irimajiri R, Starr A. Auditory cortical activity in amnestic mild cognitive impairment: relations-hip to subtype and conversion to dementia. Brain 2007;130(3):740-752. google scholar
  • 36. Ergen M, Saban S, Kirmizi-Alsan E, Uslu A, Keskin-Ergen Y, Demiralp T. Time-frequency analysis of the event-related potentials associated with the Stroop test. International Journal of Psychophysiology. 2014;94(3):463-472. google scholar
  • 37. Freeman WJ. Mass Action in the Nervous System. Academic Press; 1975. google scholar
  • 38. Herrmann CS, Grigutsch M, Busch NA. EEG oscillations and wavelet analysis. Event-related potentials: A methods handbook, 229; 2005. google scholar
  • 39. Demiralp T, Ademoglu A, Comerchero M, Polich J. Wavelet analysis of P3a and P3b. Brain Topogr 2001;13(4):251-267. google scholar
  • 40. Demiralp T, Ademoglu A. Decomposition of event-related brain potentials into multiple functional com-ponents using wavelet transform. Clin Electroencephalogr 2001;32(3):122-138. google scholar
  • 41. Pfurtscheller G, Da Silva FL. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 1999;110(11):1842-1857. google scholar
  • 42. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 1999;29(2-3):169-195. google scholar
  • 43. Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol 2010;20(2): 156-165. google scholar
  • 44. Güntekin B, Basar E. Emotional face expressions are differentiated with brain oscillations. Int J Psychop-hysiol 2007;64(1):91-100. google scholar
  • 45. Herrmann C, Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophy-siol 2005;116(12):2719-2733. google scholar
  • 46. Başar E, Güntekin B, Tülay E, Yener GG. Evoked and event related coherence of Alzheimer patients manifest differentiation of sensory-cognitive networks. Brain Res 2010;1357:79-90. google scholar
  • 47. Caravaglios G, Costanzo E, Palermo F, Muscoso EG. Decreased amplitude of auditory event-related delta responses in Alzheimer’s disease. Int J Psychophysiol 2008;70(1):23-32. google scholar
  • 48. Güntekin B, Aktürk T, Arakaki X, Bonanni L, Del Percio C, Edelmayer R, et al. Are there consistent abnor-malities in event-related EEG oscillations in patients with Alzheimer’s disease compared to other diseases belonging to dementia? Psychophysiology 2022;59(5). google scholar
  • 49. Yener G, Güntekin B, Başar E. Event-related delta oscillatory responses of Alzheimer patients. Eur J Neurol 2008;15(6):540-547. google scholar
  • 50. Tülay EE, Güntekin B, Yener G, Bayram A, Başar-Eroğlu C, Demiralp T. Evoked and induced EEG oscil-lations to visual targets reveal a differential pattern of change along the spectrum of cognitive decline in Alzheimer’s Disease. Int J Psychophysiol 2020;155:41-48. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.