CHAPTER


DOI :10.26650/B/CH12CH47.2023.014.25   IUP :10.26650/B/CH12CH47.2023.014.25    Full Text (PDF)

Yaşlılarda Mi̇neral Ve Kemi̇k Bozuklukları

Kenan Ateş

Kronik böbrek hastalığının (KBH) ilerlemesi sürecinde mineral ve kemik metabolizmasında, artmış kırık, kemik dışı kalsifikasyonlar, kardiyovasküler olaylar ve mortalite riskleri gibi olumsuz klinik sonuçlara yol açabilen çeşitli bozukluklar ortaya çıkar. Geçmişte inanılanın aksine basitçe bir kemik hastalığı değil de sistemik bir sorun olması nedeniyle, Kidney Disease: Improving Global Outcomes (KDIGO) çalışma grubu, 2006 yılında renal osteodistrofi yerine “KBH-Mineral ve Kemik Bozukluğu” (KBH-MKB) teriminin kullanılmasını önermiştir.1 Renal osteodistrofi terimi ise biyopsi ile ortaya konulan KBH’daki kemik morfolojisindeki değişiklikleri tanımlamak için kullanılmaktadır. KBH-MKB, aşağıdaki bozuklukların biri veya kombinasyonu ile karakterizedir:

• Kalsiyum, fosfor, paratiroid hormon (PTH), D vitamini ve fibroblast büyüme faktörü-23’ü (FGF-23) ilgilendiren biyokimyasal anormallikler,

• Kemik döngüsü, mineralizasyonu, volümü, lineer büyümesi ve dayanıklığında bozukluklar,

• Özellikle vasküler olmak üzere kemik dışı kalsifikasyonlar.



References

  • 1. Moe S, Drueke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2006; 69:1945-53. google scholar
  • 2. Hu L, Napoletano A, Provenzano M, et al. Mineral bone disorders in kidney disease patients: The ever-current topic. Int J Mol Sci 2022; 23:12223. google scholar
  • 3. Kuro-o M. Overview of the FGF23-Klotho axis. Pediatr Nephrol 2010; 25:583-90. google scholar
  • 4. Hu MC, Shi M, Moe OW. Role of aKlotho and FGF23 in regulation of type II Na-dependent phosphate co-transporters. Pflügers Arch 2019; 471:99-108. google scholar
  • 5. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 2015; 10:1257-72. google scholar
  • 6. Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004; 19:429-35. google scholar
  • 7. Miyamoto K, Ito M, Kuwahata M, Kato S, Segawa H. Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23. Ther Apher Dial 2005; 9:331-5. google scholar
  • 8. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007; 117:4003-8. google scholar
  • 9. Canalejo R, Canalejo A, Martinez-Moreno JM, et al. FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol 2010; 21:1125-35. google scholar
  • 10. Galitzer H, Ben-Dov IZ, Silver J, Naveh-Many T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int 2010; 77:211-8. google scholar
  • 11. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011; 79:1370-8. google scholar
  • 12. Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome re-sembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 2003; 17:2393-403. google scholar
  • 13. Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 2011; 22:124-36. google scholar
  • 14. Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease. Kidney Int 2007; 71:31-8. google scholar
  • 15. Moallem E, Kilav R, Silver J, Naveh-Many T. RNA-Protein binding and post-transcriptional regulation of parathyroid hormone gene expression by calcium and phosphate. J Biol Chem 1998; 273:5253-9. google scholar
  • 16. Centeno PP, Herberger A, Mun HC, et al. Phosphate acts directly on the calcium-sensing receptor to sti-mulate parathyroid hormone secretion. Nat Commun 2019; 10:4693. google scholar
  • 17. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol 2005; 289:8-28. google scholar
  • 18. Hyder R, Sprague SM. Secondary hyperparathyroidism in a patient with CKD. Clin J Am Soc Nephrol 2020; 15:1041-3. google scholar
  • 19. Brown EM. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab 2013; 27:333-43. google scholar
  • 20. Goodman WG, Quarles LD. Development and progression of secondary hyperparathyroidism in chronic kidney disease: lessons from molecular genetics. Kidney Int 2008; 74:276-88 google scholar
  • 21. Goltzman D, Mannstadt M, Marcocci C. Physiology of the calcium-parathyroid hormone-vitamin D axis. Front Horm Res 2018; 50:1-13. google scholar
  • 22. Cunningham J, Locatelli F, Rodriguez M. Secondary hyperparathyroidism: Pathogenesis, disease progres-sion, and therapeutic options. Clin J Am Soc Nephrol 2011; 6:913-21. google scholar
  • 23. Pelletier S, Roth H, Bouchet JL, Drueke T, London G, Fouque D. Mineral and bone disease pattern in elderly haemodialysis patients. Nephrol Dial Transplant 2010; 25:3062-70. google scholar
  • 24. Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004; 351:1296-305. google scholar
  • 25. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004; 15:2208-18. google scholar
  • 26. Floege J, Kim J, Ireland E, et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a Euro-pean haemodialysis population. Nephrol Dial Transplant 2011; 26:1948-55. google scholar
  • 27. Hou Y, Li X, Sun L, Qu Z, Jiang L, Du Y. Phosphorus and mortality risk in end-stage renal disease: A meta-analysis. Clin Chim Acta 2017; 474:108-13. google scholar
  • 28. Lopes MB, Karaboyas A, Bieber B, et al. Impact of longer term phosphorus control on cardiovascular mor-tality in hemodialysis patients using an area under the curve approach: Results from the DOPPS. Nephrol Dial Transplant 2020; 35:1794-801. google scholar
  • 29. Bellasi A, Mandreoli M, Baldrati L, et al. Chronic kidney disease progression and outcome according to serum phosphorus in mild-to-moderate kidney dysfunction. Clin J Am Soc Nephrol 2011; 6:883-91. google scholar
  • 30. Sim JJ, Bhandari SK, Smith N, et al. Phosphorus and risk of renal failure in subjects with normal renal function. Am J Med 2013; 126:311-8. google scholar
  • 31. Sekiguchi S, Suzuki A, Asano S, et al. Phosphate overload induces podocyte injury via type III Na-depen-dent phosphate transporter. Am J Physiol Renal Physiol 2011; 300:F848-56. google scholar
  • 32. Tentori F, Wang M, Bieber BA, et al. Recent changes in therapeutic approaches and association with out-comes among patients with secondary hyperparathyroidism on chronic hemodialysis: the DOPPS study. Clin J Am Soc Nephrol 2015; 10:98-109. google scholar
  • 33. Danese MD, Kim J, Doan QV, Dylan M, Griffiths R, Chertow GM. PTH and the risks for hip, vertebral, and pelvic fractures among patients on dialysis. Am J Kidney Dis 2006; 47:149-56. google scholar
  • 34. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder. Kidney Int 2017; Suppl 7:1-59. google scholar
  • 35. Borrelli S, Chiodini P, De Nicola L, et al. Prognosis and determinants of serum PTH changes over time in 1-5 CKD stage patients followed in tertiary care. PLoS ONE 2018; 13:e0202417. google scholar
  • 36. Gutierrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359:584-92. google scholar
  • 37. Yang H, Luo H, Tang X, et al. Prognostic value of FGF23 among patients with end-stage renal disease: A systematic review and meta-analysis. Biomark Med 2016; 10:547-56. google scholar
  • 38. Isakova T, Xie H, Yang W, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 2011; 305:2432-9. google scholar
  • 39. Rebholz CM, Grams ME, Coresh J, et al. Serum fibroblast growth factor-23 is associated with incident kidney disease. J Am Soc Nephrol 2015; 26:192-200. google scholar
  • 40. Kanda E, Yoshida M, Sasaki S. Applicability of fibroblast growth factor 23 for evaluation of risk of ver-tebral fracture and chronic kidney disease-mineral bone disease in elderly chronic kidney disease patients. BMC Nephrol 2012; 13:122. google scholar
  • 41. Mirza MA, Karlsson MK, Mellström D, et al. Serum fibroblast growth factor-23 (FGF-23) and fracture risk in elderly men. J Bone Miner Res 2011; 26:857-64. google scholar
  • 42. Alem AM, Sherrard DJ, Gillen DL, et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 2000; 58:396-9. google scholar
  • 43. Nair SS, Mitani AA, Goldstein BA, Chertow GM, Lowenberg DW, Winkelmayer WC. Temporal trends in the incidence, treatment, and outcomes of hip fracture in older patients initiating dialysis in the United States. Clin J Am Soc Nephrol 2013; 8:1336-42. google scholar
  • 44. Tentori F, McCullough K, Kilpatrick RD, et al. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int 2014; 85:166-73. google scholar
  • 45. Vervloet MG, Massy ZA, Brandenburg VM. Bone: A new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders. Lancet Diabetes Endocrinol 2014; 2:427-36. google scholar
  • 46. Malluche HH, Porter DS, Monier-Faugere MC, Mawad H, Pienkowski D. Differences in bone quality in low- and high-turnover renal osteodystrophy. J Am Soc Nephrol 2012; 23:525-32. google scholar
  • 47. Pazianas M, Miller PD. Osteoporosis and chronic kidney disease-mineral and bone disorder (CKD-MBD): Back to basics. Am J Kidney Dis 2021; 78:582-9. google scholar
  • 48. Jeong JU, Lee HK, Kim YJ, Kim JS, Kang SS, Kim SB. Nutritional markers, not markers of bone turnover, are related predictors of bone mineral density in chronic peritoneal dialysis patients. Clin Nephrol 2010; 74:336-42. google scholar
  • 49. Sprague SM, Bellorin-Font E, Jorgetti V, et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis 2016; 67:559-66. google scholar
  • 50. Seibel MJ. Biochemical markers of bone turnover: Part I: Biochemistry and variability. Clin Biochem Rev 2005; 26:97-122. google scholar
  • 51. Yamaguchi T, Kanno E, Tsubota J, Shiomi T, Nakai M, Hattori S. Retrospective study on the usefulness of radius and lumbar bone density in the separation of hemodialysis patients with fractures from those without fractures. Bone 1996; 19:549-55. google scholar
  • 52. Russo D, Palmiero G, De Blasio AP, Balletta MM, Andreucci VE. Coronary artery calcification in patients with CRF not undergoing dialysis. Am J Kidney Dis 2004; 44:1024-30. google scholar
  • 53. Kramer H, Toto R, Peshock R, Cooper R, Victor R. Association between chronic kidney disease and co-ronary artery calcification: the Dallas Heart Study. J Am Soc Nephrol 2005; 16:507-13. google scholar
  • 54. Rodriguez-Garcia M, Gomez-Alonso C, Naves-Dı'az M, Diaz-Lopez JB, Diaz-Corte C, Caııııata-, Aııdı'a JB. Vascular calcifications, vertebral fractures and mortality in haemodialysis patients. Nephrol Dial Transplant 2009; 24:239-46. google scholar
  • 55. Paloiaı NJ, Giachelli CM. A curreıt uıderstaıdiıg of vascular calcificatioı iı CKD. Am J Physiol Reıal Physiol 2014; 307:F891-900. google scholar
  • 56. Shaıahaı CM, Crouthamel MH, Kapustiı A, Giachelli CM. Arterial calcificatioı iı chroıic kidıey disease: Key roles for calcium aıd phosphate. Circ Res 2011; 109:697-711. google scholar
  • 57. Huaıg M, Zheıg L, Xu H, et al. Oxidative stress coıtributes to vascular calcificatioı iı patieıts with chroıic kidıey disease. J Mol Cell Cardiol 2020; 138:256-68. google scholar
  • 58. Giachelli CM, Shioi A, Nishizawa Y, Mori K, Morii H. Vascular calcificatioı aıd iıorgaıic phosphate. Am J Kidıey Dis 2001; 38:S34-7. google scholar
  • 59. Heaf JG. Chroıic kidıey disease-miıeral boıe disorder iı the elderly peritoıeal dialysis patieıt. Perit Dial Iıt 2015; 35:640-4. google scholar
  • 60. Noori N, Kalaıtar-Zadeh K, Kovesdy CP, Bross R, Beııer D, Kopple JD. Associatioı of dietary phospho-rus iıtake aıd phosphorus to proteiı ratio with mortality iı hemodialysis patieıts. Cliı J Am Soc Nephrol 2010; 5:683-92. google scholar
  • 61. Kalaıtar-Zadeh K, Gutekuıst L, Mehrotra R, et al. Uıderstaıdiıg sources of dietary phosphorus iı the treatmeıt of patieıts with chroıic kidıey disease. Cliı J Am Soc Nephrol 2010; 5:519-30. google scholar
  • 62. Isakova T, Gutierrez OM, Chaıg Y, et al. Phosphorus biıders aıd survival oı hemodialysis. J Am Soc Nephrol 2009; 20:388-96. google scholar
  • 63. Block GA, Raggi P, Bellasi A, Kooieıga L, Spiegel DM. Mortality effect of coroıary calcificatioı aıd phosphate biıder choice iı iıcideıt hemodialysis patieıts. Kidıey Iıt 2007; 71:438-41. google scholar
  • 64. Malluche HH, Mawad H, Moıier-Faugere MC. Effects of treatmeıt of reıal osteodystrophy oı boıe histology. Cliı J Am Soc Nephrol 2008; 3 (Suppl 3):S157-63. google scholar
  • 65. Jamal SA, Vaıdermeer B, Raggi P, et al. Effect of calcium-based versus ıoı-calcium-based phosphate biı-ders oı mortality iı patieıts with chroıic kidıey disease: Aı updated systematic review aıd meta-aıalysis. Laıcet 2013; 382:1268-77. google scholar
  • 66. Sekercioglu N, Thabaıe L, Diaz Martiıez JP, et al. Comparative effectiveıess of phosphate biıders iı patieıts with chroıic kidıey disease: A systematic review aıd ıetwork meta-aıalysis. PLoS Oıe 2016; 11:e0156891. google scholar
  • 67. Liu L, Wang Y, Chen H, Zhu X, Zhou L, Yang Y. The effects of non-calcium-based phosphate binders ver-sus calcium-based phosphate binders on cardiovascular calcification and bone remodeling among dialysis patients: A meta-analysis of randomized trials. Ren Fail 2014; 36:1244-52. google scholar
  • 68. de Francisco AL, Leidig M, Covic AC, et al. Evaluation of calcium acetate/magnesium carbonate as a phosphate binder compared with sevelamer hydrochloride in haemodialysis patients: A controlled randomi-zed study (CALMAG study) assessing efficacy and tolerability. Nephrol Dial Transplant 2010; 25:3707-17. google scholar
  • 69. Delmez J, Block G, Robertson J, et al. A randomized, double-blind, crossover design study of sevelamer hydrochloride and sevelamer carbonate in patients on hemodialysis. Clin Nephrol 2007; 68:386-91. google scholar
  • 70. Garg JP, Chasan-Taber S, Blair A, Plone M, Bommer J, Raggi P. Effects of sevelamer and calcium-based phosphate binders on uric acid concentrations in patients undergoing hemodialysis: A randomized clinical trial. Arthritis Rheum 2005; 52:290-5. google scholar
  • 71. Ferreira A, Frazao JM, Monier-Faugere MC, et al. Effects of sevelamer hydrochloride and calcium carbo-nate on renal osteodystrophy in hemodialysis patients. J Am Soc Nephrol 2008; 19:405-12. google scholar
  • 72. Block GA, Spiegel DM, Ehrlich J, et al. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int 2005; 68:1815-24. google scholar
  • 73. Di Iorio B, Bellasi A, Russo D, et al. Mortality in kidney disease patients treated with phosphate binders: a randomized study. Clin J Am Soc Nephrol 2012; 7:487-93. google scholar
  • 74. Suki WN, Zabaneh R, Cangiano JL, et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int 2007; 72:1130-7. google scholar
  • 75. Damment SJ. Pharmacology of the phosphate binder, lanthanum carbonate. Ren Fail 2011; 33:217-24. google scholar
  • 76. D’Haese PC, Spasovski GB, Sikole A, et al. A multicenter study on the effects of lanthanum carbonate (Fos-renol) and calcium carbonate on renal bone disease in dialysis patients. Kidney Int Suppl 2003; 63:S73-8. google scholar
  • 77. Zhang C, Wen J, Li Z, Fan J. Efficacy and safety of lanthanum carbonate on chronic kidney disease-mineral and bone disorder in dialysis patients: A systematic review. BMC Nephrol 2013; 14:226. google scholar
  • 78. Ogata H, Fukagawa M, Hirakata H, Kagimura T, Fukushima M, Akizawa T. Effect of treating hyperp-hosphatemia with lanthanum carbonate vs calcium carbonate on cardiovascular events in patients with chronic kidney disease undergoing hemodialysis: The LANDMARK randomized clinical trial. JAMA 2021; 325:1946-54. google scholar
  • 79. Lewis JB, Sika M, Koury MJ, et al. Ferric citrate controls phosphorus and delivers iron in patients on dialysis. J Am Soc Nephrol 2015; 26:493-503. google scholar
  • 80. Geisser P, Philipp E. PA21: A novel phosphate binder for the treatment of hyperphosphatemia in chronic kidney disease. Clin Nephrol 2010; 74:4-11. google scholar
  • 81. Floege J, Covic AC, Ketteler M, et al. A phase III study of the efficacy and safety of a novel iron-based phosphate binder in dialysis patients. Kidney Int 2014; 86:638-47. google scholar
  • 82. Pilz S, Iodice S, Zittermann A, Grant WB, Gandini S. Vitamin D status and mortality risk in CKD: a me-ta-analysis of prospective studies. Am J Kidney Dis 2011; 58:374-82. google scholar
  • 83. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357:266-81. google scholar
  • 84. Thadhani R, Appelbaum E, Pritchett Y, et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: The PRIMO randomized controlled trial. JAMA 2012; 307:674-84. google scholar
  • 85. Wang AY, Fang F, Chan J, et al. Effect of paricalcitol on lef ventricular mass and fUnction in CKD-the OPERA trial. J Am Soc Nephrol 2014; 25:175-86. google scholar
  • 86. Fusaro M, Cianciolo G, Tripepi G, et al. Oral calcitriol use, vertebral fractures, and vitamin K in hemodi-alysis patients: A cross-sectional study. J Bone Miner Res 2021; 36:2361-70. google scholar
  • 87. Naves-Diaz M, Alvarez-Hernandez D, Passlick-Deetjen J, et al. Oral active vitamin D is associated with improved survival in hemodialysis patients. Kidney Int 2008; 74:1070-8. google scholar
  • 88. Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhaniet R. Survival of patients undergoing hemo-dialysis with paricalcitol or calcitriol therapy. N Engl J Med 2003; 349:446-56. google scholar
  • 89. Sprague SM, Wetmore JB, Gurevich K, et al. Effect of cinacalcet and vitamin D analogs on fibroblast growth factor-23 during the treatment of secondary hyperparathyroidism. Clin J Am Soc Nephrol 2015; 10:1021-30. google scholar
  • 90. Barman Balfour JA, Scott LJ. Cinacalcet hydrochloride. Drugs 2005; 65:271-81. google scholar
  • 91. Goodman WG, Hladik GA, Turner SA, et al. The calcimimetic agent AMG 073 lowers plasma parathyroid hormone levels in hemodialysis patients with secondary hyperparathyroidism. J Am Soc Nephrol 2002; 13:1017-24. google scholar
  • 92. Block GA, Martin KJ, de Francisco AL, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 2004; 350:1516-25. google scholar
  • 93. Moe SM, Chertow GM, Coburn JW, et al. Achieving NKF-K/DOQI bone metabolism and disease treatment goals with cinacalcet HCl. Kidney Int 2005; 67:760-71. google scholar
  • 94. Urena P, Jacobson SH, Zitt E, et al. Cinacalcet and achievement of the NKF/K-DOQI recommended target values for bone and mineral metabolism in real-world clinical practice - the ECHO observational study. Nephrol Dial Transplant 2009; 24:2852-9. google scholar
  • 95. Komaba H, Nakanishi S, Fujimori A, et al. Cinacalcet effectively reduces parathyroid hormone secretion and gland volume regardless of pretreatment gland size in patients with secondary hyperparathyroidism. Clin J Am Soc Nephrol 2010; 5:2306-14. google scholar
  • 96. Fukagawa M, Fukuma S, Onishi Y, et al. Prescription patterns and mineral metabolism abnormalities in the cinacalcet era: results from the MBD-5D study. Clin J Am Soc Nephrol 2012; 7:1473-80. google scholar
  • 97. Chertow GM, Block GA, Correa-Rotter R, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med 2012; 367:2482-94. google scholar
  • 98. Parfrey PS, Drueke TB, Block GA, et al. The effects of cinacalcet in older and younger patients on hemo-dialysis: The evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Clin J Am Soc Nephrol 2015; 10:791-9. google scholar
  • 99. Raggi P, Chertow GM, Torres PU, et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant 2011; 26:1327-39. google scholar
  • 100. Walter S, Baruch A, Dong J, et al. Pharmacology of AMG 416 (Velcalcetide), a novel peptide agonist of the calcium-sensing receptor, for the treatment of secondary hyperparathyroidism in hemodialysis patients. J Pharmacol Exp Ther 2013; 346:229-40. google scholar
  • 101. Block GA, Bushinsky DA, Cheng S, et al. Effect of etelcalcetide vs cinacalcet on serum parathyroid hor-mone in patients receiving hemodialysis with secondary hyperparathyroidism: A randomized clinical trial. JAMA 2017; 317:156-64. google scholar
  • 102. Chen J, Jia X, Kong X, Wang Z, Cui M, Xu D. Total parathyroidectomy with autotransplantation versus subtotal parathyroidectomy for renal hyperparathyroidism: A systematic review and meta-analysis. Neph-rology 2017; 22:388-96. google scholar
  • 103. Chou YC, Chan YC, Chi SY, Chou FF. Being elderly is not a contraindication of parathyroidectomy for renal hyperparathyroidism and chronic kidney disease-mineral and bone disorder. Asian J Surg 2021; 44:321-8. google scholar
  • 104. Drake MT, Clarke BL, Khosla S. Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin Proc 2008; 83:1032-45. google scholar
  • 105. Damasiewicz MJ, Nickolas TL. Bisphosphonate therapy in CKD: The current state of affairs. Curr Opin Nephrol Hypertens 2020; 29:221-6. google scholar
  • 106. Dempster DW, Lambing CL, Kostenuik PJ, Grauer A. Role of RANK ligand and denosumab, a targeted RANK ligand inhibitor, in bone health and osteoporosis: A review of preclinical and clinical data. Clin Ther 2012; 34:521-36. google scholar
  • 107. Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopa-usal women with osteoporosis. N Engl J Med 2009; 361:756-65. google scholar
  • 108. Jamal SA, Ljunggren O, Stehman-Breen C, et al. Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res 2011; 26:1829-35. google scholar
  • 109. Block GA, Bone HG, Fang L, Lee E, Padhi DA. A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res 2012; 27:1471-9. google scholar
  • 110. Gopaul A, Kanagalingam T, Thain J, et al. Denosumab in chronic kidney disease: A narrative review of treatment efficacy and safety. Arch Osteoporos 2021; 16:116. google scholar
  • 111. Miller PD, Schwartz EN, Chen P, Misurski DA, Krege JH. Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos Int 2007; 18:59-68. google scholar
  • 112. Ishani A, Blackwell T, MORE Investigators. The effect of raloxifene treatment in postmenopausal women with CKD. J Am Soc Nephrol 2008; 19:1430-8. google scholar
  • 113. Ma HY, Chen S, Lu LL, Gong W, Zhang AH. Raloxifene in the treatment of osteoporosis in postmenopa-usal women with end-stage renal disease: A systematic review and meta-analysis. Horm Metab Res 2021; 53:730-7. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.