Using the Metabarcoding Approach for Characterization of Community Diversity in Mucilage in the Sea of Marmara
Onur Doğan, Anıl Doğan Örün, Raşit Bilgin, Melek İşinibilirThe ecological balance of the Marmara Sea has undergone significant changes in the past 50 years due to climate change, eutrophication, overfishing, maritime transport, and habitat destruction. These changes have led to increased algal blooms, periodic formation of mucilage, disappearance of pollution-sensitive species, and a rise in opportunistic and invasive species. Mucilage is a slimy and sticky structure and is belived produced by bacteria and unicellular phytoplanktonic organisms. Research on mucilage mainly focuses on oceanographic conditions, environmental substances/contaminants, and phytoplankton/zooplankton composition. However, limited information exists on mucilage and its components with respect to molecular genetics. This study aimed to analyze the DNA of bacteria, algae (including diatoms), and animal (especially zooplankton) in mucilage samples collected from different stations in the Marmara Sea. Metagenome sequencing and bioinformatics analysis were used to identify the samples. Additionally, water samples were collected from specific stations without mucilage, serving as negative controls. A diverse array of planktonic communities, both prokaryotic and eukaryotic were found in the mucilage samples, which is composed of variety of organisms normally detected in mucilaginous aggregates. Macroalgae and jellyfish were also found in the mucilage samples, and detailed studies on the life cycles of these species and routine monitoring of selected stations are recommended. We emphasize the significance of developing probes specific to mucilage-causing species and the establishing of early warning systems to enable prompt actions by local authorities.
References
- Aktan, Y. (2008). Mucilage event associated with diatoms and dinoflagellates in Sea of Marmara, Turkey. Harmful Algae News, 36, 1-3. google scholar
- Apprill, A. (2017). Marine animal microbiomes: toward understanding host-microbiome interactions in a changing ocean. Frontiers in Marine Science, 4, 222. google scholar
- Balkis, N., Atabay, H., Türetgen, I., Albayrak, S., Balkis, H., & Tüfekçi, V. (2011). Role of single-celled organisms in mucilage formation on the shores of Büyükada Island (the Marmara Sea). Journal of the Marine Biological Association of the United Kingdom, 91(4), 771-781. google scholar
- Barbour, M. T. (1999). Rapid bioassessment protocols for use in wadeable streams and rivers: periphyton, benthic macroinvertebrates and fish. US Environmental Protection Agency, Office of Water. google scholar
- Basso, Lorena, Lucia Rizzo, Marinella Marzano, Marianna Intranuovo, Bruno Fosso, Graziano Pesole, Stefano Piraino, and Loredana Stabili. “Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and humans health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria).” Science of the Total Environment 692 (2019): 305-318. google scholar
- Bik, H. M., Porazinska, D. L., Creer, S., Caporaso, J. G., Knight, R., & Thomas, W. K. (2012). Sequencing our way towards understanding global eukaryotic biodiversity. Trends in ecology & evolution, 27(4), 233-243. google scholar
- Boussarie, Germain, Judith Bakker, Owen S. Wangensteen, Stefano Mariani, Lucas Bonnin, Jean-Baptiste Juhel, Jeremy J. Kiszka et al. “Environmental DNA illuminates the dark diversity of sharks.” Science advances 4, no. 5 (2018): eaap9661. google scholar
- Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., & Coissac, E. (2016). obitools: A unix-inspired software package for DNA metabarcoding. Molecular ecology resources, 16(1), 176-182. google scholar
- Buchner, D., & Leese, F. (2020). BOLDigger-a Python package to identify and organise sequences with the Barcode of Life Data systems. Metabarcoding and Metagenomics, 4, e53535. google scholar
- Buxton, A., Matechou, E., Griffin, J., Diana, A., & Griffiths, R. A. (2021). Optimising sampling and analysis protocols in environmental DNA studies. Scientific Reports, 11(1), 11637. google scholar
- Condon, R. H., Steinberg, D. K., Del Giorgio, P. A., Bouvier, T. C., Bronk, D. A., Graham, W. M., & Ducklow, H. W. (2011). Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proceedings of the National Academy of Sciences, 108(25), 10225-10230. google scholar
- Çağatay, M. N., Kürşad Eriş, W. B. F. Ryan, Ümmühan Sancar, A. Polonia, S. Akçer, Demet Biltekin et al. «Late Pleistocene-Holocene evolution of the northern shelf of the Sea of Marmara.» Marine Geology 265, no. 3-4 (2009): 87-100. google scholar
- Danovaro, R., Fonda Umani, S., & Pusceddu, A. (2009). Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. PLoS One, 4(9), e7006. google scholar
- Del Campo, J., Sieracki, M. E., Molestina, R., Keeling, P., Massana, R., & Ruiz-Trillo, I. (2014). The others: our biased perspective of eukaryotic genomes. Trends in ecology & evolution, 29(5), 252-259. google scholar
- Del Negro, Paola, Erica Crevatin, Chiara Larato, Carla Ferrari, Cecilia Totti, Marinella Pompei, Michele Giani, Daniela Berto, and Serena Fonda Umani. “Mucilage microcosms.” Science of the Total Environment 353, no. 1-3 (2005): 258-269. google scholar
- Eker-Develi, E., Tekdal, D., Demet, A. E., Yıldız, H. B., & Kideys, A. E. (2023). Morphology, Molecular Genetics and Potential Importance for Mucilage Events of the New Coccolithophorid Ochrosphaera neapolitana in the Sea of Marmara. Journal of Marine Science and Engineering, 11(3), 468. google scholar
- Elbrecht, V. (2022, January 7). Just Another Metabarcoding Pipeline. Retrieved from Github: http://github.com/ VascoElbrecht/JAMP google scholar
- Faganeli, Jadran, Bojana Mohar, Romina Kofol, Vesna Pavlica, Tjasa Marinsek, Ajda Rozman, Nives Kovac, and Angela Surca Vuk. “Nature and lability of Northern Adriatic macroaggregates.” Marine drugs 8, no. 9 (2010): 2480-2492. google scholar
- Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology letters, 4(4), 423-425. google scholar
- Fogg, G. E. (1995). Some speculations on the nature of the pelagic mucilage community of the northern Adriatic Sea. Science of the total environment, 165(1-3), 59-63. google scholar
- Fr0slev, T. G., Kj0ller, R., Bruun, H. H., Ejrn^s, R., Brunbjerg, A. K., Pietroni, C., & Hansen, A. J. (2017). Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nature communications, 8(1), 1188. google scholar
- Genitsaris, S., Stefanidou, N., Sommer, U., & Moustaka-Gouni, M. (2019). Phytoplankton blooms, red tides and mucilaginous aggregates in the urban Thessaloniki Bay, Eastern Mediterranean. Diversity, 11(8), 136. google scholar
- Gorur, N., Cagatay, M. N., & Saking, M. (1998). Origin of the Sea of Marmara as deduced from Neogene to Quaternary paleogeographic evolution of its frame. Oceanographic Literature Review, 1(45), 79. google scholar
- Gundogdu, A., Nalbantoglu, O. U., Karis, G., Sarikaya, I., Erdogan, M. N., Hora, M., & Aslan, H. (2023). Exploring the Microbiome of Marmara Sea Mucilage: A Shotgun Metagenomics Study. Available at SSRN 4425639. google scholar
- Güneralp, B., Xu, X., & Lin, W. (2021). Infrastructure development with (out) ecological conservation: the Northern Forests in İstanbul. Regional Environmental Change, 21(3), 86. google scholar
- Hanke, George, François Galgani, Stefanie Werner, Lex Oosterbaan, Per Nilsson, David Fleet, Sue Kinsey et al. Guidance on monitoring of marine litter in European seas. Publications Office of the European Union, 2013. google scholar
- Illumina. (2013). Retrieved from 16S Sample Preparation Guide: https://www.illumina.com/content/dam/ illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf google scholar
- Jennings, S., & Kaiser, M. J. (1998). The effects of fishing on marine ecosystems. In Advances in marine biology (Vol. 34, pp. 201-352). Academic Press. google scholar
- Keck, F., Vasselon, V., Tapolczai, K., Rimet, F., & Bouchez, A. (2017). Freshwater biomonitoring in the Information Age. Frontiers in Ecology and the Environment, 15(5), 266-274. google scholar
- Keskin, E. (2014). Detection of invasive freshwater fish species using environmental DNA survey. Biochemical Systematics and Ecology, 56, 68-74. google scholar
- Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic acids research, 41(1), e1-e1. google scholar
- Kos Kramar, M., Tinta, T., Lucic, D., Malej, A., & Turk, V. (2019). Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PloS one, 14(1), e0198056. google scholar
- Kovac, N., Viers, J., Faganeli, J., Bajt, O., & Pokrovsky, O. S. (2023). Elemental Composition of Plankton Exometabolites (Mucous Macroaggregates): Control by Biogenic and Lithogenic Components. Metabolites, 13(6), 726. google scholar
- Laramie, M. B., Pilliod, D. S., & Goldberg, C. S. (2015). Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biological Conservation, 183, 29-37. google scholar
- Leray, Matthieu, Joy Y. Yang, Christopher P. Meyer, Suzanne C. Mills, Natalia Agudelo, Vincent Ranwez, Joel T. Boehm, and Ryuji J. Machida. “A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents.” Frontiers in zoology 10, no. 1 (2013): 1-14. google scholar
- Lotze, Heike K., Hunter S. Lenihan, Bruce J. Bourque, Roger H. Bradbury, Richard G. Cooke, Matthew C. Kay, Susan M. Kidwell, Michael X. Kirby, Charles H. Peterson, and Jeremy BC Jackson. “Depletion, degradation, and recovery potential of estuaries and coastal seas.” Science 312, no. 5781 (2006): 1806-1809. google scholar
- Macher, T. H., Beermann, A. J., & Leese, F. (2021). TaxonTableTools: A comprehensive, platform-independent graphical user interface software to explore and visualise DNA metabarcoding data. Molecular Ecology Resources, 21(5), 1705-1714. google scholar
- MacKenzie, L., Sims, I., Beuzenberg, V., & Gillespie, P. (2002). Mass accumulation of mucilage caused by dinoflagellate polysaccharide exudates in Tasman Bay, New Zealand. Harmful algae, 1(1), 69-83. google scholar
- Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal, 17(1), 10-12. google scholar
- Mecozzi, M., Acquistucci, R., Di Noto, V., Pietrantonio, E., Amici, M., & Cardarilli, D. (2001). Characterization of mucilage aggregates in Adriatic and Tyrrhenian Sea: structure similarities between mucilage samples and the insoluble fractions of marine humic substance. Chemosphere, 44(4), 709-720. google scholar
- Merkes, C. M., McCalla, S. G., Jensen, N. R., Gaikowski, M. P., & Amberg, J. J. (2014). Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data. PLoS One, 9(11), e113346. google scholar
- Michoacan, P. M. (2008). Mucilage event associated with diatoms and dinoflagellates in Sea of Marmara, Turkey. Harmful Algae News. google scholar
- Mills, C. E. (2001). Jellyfish blooms: are populations increasing globally in response to changing ocean conditions?. Hydrobiologia, 451, 55-68. google scholar
- Mortensen, P. B., Roberts, J. M., & Sundt, R. C. (2000). Video-assisted grabbing: a minimally destructive method of sampling azooxanthellate coral banks. Journal of the Marine Biological Association of the United Kingdom, 80(2), 365-366. google scholar
- Okyar, M. İ., Üstün, F., & Orun, D. A. (2015). Changes in abundance and community structure of the zooplankton population during the 2008 mucilage event in the northeastern Marmara Sea. Turkish Journal of Zoology, 39(1), 28-38. google scholar
- Ozbayram, E. G., Akcaalan, R., Isinibilir, M., & Albay, M. (2022). Insights into the bacterial community structure of marine mucilage by metabarcoding. Environmental Science and Pollution Research, 29(35), 5324953258. google scholar
- Pitt, K. A., Welsh, D. T., & Condon, R. H. (2009). Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia, 616, 133-149. google scholar
- Precali, R. G. (2005). Mucilaginous aggregates in the northern Adriatic in the period 1999-2002: typology and distribution. Science of the Total Environment, 353(1-3), 10-23. google scholar
- Quast, Christian, Elmar Pruesse, Pelin Yilmaz, Jan Gerken, Timmy Schweer, Pablo Yarza, Jörg Peplies, and Frank Oliver Glöckner. “The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.” Nucleic acids research 41, no. D1 (2012): D590-D596. google scholar
- Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R., & Gough, K. C. (2014). The detection of aquatic animal species using environmental DNA-a review of eDNA as a survey tool in ecology. Journal of applied ecology, 51(5), 1450-1459. google scholar
- Riaz, T., Shehzad, W., Viari, A., Pompanon, F., Taberlet, P., & Coissac, E. (2011). ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic acids research, 39(21), e145-e145. google scholar
- Rimet, Frederic, Teofana Chonova, Gilles Gassiole, Maria Kahlert, François Keck, Martyn Kelly, Maxim Kulikovskiy et al. “Diat. barcode: a DNA tool to decipher diatom communities for the evaluation environmental pressures.” In ARPHA Conference Abstracts, vol. 4, p. e64940. Pensoft Publishers, 2021. google scholar
- Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahe, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. google scholar
- SAVUN-HEKİMOĞLU, B., & Gazioğlu, C. (2021). Mucilage problem in the semi-enclosed seas: Recent outbreak in the Sea of Marmara. International Journal of Environment and Geoinformatics, 8(4), 402-413. google scholar
- Schroeder, A., Stankovic, D., Pallavicini, A., Gionechetti, F., Pansera, M., & Camatti, E. (2020). DNA metabarcoding and morphological analysis-Assessment of zooplankton biodiversity in transitional waters. Marine Environmental Research, 160, 104946. google scholar
- Simon, M., Grossart, H. P., Schweitzer, B., & Ploug, H. (2002). Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic microbial ecology, 28(2), 175-211. google scholar
- Stefanni, S., Stankovic, D., Borme, D., de Olazabal, A., Juretic, T., Pallavicini, A., & Tirelli, V. (2018). Multi-marker metabarcoding approach to study mesozooplankton at basin scale. Scientific Reports, 8(1), 12085. google scholar
- Tinta, T., Kogovsek, T., Klun, K., Malej, A., Herndl, G. J., & Turk, V. (2019). Jellyfish-associated microbiome in the marine environment: exploring its biotechnological potential. Marine drugs, 17(2), 94. google scholar
- Tinta, T., Klun, K., & Herndl, G. J. (2021). The importance of jellyfish-microbe interactions for biogeochemical cycles in the ocean. Limnology and Oceanography, 66(5), 2011-2032. google scholar
- Turk, V., Hagström, Â., Kovac, N., & Faganeli, J. (2010). Composition and function of mucilage macroaggregates in the northern Adriatic. Aquatic microbial ecology, 61(3), 279-289. google scholar
- Tüfekçi, V., Balkis, N., Beken, C. P., Ediger, D., & Mantikci, M. (2010). Phytoplankton composition and environmental conditions of the mucilage event in the Sea of Marmara. Turkish Journal of Biology, 34(2), 199-210. google scholar
- Weigand, Hannah, Arne J. Beermann, Fedor Ğiampor, Filipe O. Costa, Zoltan Csabai, Sofia Duarte, Matthias F. Geiger et al. “DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work.” Science of the Total Environment 678 (2019): 499-524. google scholar
- Weiland-Brauer, N., Neulinger, S. C., Pinnow, N., Künzel, S., Baines, J. F., & Schmitz, R. A. (2015). Composition of bacterial communities associated with Aurelia aurita changes with compartment, life stage, and population. Applied and environmental microbiology, 81(17), 6038-6052. google scholar
- Worm, Boris, Edward B. Barbier, Nicola Beaumont, J. Emmett Duffy, Carl Folke, Benjamin S. Halpern, Jeremy BC Jackson et al. “Impacts of biodiversity loss on ocean ecosystem services.” science 314, no. 5800 (2006): 787-790. google scholar
- Yücel, M. Ö. (2021). The sea snot outbreak in the Sea of Marmara: Biogeochemical transformations of the sea, modern-day pressures and a roadmp for the way forward. Ecology of the Marmara Sea: Formation and Interactions of Marine Mucilage, and Recommendations for Solutions, a, 249-267. google scholar
- Zaiko, A., Samuiloviene, A., Ardura, A., & Garcia-Vazquez, E. (2015). Metabarcoding approach for nonindigenous species surveillance in marine coastal waters. Marine Pollution Bulletin, 100(1), 53-59. google scholar