CHAPTER


DOI :10.26650/B/LSB44.2024.037.010   IUP :10.26650/B/LSB44.2024.037.010    Full Text (PDF)

tDCS Applications in the Development/Improvement of Visual Working Memory

Suat Merve MavralSercan ŞekerGökçer EskikurtSacit Karamürsel

Transcranial direct current stimulation is a non-invasive brain stimulation method. Although the use of electricity for therapeutic purposes dates back to ancient times, the use of tDCS for brain stimulation can be considered a relatively new method. The fact that the device is small and portable and that safety conditions have improved has increased the frequency of research on this device today. Working memory is a concept that was introduced in the early 1990s, and until the early 2000s, the verbal part was mostly studied. The increase in studies on visual working memory and the fact that the two subsystems of working memory (verbal and visual) work separately from each other has paved the way for separate research on these memory types. The use of tDCS to increase the capacity of visual working memory dates to the early 2010s. Similarly, visual working memory has been shown to be impaired in various diseases and tDCS is used to improve this impairment. In this article, the historical development of tDCS and the basis behind it, the studies on visual working memory are discussed, and then the relationship between visual working memory and tDCS application in healthy individuals and various diseases is examined.



References

  • 1. Albizu A, Indahlastari A, Woods AJ. Non-invasive Brain Stimulation. In: Gu D, Dupre ME, editors. Encyc-lopedia of Gerontology and Population Aging [Internet]. Cham: Springer International Publishing; 2019 [cited 2023 Apr 5]. p. 1-8. Available from: http://link.springer.com/10.1007/978-3-319-69892-2_682-1 google scholar
  • 2. Kellaway P. The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull Hist Med. 1946 Jul;20(2):112-37. google scholar
  • 3. Ceccarelli U. [The 1st pharmacopoeia: the “De compositionibus medicamentorum” of Scribonio Largo]. Minerva Med. 1962 Aug 18;53:2398-402. google scholar
  • 4. Parent A. Giovanni Aldini: From Animal Electricity to Human Brain Stimulation. Can J Neurol Sci J Can Sci Neurol. 2004 Nov;31(4):576-84. google scholar
  • 5. Albert DJ. The effect of spreading depression on the consolidation of learning. Neuropsychologia. 1966 Feb;4(1):49-64. google scholar
  • 6. Albert DJ. The effects of polarizing currents on the consolidation of learning. Neuropsychologia. 1966 Feb;4(1):65-77. google scholar
  • 7. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp: NeuroReport. 1998 Jul;9(10):2257-60. google scholar
  • 8. Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May;72(4-6):208-14. google scholar
  • 9. Arul-Anandam AP, Loo C, Sachdev P. Transcranial direct current stimulation - what is the evidence for its efficacy and safety? F1000 Med Rep [Internet]. 2009 Jul 27 [cited 2023 Apr 5];1. Available from: https:// facultyopinions.com/prime/reports/m/1/58/ google scholar
  • 10. Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of Noninvasive Brain Stimulation in Children and Adolescents. Brain Stimulat. 2015 Jan;8(1):76-87. google scholar
  • 11. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016 Feb;127(2):1031-48. google scholar
  • 12. Fricke K, Seeber AA, Thirugnanasambandam N, Paulus W, Nitsche MA, Rothwell JC. Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex. J Neurophysiol. 2011 Mar;105(3):1141-9. google scholar
  • 13. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep;527(3):633-9. google scholar
  • 14. Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci. 2009 Feb 3;106(5):1590-5. google scholar
  • 15. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006 Apr;117(4):845-50. google scholar
  • 16. Stagg CJ, Antal A, Nitsche MA. Physiology of Transcranial Direct Current Stimulation. J ECT. 2018 Sep;34(3):144-52. google scholar
  • 17. Yavari F, Jamil A, Mosayebi Samani M, Vidor LP, Nitsche MA. Basic and functional effects of transcranial Electrical Stimulation (tES)—An introduction. Neurosci Biobehav Rev. 2018 Feb;85:81-92. google scholar
  • 18. Bindman LJ, Lippold OCJ, Redfearn JWT. Long-lasting Changes in the Level of the Electrical Activity of the Cerebral Cortex produced by Polarizing Currents. Nature. 1962 Nov;196(4854):584-5. google scholar
  • 19. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct Current Stimulation Pro-motes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning. Neuron. 2010 Apr;66(2):198-204. google scholar
  • 20. Liebetanz D. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-ef-fects ofhuman motor cortex excitability. Brain. 2002 Oct 1;125(10):2238-47. google scholar
  • 21. Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, et al. Polarity-Sensitive Modu-lation of Cortical Neurotransmitters by Transcranial Stimulation. J Neurosci. 2009 Apr 22;29(16):5202-6. google scholar
  • 22. Rango M, Cogiamanian F, Marceglia S, Barberis B, Arighi A, Biondetti P, et al. Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: A 1 H-MRS study. Magn Reson Med. 2008 Oct;60(4):782-9. google scholar
  • 23. Barham H, Büyükgök D, Aksu S, Soyata AZ, Bulut G, Eskicioğlu G, et al. Evidence for modulation of planning and working memory capacities by transcranial direct current stimulation in a sample of adults with attention deficit hyperactivity disorder. Neurosci Lett. 2022 Nov;790:136883. google scholar
  • 24. Cai Y, Li S, Liu J, Li D, Feng Z, Wang Q, et al. The Role of the Frontal and Parietal Cortex in Proactive and Reactive Inhibitory Control: A Transcranial Direct Current Stimulation Study. J Cogn Neurosci. 2016 Jan 1;28(1):177-86. google scholar
  • 25. Cheng GLF, Lee TMC. Altering risky decision-making: Influence of impulsivity on the neuromodulation of prefrontal cortex. Soc Neurosci. 2016 Jul 3;11(4):353-64. google scholar
  • 26. Coffman BA, Clark VP, Parasuraman R. Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neurolmage. 2014 Jan;85:895-908. google scholar
  • 27. Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C. Enhancement of Planning Ability by Transcranial Direct Current Stimulation. JNeurosci. 2009 Jun 3;29(22):7271-7. google scholar
  • 28. Flöel A, Rösser N, Michka O, Knecht S, Breitenstein C. Noninvasive Brain Stimulation Improves Language Learning.JCogn Neurosci. 2008 Aug 1;20(8):1415-22. google scholar
  • 29. Leite J, Carvalho S, Fregni F, Boggio PS, Gonçalves OF. The Effects of Cross-Hemispheric Dorsolateral Prefrontal Cortex Transcranial Direct Current Stimulation (tDCS) on Task Switching. Brain Stimulat. 2013 Jul;6(4):660-7. google scholar
  • 30. Rroji O, van Kuyck K, Nuttin B, Wenderoth N. Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity. Thompson B, editor. PLOS ONE. 2015 May 21;10(5):e0127270. google scholar
  • 31. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005 Sep;166(1):23-30. google scholar
  • 32. Hoy KE, Emonson MRL, Arnold SL, Thomson RH, Daskalakis ZJ, Fitzgerald PB. Testing the limits: Inves-tigating the effect of tDCS dose on working memory enhancement in healthy controls. Neuropsychologia. 2013 Aug;51(9):1777-84. google scholar
  • 33. Türkoğlu S, Çetin FH, Tanır Y, Karatoprak S. Working Memory and Neurodevelopmental Disorders. Turk J Child Adolesc Ment Health. 2019 Jul 1;26(2):52-62. google scholar
  • 34. Baddeley AD. Essentials of human memory. Hove, England: Psychology Press; 1999. 356 p. (Cognitive psychology). google scholar
  • 35. Atkinson RC, Shiffrin RM. Human Memory: A Proposed System and its Control Processes. In: Psychology of Learning and Motivation [Internet]. Elsevier; 1968 [cited 2023 Apr 8]. p. 89-195. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0079742108604223 google scholar
  • 36. Miller GA. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol Rev. 1956 Mar;63(2):81-97. google scholar
  • 37. Baddeley AD, Hitch G. Working Memory. In: Psychology of Learning and Motivation [Internet]. Else-vier; 1974 [cited 2023 Apr 5]. p. 47-89. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S0079742108604521 google scholar
  • 38. Livant WP. George A. Miller, Eugene Galanter, and Karl H. Pribram, Plans and the structure of behavior. New York: Henry Holt, 1960. Behav Sci. 2007 Jan 17;5(4):341-2. google scholar
  • 39. Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003 Oct;4(10):829-39. google scholar
  • 40. Miyake A, Shah P, editors. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control [Internet]. 1st ed. Cambridge University Press; 1999 [cited 2023 Apr 8]. Available from: https:// www.cambridge.org/core/product/identifier/9781139174909/type/book google scholar
  • 41. Gathercole SE, Pickering SJ, Ambridge B, Wearing H. The Structure of Working Memory From 4 to 15 Years of Age. Dev Psychol. 2004;40(2):177-90. google scholar
  • 42. Baddeley A. The episodic buffer: a new component of working memory? Trends Cogn Sci. 2000 Nov;4(11):417-23. google scholar
  • 43. Lehnert G, Zimmer HD. Modality and domain specific components in auditory and visual working memory tasks. Cogn Process. 2008 Mar;9(1):53-61. google scholar
  • 44. Baddeley A, Logie R, Bressi S, Sala SD, Spinnler H. Dementia and Working Memory. Q J Exp Psychol Sect A. 1986 Nov;38(4):603-18. google scholar
  • 45. Cowan N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav Brain Sci. 2001 Feb;24(1):87-114. google scholar
  • 46. Phillips WA. On the distinction between sensory storage and short-term visual memory. Percept Psychophys. 1974 Mar;16(2):283-90. google scholar
  • 47. Luck SJ, Vogel EK. The capacity of visual working memory for features and conjunctions. Nature. 1997 Nov;390(6657):279-81. google scholar
  • 48. Pashler H. Familiarity and visual change detection. Percept Psychophys. 1988 Jul;44(4):369-78. google scholar
  • 49. Zhang W, Luck SJ. Discrete fixed-resolution representations in visual working memory. Nature. 2008 May;453(7192):233-5. google scholar
  • 50. Bays PM, Husain M. Dynamic Shifts of Limited Working Memory Resources in Human Vision. Science. 2008 Aug 8;321(5890):851-4. google scholar
  • 51. Rouder JN, Morey RD, Cowan N, Zwilling CE, Morey CC, Pratte MS. An assessment of fixed-capacity models of visual working memory. Proc Natl Acad Sci. 2008 Apr 22;105(16):5975-9. google scholar
  • 52. Fougnie D, Asplund CL, Marois R. What are the units of storage in visual working memory? J Vis. 2010 Oct 22;10(12):27-27. google scholar
  • 53. Wheeler ME, Treisman AM. Binding in short-term visual memory. J Exp Psychol Gen. 2002;131(1):48-64. google scholar
  • 54. Schurgin MW. Visual memory, the long and the short of it: A review of visual working memory and long-term memory. Atten Percept Psychophys. 2018 Jul;80(5):1035-56. google scholar
  • 55. Wilken P, Ma WJ. A detection theory account of change detection. J Vis. 2004 Dec 29;4(12):11. google scholar
  • 56. Posner MI, editor. Cognitive neuroscience of attention. 2nd ed. New York: Guilford Press; 2012. 514 p. google scholar
  • 57. Bays PM, Catalao RFG, Husain M. The precision of visual working memory is set by allocation of a shared resource. J Vis. 2009 Sep 1;9(10):7-7. google scholar
  • 58. Alvarez GA, Cavanagh P. The Capacity of Visual Short-Term Memory is Set Both by Visual Information Load and by Number of Objects. Psychol Sci. 2004 Feb;15(2):106-11. google scholar
  • 59. Vogel EK, Woodman GF, Luck SJ. Storage of features, conjunctions, and objects in visual working memory. J Exp Psychol Hum Percept Perform. 2001;27(1):92-114. google scholar
  • 60. Rensink RA. Change Detection. Annu Rev Psychol. 2002 Feb;53(1):245-77. google scholar
  • 61. Brady TF, Konkle T, Alvarez GA. A review of visual memory capacity: Beyond individual items and toward structured representations. JVis. 2011 May26;11(5):4—4. google scholar
  • 62. Conway ARA, Kane MJ, Engle RW. Working memory capacity and its relation to general intelligence. Trends Cogn Sci. 2003 Dec;7(12):547-52. google scholar
  • 63. Bae GY, Olkkonen M, Allred SR, Wilson C, Flombaum JI. Stimulus-specific variability in color working memory with delayed estimation. J Vis. 2014 Apr 8;14(4):7-7. google scholar
  • 64. Fougnie D, Suchow JW, Alvarez GA. Variability in the quality of visual working memory. Nat Commun. 2012 Nov 27;3(1):1229. google scholar
  • 65. van den Berg R, Shin H, Chou WC, George R, Ma WJ. Variability in encoding precision accounts for visual short-term memory limitations. Proc Natl Acad Sci. 2012 May 29;109(22):8780-5. google scholar
  • 66. Brady TF, Alvarez GA. Hierarchical Encoding in Visual Working Memory: Ensemble Statistics Bias Me-mory for Individual Items. Psychol Sci. 2011 Mar;22(3):384-92. google scholar
  • 67. Awh E, Barton B, Vogel EK. Visual Working Memory Represents a Fixed Number of Items Regardless of Complexity. Psychol Sci. 2007 Jul;18(7):622-8. google scholar
  • 68. Beck DM, Rees G, Frith CD, Lavie N. Neural correlates of change detection and change blindness. Nat Neurosci. 2001 Jun;4(6):645-50. google scholar
  • 69. Fernandez-Duque D, Thornton IM. Change Detection Without Awareness: Do Explicit Reports Underesti-mate the Representation of Change in the Visual System? Vis Cogn. 2000 Jan;7(1-3):323-44. google scholar
  • 70. Olson IR, Jiang Y. Is visual short-term memory object based? Rejection of the “strong-object” hypothesis. Percept Psychophys. 2002 Oct;64(7):1055-67. google scholar
  • 71. Hardman KO, Cowan N. Remembering complex objects in visual working memory: Do capacity limits restrict objects or features? J Exp Psychol Learn Mem Cogn. 2015 Mar;41(2):325-47. google scholar
  • 72. Todd JJ, Marois R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature. 2004 Apr;428(6984):751-4. google scholar
  • 73. A. Goodale M, Westwood DA, David Milner A. Two distinct modes of control for object-directed action. In: Progress in Brain Research [Internet]. Elsevier; 2004 [cited 2023 Apr 8]. p. 131-44. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0079612303144093 google scholar
  • 74. Xu Y, Chun MM. Dissociable neural mechanisms supporting visual short-term memory for objects. Nature. 2006 Mar;440(7080):91-5. google scholar
  • 75. Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci. 2003 Sep;7(9):415-23. google scholar
  • 76. Postle BR, Awh E, Jonides J, Smith EE, D’Esposito M. The where and how of attention-based rehearsal in spatial working memory. Cogn Brain Res. 2004 Jul;20(2):194-205. google scholar
  • 77. Ungerleider LG, Courtney SM, Haxby JV. A neural system for human visual working memory. Proc Natl Acad Sci. 1998 Feb 3;95(3):883-90. google scholar
  • 78. Baddeley AD, Baddeley AD. Working memory, thought, and action. Oxford ; New York: Oxford University Press; 2007. 412 p. (Oxford psychology series). google scholar
  • 79. Robison MK, McGuirk WP, Unsworth N. No evidence for enhancements to visual working memory with transcranial direct current stimulation to prefrontal or posterior parietal cortices. Behav Neurosci. 2017 Aug;131(4):277-88. google scholar
  • 80. Cowan N, Li D, Moffitt A, Becker TM, Martin EA, Saults JS, et al. A Neural Region of Abstract Working Memory. J Cogn Neurosci. 2011 Oct 1;23(10):2852-63. google scholar
  • 81. Vogel EK, Machizawa MG. Neural activity predicts individual differences in visual working memory capa-city. Nature. 2004 Apr;428(6984):748-51. google scholar
  • 82. Juan CH, Tseng P, Hsu TY. Elucidating and Modulating the Neural Correlates of Visuospatial Working Memory via Noninvasive Brain Stimulation. Curr Dir Psychol Sci. 2017 Apr;26(2):165-73. google scholar
  • 83. Tseng P, Hsu TY, Chang CF, Tzeng OJL, Hung DL, Muggleton NG, et al. Unleashing Potential: Transc-ranial Direct Current Stimulation over the Right Posterior Parietal Cortex Improves Change Detection in Low-Performing Individuals. J Neurosci. 2012 Aug 1;32(31):10554-61. google scholar
  • 84. Jones KT, Berryhill ME. Parietal Contributions to Visual Working Memory Depend on Task Difficulty. Front Psychiatry [Internet]. 2012 [cited 2023 Apr 5];3. Available from: http://journal.frontiersin.org/artic-le/10.3389/fpsyt.2012.00081/abstract google scholar
  • 85. Heimrath K, Sandmann P, Becke A, Müller NG, Zaehle T. Behavioral and Electrophysiological Effects of Transcranial Direct Current Stimulation of the Parietal Cortex in a Visuo-Spatial Working Memory Task. Front Psychiatry [Internet]. 2012 [cited 2023 Apr 5];3. Available from: http://journal.frontiersin.org/artic-le/10.3389/fpsyt.2012.00056/abstract google scholar
  • 86. Heinen K, Sagliano L, Candini M, Husain M, Cappelletti M, Zokaei N. Cathodal transcranial direct current stimulation over posterior parietal cortex enhances distinct aspects of visual working memory. Neuropsy-chologia. 2016 Jul;87:35-42. google scholar
  • 87. Zaehle T, Sandmann P, Thorne JD, Jancke L, Herrmann CS. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci. 2011 Dec;12(1):2. google scholar
  • 88. Hsu TY, Tseng P, Liang WK, Cheng SK, Juan CH. Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. NeuroImage. 2014 Sep;98:306-13. google scholar
  • 89. Funabiki Y, Shiwa T. Weakness of visual working memory in autism. Autism Res. 2018;11(9):1245-52. google scholar
  • 90. Lee EY, Cowan N, Vogel EK, Rolan T, Valle-Inclan F, Hackley SA. Visual working memory deficits in patients with Parkinson’s disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain. 2010 Sep 1;133(9):2677-89. google scholar
  • 91. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56-92. google scholar
  • 92. Oudman E, Schut MJ, Ten Brink AF, Postma A, Van der Stigchel S. Visual working memory capacity in Korsakoff’s amnesia. J Clin Exp Neuropsychol. 2020;00(00):1-8. google scholar
  • 93. Pourmohammadi A, Motahharynia A, Shaygannejad V, Ashtari F, Adibi I, Sanayei M. Working memory dysfunction differs between secondary progressive and relapsing multiple sclerosis: Effects of clinical phe-notype, age, disease duration, and disability. Mult Scler Relat Disord. 2023 Jan;69:104411. google scholar
  • 94. Qian J. The Working Memory Deficits in Post-Traumatic Stress Disorder and Relevant Interventions. J Educ Humanit Soc Sci. 2023 Feb 7;8:158-62. google scholar
  • 95. Salehinejad MA, Rostami R, Ghanavati E. Transcranial direct current stimulation of dorsolateral prefrontal cortex in major depression: Improving visual working memory, reducing depressive symptoms. NeuroRe-gulation. 2015;2(1):37-49. google scholar
  • 96. Shameli L, Davodi M. Acceptance and Commitment Therapy for Reducing Interference and Improving Verbal and Visual Working Memory in Patients with Multiple Sclerosis. Int J Behav Sci [Internet]. 2021 Apr [cited 2023 Mar 31];15(1). Available from: https://doi.org/10.30491/ijbs.2021.231235.1273 google scholar
  • 97. Zhao G, Chen F, Zhang Q, Shen M, Gao Z. Feature-based information filtering in visual working memory is impaired in Parkinson’s disease. Neuropsychologia. 2018 Mar;111:317-23. google scholar
  • 98. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006 Jun;5(6):525-35. google scholar
  • 99. Dirnberger G, Jahanshahi M. Executive dysfunction in Parkinson’s disease: A review. J Neuropsychol. 2013 Sep;7(2):193-224. google scholar
  • 100. Kehagia AA, Barker RA, Robbins TW. Cognitive Impairment in Parkinson’s Disease: The Dual Syndrome Hypothesis. Neurodegener Dis. 2013;11(2):79-92. google scholar
  • 101. Owen AM. Cognitive Dysfunction in Parkinson’s Disease: The Role of Frontostriatal Circuitry. The Neuros-cientist. 2004 Dec;10(6):525-37. google scholar
  • 102. Zgaljardic DJ, Borod JC, Foldi NS, Mattis P. A Review of the Cognitive and Behavioral Sequelae of Par-kinson’s Disease: Relationship to Frontostriatal Circuitry: Cogn Behav Neurol. 2003 Dec;16(4):193-210. google scholar
  • 103. Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, Considine E, et al. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010 Oct 1;81(10):1105-11. google scholar
  • 104. Beretta VS, Conceiçâo NR, Nobrega-Sousa P, Orcioli-Silva D, Dantas LKBF, Gobbi LTB, et al. Transcranial direct current stimulation combined with physical or cognitive training in people with Parkinson’s disease: a systematic review. J NeuroEngineering Rehabil. 2020 Dec;17(1):74. google scholar
  • 105. Pol F, Salehinejad MA, Baharlouei H, Nitsche MA. The effects of transcranial direct current stimulation on gait in patients with Parkinson’s disease: a systematic review. Transl Neurodegener. 2021 Dec;10(1):22. google scholar
  • 106. Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci. 2006 Nov;249(1):31-8. google scholar
  • 107. Manenti R, Brambilla M, Benussi A, Rosini S, Cobelli C, Ferrari C, et al. Mild cognitive impairment in Parkinson’s disease is improved by transcranial direct current stimulation combined with physical therapy: tDCS and Physical Therapy in PD. Mov Disord. 2016 May;31(5):715-24. google scholar
  • 108. Manenti R, Cotelli MS, Cobelli C, Gobbi E, Brambilla M, Rusich D, et al. Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson Disease: A randomized, place-bo-controlled study. Brain Stimulat. 2018 Nov;11(6):1251-62. google scholar
  • 109. Pereira JB, Junque C, Bartres-Faz D, Marti MJ, Sala-Llonch R, Compta Y, et al. Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson’s disease. Brain Stimulat. 2013 Jan;6(1):16-24. google scholar
  • 110. Lau C, Liu M, Chang K, Chang A, Bai C, Tseng C, et al. Effect of single-session transcranial direct current stimulation on cognition in Parkinson’s disease. CNS Neurosci Ther. 2019 Nov;25(11):1237-43. google scholar
  • 111. Dedoncker J, Brunoni AR, Baeken C, Vanderhasselt MA. A Systematic Review and Meta-Analysis of the Ef-fects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters. Brain Stimulat. 2016 Jul;9(4):501-17. google scholar
  • 112. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005 Sep;166(1):23-30. google scholar
  • 113. Guimarâes J, Sa MJ. Cognitive Dysfunction in Multiple Sclerosis. Front Neurol [Internet]. 2012 [cited 2023 Mar 31];3. Available from: http://journal.frontiersin.org/article/10.3389/fneur.2012.00074/abstract google scholar
  • 114. Rao SM, Grafman J, DiGiulio D, Mittenberg W, Bernardin L, Leo GJ, et al. Memory dysfunction in multiple sclerosis: Its relation to working memory, semantic encoding, and implicit learning. Neuropsychology. 1993 Jul;7(3):364-74. google scholar
  • 115. Ayache SS, Palm U, Chalah MA, Al-Ani T, Brignol A, Abdellaoui M, et al. Prefrontal tDCS Decreases Pain in Patients with Multiple Sclerosis. Front Neurosci [Internet]. 2016 Apr 8 [cited 2023 Mar 31];10. Available from: http://journal.frontiersin.org/Article/10.3389/fnins.2016.00147/abstract google scholar
  • 116. Ayache SS, Chalah MA. The place of transcranial direct current stimulation in the management of multiple sclerosis-related symptoms. Neurodegener Dis Manag. 2018 Dec;8(6):411-22. google scholar
  • 117. Chalah MA, Grigorescu C, Padberg F, Kümpfel T, Palm U, Ayache SS. Bifrontal transcranial direct current stimulation modulates fatigue in multiple sclerosis: a randomized sham-controlled study. J Neural Transm. 2020 Jun;127(6):953-61. google scholar
  • 118. Grigorescu C, Chalah MA, Lefaucheur JP, Kümpfel T, Padberg F, Ayache SS, et al. Effects of Transcranial Direct Current Stimulation on Information Processing Speed, Working Memory, Attention, and Social Cog-nition in Multiple Sclerosis. Front Neurol. 2020 Oct 15;11:545377. google scholar
  • 119. Mattioli F, Bellomi F, Stampatori C, Capra R, Miniussi C. Neuroenhancement through cognitive training and anodal tDCS in multiple sclerosis. Mult Scler J. 2016 Feb;22(2):222-30. google scholar
  • 120. Marazziti D, Consoli G, Picchetti M, Carlini M, Faravelli L. Cognitive impairment in major depression. Eur J Pharmacol. 2010 Jan;626(1):83-6. google scholar
  • 121. McDermott LM, Ebmeier KP. A meta-analysis of depression severity and cognitive function. J Affect Disord. 2009 Dec;119(1-3):1-8. google scholar
  • 122. Campbell S, Marriott M, Nahmias C, MacQueen GM. Lower Hippocampal Volume in Patients Suffering From Depression: A Meta-Analysis. Am J Psychiatry. 2004 Apr;161(4):598-607. google scholar
  • 123. Hamilton JP, Siemer M, Gotlib IH. Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Mol Psychiatry. 2008 Nov;13(11):993-1000. google scholar
  • 124. Koenigs M, Grafman J. The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res. 2009 Aug;201(2):239-43. google scholar
  • 125. Debener S, Beauducel A, Nessler D, Brocke B, Heilemann H, Kayser J. Is Resting Anterior EEG Alpha Asymmetry a Trait Marker for Depression? Neuropsychobiology. 2000;41(1):31-7. google scholar
  • 126. Reid SA, Duke LM, Allen JJB. Resting frontal electroencephalographic asymmetry in depression: Incon-sistencies suggest the need to identify mediating factors. Psychophysiology. 1998 Jul;35(4):389-404. google scholar
  • 127. Brunoni AR, Ferrucci R, Fregni F, Boggio PS, Priori A. Transcranial direct current stimulation for the treatment of major depressive disorder: A summary of preclinical, clinical and translational findings. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Oct;39(1):9-16. google scholar
  • 128. Boggio PS, Bermpohl F, Vergara AO, Muniz ALCR, Nahas FH, Leme PB, et al. Go-no-go task performance improvement after anodal transcranial DC stimulation of the left dorsolateral prefrontal cortex in major depression. J Affect Disord. 2007 Aug;101(1-3):91-8. google scholar
  • 129. Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP, Pascual-Leone A. Treatment of major dep-ression with transcranial direct current stimulation. Bipolar Disord. 2006 Apr;8(2):203-4. google scholar
  • 130. Fregni F, Boggio PS, Nitsche MA, Rigonatti SP, Pascual-Leone A. Cognitive effects of repeated sessions of transcranial direct current stimulation in patients with depression. Depress Anxiety. 2006;23(8):482-4. google scholar
  • 131. Oliveira JF, Zanâo TA, Valiengo L, Lotufo PA, Bensenor IM, Fregni F, et al. Acute working memory im-provement after tDCS in antidepressant-free patients with major depressive disorder. Neurosci Lett. 2013 Mar;537:60-4. google scholar
  • 132. Wolkenstein L, Plewnia C. Amelioration of Cognitive Control in Depression by Transcranial Direct Current Stimulation. Biol Psychiatry. 2013 Apr;73(7):646-51. google scholar
  • 133. Ferrucci R, Bortolomasi M, Brunoni A, Vergari M, Tadini L, Giacopuzzi M, et al. Comparative benefits of transcranial direct current stimulation (TDCS) treatment in patients with mild/moderate vs. severe depres-sion. 246 Clin Neuropsychiatry. 2009 Dec 1;6. google scholar
  • 134. Loo CK, Sachdev P, Martin D, Pigot M, Alonzo A, Malhi GS, et al. A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression. Int J Neuropsychopharmacol. 2010 Feb;13(01):61. google scholar
  • 135. Martin DM, Alonzo A, Mitchell PB, Sachdev P, Galvez V, Loo CK. Fronto-extracephalic transcranial direct current stimulation as a treatment for major depression: An open-label pilot study. J Affect Disord. 2011 Nov;134(1-3):459-63. google scholar
  • 136. Palm U, Schiller C, Fintescu Z, Obermeier M, Keeser D, Reisinger E, et al. Transcranial direct current stimulation in treatment resistant depression: A randomized double-blind, placebo-controlled study. Brain Stimulat. 2012 Jul;5(3):242-51. google scholar
  • 137. Belekou A, Katshu MZUH, Dundon NM, d’Avossa G, Smyrnis N. Spatial and non-spatial feature binding impairments in visual working memory in schizophrenia. Schizophr Res Cogn. 2023 Jun;32:100281. google scholar
  • 138. Brown EC, Gonzalez-Liencres C, Tas C, Brüne M. Reward modulates the mirror neuron system in schi-zophrenia: A study into the mu rhythm suppression, empathy, and mental state attribution. Soc Neurosci. 2016;11(2):175-86. google scholar
  • 139. McCormick LM, Brumm MC, Beadle JN, Paradiso S, Yamada T, Andreasen N. Mirror neuron function, psychosis, and empathy in schizophrenia. Psychiatry Res Neuroimaging. 2012 Mar;201(3):233-9. google scholar
  • 140. Smith RC, Boules S, Mattiuz S, Youssef M, Tobe RH, Sershen H, et al. Effects of transcranial direct current stimulation (tDCS) on cognition, symptoms, and smoking in schizophrenia: A randomized controlled study. Schizophr Res. 2015 Oct;168(1-2):260-6. google scholar
  • 141. Gold JM, Hahn B, Zhang WW, Robinson BM, Kappenman ES, Beck VM, et al. Reduced Capacity but Spa-red Precision and Maintenance of Working Memory Representations in Schizophrenia. Arch Gen Psychiatry. 2010 Jun 1;67(6):570. google scholar
  • 142. Moon SY, Kim M, Hwang WJ, Lee TY, Kwon JS. A pilot study investigating the effect of transcranial direct current stimulation on the electrophysiological correlates of working memory in patients with schizophrenia. Psychiatry Res Neuroimaging. 2019 Feb;284:9-12. google scholar
  • 143. Balconi M. Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull. 2013 Jun;29(3):381-9. google scholar
  • 144. Jeon SY, Han SJ. Improvement of the Working Memory and Naming by Transcranial Direct Current Stimu-lation. Ann Rehabil Med. 2012;36(5):585. google scholar
  • 145. Kopelman MD, Thomson AD, Guerrini I, Marshall EJ. The Korsakoff Syndrome: Clinical Aspects, Psycho-logy and Treatment. Alcohol Alcohol. 2009 Jan 16;44(2):148-54. google scholar
  • 146. Kessels RPC, Kopelman MD. Context Memory in Korsakoff’s Syndrome. Neuropsychol Rev. 2012 Jun;22(2):117-31. google scholar
  • 147. Kessler J, Markowitsch HJ, Bast-Kessler C. Memory of alcoholic patients, including Korsakoff’s, tested with a Brown-Peterson paradigm. Arch Für Psychol. 1987;139:115-32. google scholar
  • 148. Pollux PMJ, Wester A, De Haan EHF. Random generation deficit in alcoholic Korsakoff patients. Neurops-ychologia. 1995 Jan;33(1):125-9. google scholar
  • 149. Pitel AL, Beaunieux H, Witkowski T, Vabret F, de la Sayette V, Viader F, et al. Episodic and Working Me-mory Deficits in Alcoholic Korsakoff Patients: The Continuity Theory Revisited. Alcohol Clin Exp Res. 2008 Jul;32(7):1229-41. google scholar
  • 150. Cotelli M, Manenti R, Brambilla M, Petesi M, Rosini S, Ferrari C, et al. Anodal tDCS during face-name associations memory training in Alzheimer’s patients. Front Aging Neurosci [Internet]. 2014 Mar 19 [cited 2023 Apr 1];6. Available from: http://journal.frontiersin.org/article/10.3389/fnagi.2014.00038/abstract google scholar
  • 151. Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S, et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008 Aug 12;71(7):493-8. google scholar
  • 152. Khedr EM, Gamal NFE, El-Fetoh NA, Khalifa H, Ahmed EM, Ali AM, et al. A Double-Blind Randomized Clinical Trial on the Efficacy of Cortical Direct Current Stimulation for the Treatment of Alzheimerâ€TMs Disease. Front Aging Neurosci [Internet]. 2014 Oct 9 [cited 2023 Apr 1];6. Available from: http://journal. frontiersin.org/article/10.3389/fnagi.2014.00275/abstract google scholar
  • 153. Suemoto CK, Apolinario D, Nakamura-Palacios EM, Lopes L, Paraizo Leite RE, Sales MC, et al. Effects of a Non-focal Plasticity Protocol on Apathy in Moderate Alzheimer’s Disease: A Randomized, Double-blind, Sham-controlled Trial. Brain Stimulat. 2014 Mar;7(2):308-13. google scholar
  • 154. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (fifth edition, text revision ed.). American Psychiatric Association; 2022. google scholar
  • 155. Nejati V, Salehinejad MA, Sabayee A. Impaired working memory updating affects memory for emotional and non-emotional materials the same way: evidence from post-traumatic stress disorder (PTSD). Cogn Process. 2018 Feb;19(1):53-62. google scholar
  • 156. Sumner JA, Hagan K, Grodstein F, Roberts AL, Harel B, Koenen KC. Posttraumatic stress disorder symp-toms and cognitive function in a large cohort of middle-aged women. Depress Anxiety. 2017 Apr;34(4):356-66. google scholar
  • 157. Swick D, Kutas M, Neville H. Localizing the neural generators of event-related brain potentials. Localization Neuroimaging Neuropsychol. 1994;73-121. google scholar
  • 158. Vicario CM, Felmingham KL. Slower Time estimation in Post-Traumatic Stress Disorder. Sci Rep. 2018 Jan 10;8(1):392. google scholar
  • 159. Aase DM, Gorka SM, Soble JR, Bryan CJ, Phan KL. Impact of alcohol use, combat exposure, and postt-raumatic stress on verbal and visual working memory performance in post-9/11 veterans. Psychol Trauma Theory Res Pract Policy. 2022;No Pagination Specified-No Pagination Specified. google scholar
  • 160. Mirabolfathi V, Moradi AR, Bakhtiari M. Emotional working memory in post-traumatic stress disorder and depression. Adv Cogn Sci. 2016;17:33-44. google scholar
  • 161. Ahmadizadeh MJ, Rezaei M, Fitzgerald PB. Transcranial direct current stimulation (tDCS) for post-tra-umatic stress disorder (PTSD): A randomized, double-blinded, controlled trial. Brain Res Bull. 2019 Nov;153:273-8. google scholar
  • 162. van ’t Wout-Frank M, Shea MT, Larson VC, Greenberg BD, Philip NS. Combined transcranial direct current stimulation with virtual reality exposure for posttraumatic stress disorder: Feasibility and pilot results. Brain Stimulat. 2019 Jan 1;12(1):41-3. google scholar
  • 163. van‘t Wout M, Longo SM, Reddy MK, Philip NS, Bowker MT, Greenberg BD. Transcranial direct cur-rent stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav. 2017 May;7(5):e00681. google scholar
  • 164. Saunders N, Downham R, Turman B, Kropotov J, Clark R, Yumash R, et al. Working memory training with tDCS improves behavioral and neurophysiological symptoms in pilot group with post-traumatic stress disorder (PTSD) and with poor working memory. Neurocase. 2015 May 4;21(3):271-8. google scholar
  • 165. Cui J, Gao D, Chen Y, Zou X, Wang Y. Working Memory in Early-School-Age Children with Asperger’s Syndrome. J Autism Dev Disord. 2010 Aug 1;40(8):958-67. google scholar
  • 166. Geurts HM, Verte S, Oosterlaan J, Roeyers H, Sergeant JA. How specific are executive functioning deficits in attention deficit hyperactivity disorder and autism? J Child Psychol Psychiatry. 2004 May;45(4):836-54. google scholar
  • 167. Zinke K, Fries E, Altgassen M, Kirschbaum C, Dettenborn L, Kliegel M. Visuospatial Short-Term Memory Explains Deficits in Tower Task Planning in High-Functioning Children with Autism Spectrum Disorder. Child Neuropsychol. 2010 Apr 21;16(3):229-41. google scholar
  • 168. Williams DL, Goldstein G, Minshew NJ. The Profile of Memory Function in Children With Autism. Neuropsychology. 2006 Jan;20(1):21-9. google scholar
  • 169. Williams DL, Goldstein G, Carpenter PA, Minshew NJ. Verbal and spatial working memory in autism. J Autism Dev Disord. 2005 Dec;35(6):747-56. google scholar
  • 170. Williams DL, Goldstein G, Minshew NJ. Impaired memory for faces and social scenes in autism: clinical implications of memory dysfunction. Arch Clin Neuropsychol. 2005 Jan 1;20(1):1-15. google scholar
  • 171. Lynn A, Luna B, O’Hearn K. Visual working memory performance is intact across development in autism spectrum disorder. Autism Res. 2022;15(5):881-91. google scholar
  • 172. Jiang YV, Capistrano CG, Palm BE. Spatial working memory in children with high-functioning autism: intact configural processing but impaired capacity. J Abnorm Psychol. 2014 Feb;123(1):248-57. google scholar
  • 173. Hamilton CJ, Mammarella IC, Giofre D. Autistic-like traits in children are associated with enhanced per-formance in a qualitative visual working memory task. Autism Res. 2018;11(11):1494-9. google scholar
  • 174. Richmond LL, Thorpe M, Berryhill ME, Klugman J, Olson IR. Individual differences in autistic trait load in the general population predict visual working memory performance. Q J Exp Psychol. 2013 Jun;66(6):1182-95. google scholar
  • 175. Happe F, Frith U. The Weak Coherence Account: Detail-focused Cognitive Style in Autism Spectrum Di-sorders. J Autism Dev Disord. 2006 Jan 1;36(1):5-25. google scholar
  • 176. Li S, Cai Y, Liu J, Li D, Feng Z, Chen C, et al. Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory. NeuroImage. 2017 Apr;149:210-9. google scholar
  • 177. Horvath JC, Forte JD, Carter O. Quantitative Review Finds No Evidence of Cognitive Effects in Healthy Populations From Single-session Transcranial Direct Current Stimulation (tDCS). Brain Stimulat. 2015 May;8(3):535-50. google scholar
  • 178. Arciniega H, Gözenman F, Jones KT, Stephens JA, Berryhill ME. Frontoparietal tDCS Benefits Visual Working Memory in Older Adults With Low Working Memory Capacity. Front Aging Neurosci. 2018 Mar 13;10:57. google scholar
  • 179. Woodman GF, Luck SJ. Electrophysiological measurement of rapid shifts of attention during visual search. Nature. 1999 Aug;400(6747):867-9. google scholar
  • 180. Klaver P, Talsma D, Wijers AA, Heinze HJ, Mulder G. An event-related brain potential correlate of visual short-term memory. NeuroReport. 1999;10(10):2001-5. google scholar
  • 181. Jolicreur P, Brisson B, Robitaille N. Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task. Brain Res. 2008 Jun;1215:160-72. google scholar
  • 182. Mazza V, Turatto M, Caramazza A. Attention selection, distractor suppression and N2pc. Cortex. 2009 Jul;45(7):879-90. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.