Experimental and Clinical Approach to Schizophrenia and Bipolar Disorder
Nur Damla Korkmaz, Burcu Kök Kendirlioğlu, Ertan Yurdakoş, Mehmet Raşit Tükel, Nurcan OrhanSchizophrenia, a chronic illness, causes psychosis, leading to detachment from reality through positive and negative symptoms and dysfunction in emotion and cognition. Bipolar disorder is a common psychiatric disorder characterized by chronic mood episodes that cause significant psychosocial impairment and functional decline. Both psychiatric disorders have a chronic course and cause severe disability. Neurotransmitter hypotheses have been emphasized in studies of their etiology. Various genetic, neuroimaging, and neuroimmunology studies have been carried out. At the same time, animal studies play an important role in the study of these two diseases. To this end, the neurotransmitter systems involved in the neurobiology and etiology of both schizophrenia and bipolar disorder will be reviewed and the animal models developed will be presented. Animal models of schizophrenia will be evaluated under three main headings: developmental models, drug-induced models, and genetic models. Animal models of bipolar disorder will be divided into four categories; pharmacological, nutritional, environmental, and genetic models in manic episode and it will be divided into three categories; environmental, biological, and genetic models in depressive episode. The aim is to present the hypotheses on the etiology of schizophrenia and bipolar disorder, whose psychopathology has not yet been fully elucidated, in the light of the data obtained to date, and to describe the animal models developed in this context.
References
- 1. Kirkbride JB, Errazuriz A, Croudace TJ, Morgan C, Jackson D, Boydell J, et al. Incidence of schizoph-renia and other psychoses in England, 1950-2009: a systematic review and meta-analyses. PLoS One. 2012;7(3):e31660. google scholar
- 2. Diagnostic and statistical manual of mental disorders: DSM-5™, 5th ed. Arlington, VA, US: American Psychiatric Publishing, Inc.; 2013. google scholar
- 3. Kesby JP, Eyles DW, McGrath JJ, Scott JG. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl Psychiatry. 2018;8(1):30. google scholar
- 4. Karlsgodt KH, Sun D, Cannon TD. Structural and Functional Brain Abnormalities in Schizophrenia. Curr Dir Psychol Sci. 2010;19(4):226-31. google scholar
- 5. Koenen KC, Rudenstine S, Susser E, Galea S. (Eds.). A life course approach to mental disorders. Oxford University Press; 2013. google scholar
- 6. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, et al. Common genetic determi-nants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet. 2009;373(9659):234-9. google scholar
- 7. Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res. 2019;114:178-207. google scholar
- 8. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388(10039):86-97. google scholar
- 9. Elmer BM, McAllister AK. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci. 2012;35(11):660-70. google scholar
- 10. Khandaker GM, Zimbron J, Lewis G, Jones PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med. 2013;43(2):239-57. google scholar
- 11. Steinberg S, de Jong S, Mattheisen M, Costas J, Demontis D, Jamain S, et al. Common variant at 16p11. 2 conferring risk of psychosis. Molecular Psychiatry. 2014;19(1):108-14. google scholar
- 12. Chen SJ, Chao YL, Chen CY, Chang CM, Wu EC, Wu CS, et al. Prevalence of autoimmune diseases in in-patients with schizophrenia: nationwide population-based study. Br J Psychiatry. 2012;200(5):374-80. google scholar
- 13. Chacon MA, Boulanger LM. MHC class I protein is expressed by neurons and neural progenitors in mid-ges-tation mouse brain. Mol Cell Neurosci. 2013;52:117-27. google scholar
- 14. Glynn MW, Elmer BM, Garay PA, Liu XB, Needleman LA, El-Sabeawy F, et al. MHCI negatively regulates synapse density during the establishment of cortical connections. Nat Neurosci. 2011;14(4):442-51. google scholar
- 15. Di Nicola M, Cattaneo A, Hepgul N, Di Forti M, Aitchison KJ, Janiri L, et al. Serum and gene expression profile of cytokines in first-episode psychosis. Brain Behav Immun. 2013;31:90-5. google scholar
- 16. Cannon TD. The inheritance of intermediate phenotypes for schizophrenia. Curr Opin Psychiatry. 2005;18(2):135-40. google scholar
- 17. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T, et al. Disrupted-In-Schizophrenia 1, a can-didate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry. 2003;8(7):685-94. google scholar
- 18. Turetsky BI, Cannon TD, Gur RE. P300 subcomponent abnormalities in schizophrenia: III. Deficits In unaffected siblings of schizophrenic probands. Biol Psychiatry. 2000;47(5):380-90. google scholar
- 19. Weickert CS, Straub RE, McClintock BW, Matsumoto M, Hashimoto R, Hyde TM, et al. Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry. 2004;61(6):544-55. google scholar
- 20. Li D, He L. Association study between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophre-nia: a meta-analysis. Schizophrenia Research. 2007;96(1-3):112-8. google scholar
- 21. Buonanno A, Fischbach GD. Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol. 2001;11(3):287-96. google scholar
- 22. Stahl SM. Stahl’s essential psychopharmacology: neuroscientific basis and practical applications: Cambridge University Press; 2021. google scholar
- 23. Petty A, Cui X, Tesiram Y, Kirik D, Howes O, Eyles D. Enhanced Dopamine in Prodromal Schizophrenia (EDiPS): a new animal model of relevance to schizophrenia. NPJ Schizophr. 2019;5(1):6. google scholar
- 24. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020;19(1):15-33. google scholar
- 25. Chuhma N, Mingote S, Kalmbach A, Yetnikoff L, Rayport S. Heterogeneity in Dopamine Neuron Synaptic Actions Across the Striatum and Its Relevance for Schizophrenia. Biol Psychiatry. 2017;81(1):43-51. google scholar
- 26. Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT. Neurobiology of schizophrenia. Neuron. 2006;52(1):139-53. google scholar
- 27. Goff DC, Coyle JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry. 2001;158(9):1367-77. google scholar
- 28. Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci. 2015;1338(1):38-57. google scholar
- 29. Howes O, Egerton A, Allan V, McGuire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsy-chotic treatment response in schizophrenia: insights from PET and SPECT imaging. Current Pharmaceutical Design. 2009;15(22):2550-9. google scholar
- 30. Gregory DF, Rothrock JM, Jalbrzikowski M, Foran W, Montez DF, Luna B, et al. Increased functional coupling between VTA and hippocampus during rest in first-episode psychosis. eNeuro.2021;8(2):E-NEURO.0375-20.2021. google scholar
- 31. Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P, et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry. 2009;66(1):13-20. google scholar
- 32. Waltz JA, Xu Z, Brown EC, Ruiz RR, Frank MJ, Gold JM. Motivational deficits in schizophrenia are as-sociated with reduced differentiation between gain and loss-avoidance feedback in the striatum. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2018;3(3):239-47. google scholar
- 33. Hoptman MJ, D’Angelo D, Catalano D, Mauro CJ, Shehzad ZE, Kelly AM, et al. Amygdalofrontal functi-onal disconnectivity and aggression in schizophrenia. Schizophr Bull. 2010;36(5):1020-8. google scholar
- 34. Fan FM, Tan SP, Yang FD, Tan YL, Zhao YL, Chen N, et al. Ventral medial prefrontal functio-nal connectivity and emotion regulation in chronic schizophrenia: a pilot study. Neurosci Bull. 2013;29(1):59-74. google scholar
- 35. Schwartz TL, Sachdeva S, Stahl SM. Glutamate neurocircuitry: theoretical underpinnings in schizophrenia. Front Pharmacol. 2012;3:195. google scholar
- 36. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148(10):1301-8. google scholar
- 37. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51(3):199-214. google scholar
- 38. Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl). 2003;169(3-4):215-33. google scholar
- 39. Buzsaki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci. 2012;14(4):345-67. google scholar
- 40. Murray JD, Anticevic A, Gancsos M, Ichinose M, Corlett PR, Krystal JH, et al. Linking microcircuit dys-function to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. Cereb Cortex. 2014;24(4):859-72. google scholar
- 41. Kokkinou M, Irvine EE, Bonsall DR, Natesan S, Wells LA, Smith M, et al. Reproducing the dopamine pat-hophysiology of schizophrenia and approaches to ameliorate it: a translational imaging study with ketamine. Mol Psychiatry. 2021;26(6):2562-76. google scholar
- 42. Shah UH, Gonzalez-Maeso J. Serotonin and Glutamate Interactions in Preclinical Schizophrenia Models. ACS Chem Neurosci. 2019;10(7):3068-77. google scholar
- 43. Griffiths R, Richards W, Johnson M, McCann U, Jesse R. Mystical-type experiences occasioned by psilo-cybin mediate the attribution of personal meaning and spiritual significance 14 months later. J Psychophar-macol. 2008;22(6):621-32. google scholar
- 44. Stahl SM. Parkinson’s disease psychosis as a serotonin-dopamine imbalance syndrome. CNS Spectr. 2016;21(5):355-9. google scholar
- 45. Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 2008;452(7183):93-7. google scholar
- 46. Dalsgaard S, Thorsteinsson E, Trabjerg BB, Schullehner J, Plana-Ripoll O, Brikell I, et al. Incidence Rates and Cumulative Incidences of the Full Spectrum of Diagnosed Mental Disorders in Childhood and Adoles-cence. JAMA Psychiatry. 2020;77(2):155-64. google scholar
- 47. Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res. 1982;17(4):319-34. google scholar
- 48. Selemon LD, Mrzljak J, Kleinman JE, Herman MM, Goldman-Rakic PS. Regional specificity in the neuro-pathologic substrates of schizophrenia: a morphometric analysis of Broca’s area 44 and area 9. Arch Gen Psychiatry. 2003;60(1):69-77. google scholar
- 49. Bennett MR. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol. 2011;95(3):275-300. google scholar
- 50. Keshavan MS, Anderson S, Pettegrew JW. Is schizophrenia due to excessive synaptic pruning in the prefron-tal cortex? The Feinberg hypothesis revisited. J Psychiatr Res. 1994;28(3):239-65. google scholar
- 51. Woo T-UW. Neurobiology of schizophrenia onset. The neurobiology of childhood. 2014:267-95. google scholar
- 52. Barr MS, Farzan F, Rusjan PM, Chen R, Fitzgerald PB, Daskalakis ZJ. Potentiation of gamma oscillatory activity through repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neurops-ychopharmacology. 2009;34(11):2359-67. google scholar
- 53. Hoffman RE. A social deafferentation hypothesis for induction of active schizophrenia. Schizophr Bull. 2007;33(5):1066-70. google scholar
- 54. Gan JO, Bowline E, Lourenco FS, Pickel VM. Adolescent social isolation enhances the plasmalemmal density of NMDA NR1 subunits in dendritic spines of principal neurons in the basolateral amygdala of adult mice. Neuroscience. 2014;258:174-83. google scholar
- 55. Hubl D, Koenig T, Strik W, Federspiel A, Kreis R, Boesch C, et al. Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry. 2004;61(7):658-68. google scholar
- 56. Sommer IE, Clos M, Meijering AL, Diederen KM, Eickhoff SB. Resting state functional connectivity in patients with chronic hallucinations. PLoS One. 2012;7(9):e43516. google scholar
- 57. Amad A, Cachia A, Gorwood P, Pins D, Delmaire C, Rolland B, et al. The multimodal connectivity of the hippocampal complex in auditory and visual hallucinations. Mol Psychiatry. 2014;19(2):184-91. google scholar
- 58. Jones CA, Watson DJ, Fone KC. Animal models of schizophrenia. Br J Pharmacol. 2011;164(4):1162-94. google scholar
- 59. Tseng KY, Chambers RA, Lipska BK. The neonatal ventral hippocampal lesion as a heuristic neurodeve-lopmental model of schizophrenia. Behav Brain Res. 2009;204(2):295-305. google scholar
- 60. Gomes FV, Rincon-Cortes M, Grace AA. Adolescence as a period of vulnerability and intervention in schi-zophrenia: Insights from the MAM model. Neurosci Biobehav Rev. 2016;70:260-70. google scholar
- 61. Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry. 2006;60(3):253-64. google scholar
- 62. Careaga M, Murai T, Bauman MD. Maternal Immune Activation and Autism Spectrum Disorder: From Rodents to Nonhuman and Human Primates. Biol Psychiatry. 2017;81(5):391-401. google scholar
- 63. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135-45. google scholar
- 64. Vanderschuren LJ, Trezza V. What the laboratory rat has taught us about social play behavior: role in beha-vioral development and neural mechanisms. Curr Top Behav Neurosci. 2014;16:189-212. google scholar
- 65. Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351(6276):933-9. google scholar
- 66. Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, et al. Oxidative stress-driven par-valbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry. 2017;22(7):936-43. google scholar
- 67. Lipina TV, Zai C, Hlousek D, Roder JC, Wong AH. Maternal immune activation during gestation in-teracts with Disc1 point mutation to exacerbate schizophrenia-related behaviors in mice. J Neurosci. 2013;33(18):7654-66. google scholar
- 68. Featherstone RE, Rizos Z, Kapur S, Fletcher PJ. A sensitizing regimen of amphetamine that disrupts atten-tional set-shifting does not disrupt working or long-term memory. Behav Brain Res. 2008;189(1):170-9. google scholar
- 69. Kalinichev M, Robbins MJ, Hartfield EM, Maycox PR, Moore SH, Savage KM, et al. Comparison between intraperitoneal and subcutaneous phencyclidine administration in Sprague-Dawley rats: a locomotor activity and gene induction study. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2008;32(2):414-22. google scholar
- 70. Hallak JE, Maia-de-Oliveira JP, Abrao J, Evora PR, Zuardi AW, Crippa JA, et al. Rapid improvement of acute schizophrenia symptoms after intravenous sodium nitroprusside: a randomized, double-blind, place-bo-controlled trial. JAMA Psychiatry. 2013;70(7):668-76. google scholar
- 71. Rezende T, Maia-de-Oliveira JP, Kandratavicius L, Machado-de-Sousa JP, Abrâo J, Prado DA, et al. Effects of sodium nitroprusside in the prevention of schizophrenia-like symptoms induced by ketamine-Atransla-tional double-blind study. Archives of Clinical Psychiatry (Sâo Paulo). 2017;44:149-53. google scholar
- 72. Maia-de-Oliveira JP, Lobâo-Soares B, Ramalho T, Gavioli EC, Soares VP, Teixeira L, et al. Nitroprusside single-dose prevents the psychosis-like behavior induced by ketamine in rats for up to one week. Schizoph-renia Research. 2015;162(1-3):211-5. google scholar
- 73. Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM. D-serine and schizoph-renia: an update. Expert Rev Neurother. 2012;12(7):801-12. google scholar
- 74. Piantadosi PT, Floresco SB. Prefrontal cortical GABA transmission modulates discrimination and latent inhi-bition of conditioned fear: relevance for schizophrenia. Neuropsychopharmacology. 2014;39(10):2473-84. google scholar
- 75. Tse MT, Piantadosi PT, Floresco SB. Prefrontal cortical gamma-aminobutyric acid transmission and cogniti-ve function: drawing links to schizophrenia from preclinical research. Biol Psychiatry. 2015;77(11):929-39. google scholar
- 76. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J. Schizophrenia Working Group of the Psychi-atric Genomics C, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291-5. google scholar
- 77. Pletnikov MV, Ayhan Y, Xu Y, Nikolskaia O, Ovanesov M, Huang H, et al. Enlargement of the lateral vent-ricles in mutant DISC1 transgenic mice. Mol Psychiatry. 2008;13(2):115. google scholar
- 78. Bassett AS, Chow EW, Husted J, Weksberg R, Caluseriu O, Webb GD, et al. Clinical features of 78 adults with 22q11 Deletion Syndrome. Am J Med Genet A. 2005;138(4):307-13. google scholar
- 79. Ellegood J, Markx S, Lerch JP, Steadman PE, Genc C, Provenzano F, et al. Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol Psychiatry. 2014;19(1):99-107. google scholar
- 80. Karl T, Duffy L, Scimone A, Harvey RP, Schofield PR. Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia. Genes, Brain and Behavior. 2007;6(7):677-87. google scholar
- 81. Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci. 2008;9(6):437-52. google scholar
- 82. Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, et al. Dysbindin-1 is redu-ced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest. 2004;113(9):1353-63. google scholar
- 83. Hu H, Wang X, Li C, Li Y, Hao J, Zhou Y, et al. Loss of Dysbindin Implicates Synaptic Vesicle Replenish-ment Dysregulation as a Potential Pathogenic Mechanism in Schizophrenia. Neuroscience. 2021;452:138-52. google scholar
- 84. Bhardwaj SK, Ryan RT, Wong TP, Srivastava LK. Loss of dysbindin-1, a risk gene for schizophrenia, leads to impaired group 1 metabotropic glutamate receptor function in mice. Front Behav Neurosci. 2015;9:72. google scholar
- 85. Tang J, Fan Y, Li H, Xiang Q, Zhang DF, Li Z, et al. Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia. J Genet Genomics. 2017;44(6):295-306. google scholar
- 86. Al-Shammari AR, Bhardwaj SK, Musaelyan K, Srivastava LK, Szele FG. Schizophrenia-related dysbindin-1 gene is required for innate immune response and homeostasis in the developing subventricular zone. NPJ Schizophr. 2018;4(1):15. google scholar
- 87. Krueger DD, Howell JL, Hebert BF, Olausson P, Taylor JR, Nairn AC. Assessment of cognitive function in the heterozygous reeler mouse. Psychopharmacology (Berl). 2006;189(1):95-104. google scholar
- 88. Hamshere ML, Stergiakouli E, Langley K, Martin J, Holmans P, Kent L, et al. Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia. The British Journal of Psychiatry. 2013;203(2):107-11. google scholar
- 89. van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharma-cology and methodology aspects. Schizophrenia Bulletin. 2010;36(2):246-70. google scholar
- 90. Lee S, Kang S, Ang MJ, Kim J, Kim JC, Kim SH, et al. Deficiency of sterol regulatory element-binding protein-1c induces schizophrenia-like behavior in mice. Genes Brain Behav. 2019;18(4):e12540. google scholar
- 91. O’Tuathaigh CM, Kirby BP, Moran PM, Waddington JL. Mutant mouse models: genotype-phenotype rela-tionships to negative symptoms in schizophrenia. Schizophrenia Bulletin. 2010;36(2):271-88. google scholar
- 92. Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD. The tail suspension test. J Vis Exp. 2012(59):e3769. google scholar
- 93. Liu MY, Yin CY, Zhu LJ, Zhu XH, Xu C, Luo CX, et al. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc. 2018;13(7):1686-98. google scholar
- 94. O’Tuathaigh CM, Desbonnet L, Waddington JL. Genetically modified mice related to schizophrenia and other psychoses: seeking phenotypic insights into the pathobiology and treatment of negative symptoms. Eur Neuropsychopharmacol. 2014;24(5):800-21. google scholar
- 95. Estanislau C, Morato S. Behavior ontogeny in the elevated plus-maze: prenatal stress effects. International Journal of Developmental Neuroscience. 2006;24(4):255-62. google scholar
- 96. Keefe RS, Eesley CE, Poe MP. Defining a cognitive function decrement in schizophrenia. Biol Psychiatry. 2005;57(6):688-91. google scholar
- 97. Berberian AA, Trevisan BT, Moriyama TS, Montiel JM, Oliveira JA, Seabra AG. Working memory assessment in schizophrenia and its correlation with executive functions ability. Braz J Psychiatry. 2009;31(3):219-26. google scholar
- 98. Dudchenko PA, Wood ER, Eichenbaum H. Neurotoxic hippocampal lesions have no effect on odor span and little effect on odor recognition memory but produce significant impairments on spatial span, recognition, and alternation. J Neurosci. 2000;20(8):2964-77. google scholar
- 99. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods. 1984;11(1):47-60. google scholar
- 100. Young JW, Powell SB, Risbrough V, Marston HM, Geyer MA. Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther. 2009;122(2):150-202. google scholar
- 101. Powell CM, Miyakawa T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biological Psychiatry. 2006;59(12):1198-207. google scholar
- 102. Clemente AS, Diniz BS, Nicolato R, Kapczinski FP, Soares JC, Firmo JO, et al. Bipolar disorder prevalence: a systematic review and meta-analysis of the literature. Brazilian Journal of Psychiatry. 2015;37:155-61. google scholar
- 103. Sadock BJ, Sadock VA, Ruiz P. Kaplan and Sadock’s Comprehensive Textbook of Psychiatry. Tenth Edition ed: Lippincott Williams & Wilkins Philadelphia; 2017. google scholar
- 104. Gould TD, Einat H. Animal models of bipolar disorder and mood stabilizer efficacy: a critical need for improvement. Neuroscience & Biobehavioral Reviews. 2007;31(6):825-31. google scholar
- 105. Einat H. Different behaviors and different strains: potential new ways to model bipolar disorder. Neuros-cience & Biobehavioral Reviews. 2007;31(6):850-7. google scholar
- 106. Machado-Vieira R, Kapczinski F, Soares JC. Perspectives for the development of animal models of bipolar disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2004;28(2):209-24. google scholar
- 107. Malatynska E, Knapp RJ. Dominant-submissive behavior as models of mania and depression. Neuroscience & Biobehavioral Reviews. 2005;29(4-5):715-37. google scholar
- 108. Ellenbroek B, Cools A. Animal models with construct validity for schizophrenia. Behavioural Pharmacology. 1990;1(6):469-90. google scholar
- 109. İM. A. Experimental Animal Models in Psychiatric Disorders. Derman Medical Publishing. 2016. google scholar
- 110. Kato T, Kasahara T, Kubota-Sakashita M, Kato T, Nakajima K. Animal models of recurrent or bipolar depression. Neuroscience. 2016;321:189-96. google scholar
- 111. Valvassori SS, Budni J, Varela RB, Quevedo J. Contributions of animal models to the study of mood disor-ders. Brazilian Journal of Psychiatry. 2013;35:S121-S31. google scholar
- 112. BB H. Catecholamines, sympathomimetic drugs and adrenergic receptor antagonists. The Pharmacological Basis of Therapeutics. 1996:199-248. google scholar
- 113. Frey BN, Andreazza AC, Cereser KM, Martins MR, Valvassori SS, Reus GZ, et al. Effects of mood stabi-lizers on hippocampus BDNF levels in an animal model of mania. Life Sciences. 2006;79(3):281-6. google scholar
- 114. Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, et al. Effects of lithium and valproate on amphetamineinduced oxidative stress generation in an animal model of mania. Journal of Psychiatry and Neuroscience. 2006;31(5):326-32. google scholar
- 115. Shaldivin A, Kaptsan A, Belmaker RH, Einat H, Grisaru N. Transcranial magnetic stimulation in an amp-hetamine hyperactivity model of mania. Bipolar Disorders. 2001;3(1):30-4. google scholar
- 116. Gould TJ, Keith RA, Bhat RV. Differential sensitivity to lithium’s reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behavioural Brain Research. 2001;118(1):95-105. google scholar
- 117. Shaldubina A, Einat H, Szechtman H, Shimon H, Belmaker R. Preliminary evaluation of oral anticonvulsant treatment in the quinpirole model of bipolar disorder. Journal of Neural Transmission. 2002;109:433-40. google scholar
- 118. Antelman SM, Caggiula AR, Kucinski BJ, Fowler H, Gershon S, Edwards DJ, et al. The effects of lithium on a potential cycling model of bipolar disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 1998;22(3):495-510. google scholar
- 119. Kucinski BJ, Antelman SM, Caggiula AR, Fowler H, Gershon S, Edwards DJ, et al. Oscillatory effects of repeated morphine on shock-induced hypoalgesia and p-endorphin. Synapse. 1998;30(1):30-7. google scholar
- 120. Vale A, Ratcliffe F. Effect of lithium administration on rat brain 5-hydroxyindole levels in a possible animal model for mania. Psychopharmacology. 1987;91:352-5. google scholar
- 121. Arban R, Maraia G, Brackenborough K, Winyard L, Wilson A, Gerrard P, et al. Evaluation of the effects of lamotrigine, valproate and carbamazepine in a rodent model of mania. Behavioural Brain Research. 2005;158(1):123-32. google scholar
- 122. Schwartz JM, Ksir C, Koob GF, Bloom FE. Changes in locomotor response to beta-endorphin microinfusi-on during and after opiate abstinence syndrome—a proposal for a model of the onset of mania. Psychiatry Research. 1982;7(2):153-61. google scholar
- 123. Macedo DS, Medeiros CD, Cordeiro RC, Sousa FC, Santos JV, Morais TA, et al. Effects of alpha-lipoic acid in an animal model of mania induced by d-amphetamine. Bipolar Disorders. 2012;14(7):707-18. google scholar
- 124. Park H, Poo M-m. Neurotrophin regulation of neural circuit development and function. Nature Reviews Neuroscience. 2013;14(1):7-23. google scholar
- 125. Andreazza AC, Cassini C, Rosa AR, Leite MC, de Almeida LM, Cunha AB, et al. Serum S100B and anti-oxidant enzymes in bipolar patients. Journal of Psychiatric Research. 2007;41(6):523-9. google scholar
- 126. Kapczinski F, Frey BN, Andreazza AC, Kauer-Sant’Anna M, Cunha Â, Post RM. Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Brazilian Journal of Psychiatry. 2008;30:243-5. google scholar
- 127. Kato T, Kubota M, Kasahara T. Animal models of bipolar disorder. Neurosci Biobehav Rev. 2007;31(6):832-42. google scholar
- 128. Hibbeln JR. Seafood consumption, the DHA content of mothers’ milk and prevalence rates of postpartum depression: a cross-national, ecological analysis. Journal of Affective Disorders. 2002;69(1-3):15-29. google scholar
- 129. Van Strater AC, Bouvy PF. Omega-3 fatty acids and mood disorders. American Journal of Psychiatry. 2006;163(11):2018. google scholar
- 130. DeMar JC, Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. Journal of Lipid Research. 2006;47(1):172-80. google scholar
- 131. Gessa GL, Pani L, Fadda P, Fratta W. Sleep deprivation in the rat: an animal model of mania. European Neuropsychopharmacology. 1995;5:89-93. google scholar
- 132. Kroes R, Panksepp J, Burgdorf J, Otto N, Moskal J. Modeling depression: social dominance-submission gene expression patterns in rat neocortex. Neuroscience. 2006;137(1):37-49. google scholar
- 133. McClung CA, Sidiropoulou K, Vitaterna M, Takahashi JS, White FJ, Cooper DC, et al. Regulation of dopa-minergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci U S A. 2005;102(26):9377-81. google scholar
- 134. Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, et al. Mania-like behavior induced by disruption of CLOCK. Proceedings of the National Academy of Sciences. 2007;104(15):6406-11. google scholar
- 135. Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD, et al. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2006;141(3):234-41. google scholar
- 136. Dokucu ME, Yu L, Taghert PH. Lithium-and valproate-induced alterations in circadian locomotor behavior in Drosophila. Neuropsychopharmacology. 2005;30(12):2216-24. google scholar
- 137. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proceedings of the National Academy of Sciences. 1996;93(16):8455-9. google scholar
- 138. Nishiguchi N, Breen G, Russ C, St Clair D, Collier D. Association analysis of the glycogen synthase kina-se-3p gene in bipolar disorder. Neuroscience Letters. 2006;394(3):243-5. google scholar
- 139. Forty L, Smith D, Jones L, Jones I, Caesar S, Cooper C, et al. Clinical differences between bipolar and unipolar depression. Br J Psychiatry. 2008;192(5):388-9. google scholar
- 140. Razafsha M, Behforuzi H, Harati H, Wafai RA, Khaku A, Mondello S, et al. An updated overview of animal models in neuropsychiatry. Neuroscience. 2013;240:204-18. google scholar
- 141. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266(5604):730-2. google scholar
- 142. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepres-sants in mice. Psychopharmacology. 1985;85:367-70. google scholar
- 143. Strekalova T, Steinbusch HW. Measuring behavior in mice with chronic stress depression paradigm. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(2):348-61. google scholar
- 144. Valvassori SS, Budni J, Varela RB, Quevedo J. Contributions of animal models to the study of mood disor-ders. Braz J Psychiatry. 2013;35 Suppl 2:S121-31. google scholar
- 145. Kelly JP, Wrynn AS, Leonard BE. The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther. 1997;74(3):299-316. google scholar
- 146. Connor TJ, Song C, Leonard BE, Anisman H, Merali Z. Stressor-induced alterations in serotonergic activity in an animal model of depression. Neuroreport. 1999;10(3):523-8. google scholar
- 147. Wrynn AS, Mac Sweeney CoP, Franconi F, Lemaire L, Pouliquen D, Herlidou S, et al. An in-vivo mag-netic resonance imaging study of the olfactory bulbectomized rat model of depression. Brain Research. 2000;879(1-2):193-9. google scholar
- 148. Kastin AJ, Scollan EL, Ehrensing RH, Schally AV, Coy DH. Enkephalin and other peptides reduce passi-veness. Pharmacology Biochemistry and Behavior. 1978;9(4):515-9. google scholar
- 149. Skuza G, Rogoz Z, Quack G, Danysz W. Memantine, amantadine, and L-deprenyl potentiate the action of L-dopa in monoamine-depleted rats. Journal of Neural Transmission/General Section JNT. 1994;98:57-67. google scholar
- 150. Nagayama H, Hingtgen J, Aprison M. Postsynaptic action by four antidepressive drugs in an animal model of depression. Pharmacology Biochemistry and Behavior. 1981;15(1):125-30. google scholar
- 151. Hingtgen, J. N., H. C. Hendrie, and M. H. Aprison. “Postsynaptic serotonergic blockade following chronic antidepressive treatment with trazodone in an animal model of depression.” Pharmacology Biochemistry and Behavior 20.3 (1984): 425-428. google scholar
- 152. Leith NJ, Barrett RJ. Amphetamine and the reward system: evidence for tolerance and post-drug depression. Psychopharmacologia. 1976;46:19-25. google scholar
- 153. Simpson D, Annau Z. Behavioral withdrawal following several psychoactive drugs. Pharmacology Bioc-hemistry and Behavior. 1977;7(1):59-64. google scholar
- 154. Kehoe P, Triano L, Hoffman J, Shoemaker W, Arons C. Repeated isolation in the neonatal rat produces alterations in behavior and ventral striatal dopamine release in the juvenile after amphetamine challenge. Behavioral Neuroscience. 1996;110(6):1435. google scholar
- 155. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology. 1997;134:319-29. google scholar
- 156. Paolo S, Brain P, Willner P. Effects of chronic mild stress on performance in behavioural tests relevant to anxiety and depression. Physiology & Behavior. 1994;56(5):861-7. google scholar
- 157. Cheeta S, Ruigt G, van Proosdij J, Willner P. Changes in sleep architecture following chronic mild stress. Biological Psychiatry. 1997;41(4):419-27. google scholar
- 158. Papp M, Klimek V, Willner P. Effects of imipramine on serotonergic and beta-adrenergic receptor binding in a realistic animal model of depression. Psychopharmacology. 1994;114:309-14. google scholar
- 159. Papp M, Klimek V, Willner P. Parallel changes in dopamine D 2 receptor binding in limbic forebrain as-sociated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology. 1994;115:441-6. google scholar
- 160. Murakami S, Imbe H, Morikawa Y, Kubo C, Senba E. Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neuroscience Research. 2005;53(2):129-39. google scholar
- 161. Zhang L, Zhang J, Sun H, Liu H, Yang Y, Yao Z. Exposure to enriched environment restores the mRNA expression of mineralocorticoid and glucocorticoid receptors in the hippocampus and ameliorates depressi-ve-like symptoms in chronically stressed rats. Current Neurovascular Research. 2011;8(4):286-93. google scholar
- 162. Seligman ME, Beagley G. Learned helplessness in the rat. Journal of Comparative and Physiological Psy-chology. 1975;88(2):534. google scholar
- 163. Rosellini RA, DeCola JP. Inescapable shock interferes with the acquisition of a low-activity response in an appetitive context. Animal Learning & Behavior. 1981;9(4):487-90. google scholar
- 164. Jacobsen JP, Medvedev IO, Caron MG. The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philosophical Transactions of the Royal Society B: Biological Sciences. 2012;367(1601):2444-59. google scholar
- 165. Beaulieu J-M, Zhang X, Rodriguiz RM, Sotnikova TD, Cools MJ, Wetsel WC, et al. Role of GSK3p in behavioral abnormalities induced by serotonin deficiency. Proceedings of the National Academy of Sciences. 2008;105(4):1333-8. google scholar
- 166. Valverde O, Torrens M. CB1 receptor-deficient mice as a model for depression. Neuroscience. 2012;204:193-206. google scholar
- 167. Bunney WE, Bunney BG. Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology. 2000;22(4):335-45. google scholar
- 168. Takahashi JS, Hong H-K, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disor-der: implications for physiology and disease. Nature Reviews Genetics. 2008;9(10):764-75. google scholar
- 169. Logan RW, McClung CA. Animal models of bipolar mania: the past, present and future. Neuroscience. 2016;321:163-88. google scholar