CHAPTER


DOI :10.26650/B/CH12CH47.2023.014.18   IUP :10.26650/B/CH12CH47.2023.014.18    Full Text (PDF)

Yaşlılarda Plazma Di̇skrazi̇leri̇nde Böbrek Tutulumu Ve Tedavi̇si̇

Vecihi Batuman

Plazma hücresi diskrazileri immünglobülin salgılayabilen kötü huylu veya prekanseröz plazma hücrelerinin denetimsiz çoğalmalarından dolayı monoklonal immünglobülin veya immünglobülin alt parçalarının (paraproteinler) artışı sonucu ortaya çıkan klinik tablolarının tümüne verilen addır.1,2 Plazma diskrazileri hiç belirti göstermeyebilir ve önemi bilinmeyen monoklonal gammopati ve böbrek önemi olan monoklonal gammopatiden belirgin miyeloma kadar uzanan geniş bir spektrumu içerir. Plazma hücresi diskrazileri çok seyrek gözüken salgılayıcı olmayan miyelom dışında değişik düzeyde monoklonal gammopatiye neden olur. Plazma hücresi diskrazilerine görece az sıklıkta görülen lenfoplazmasitik lenfoma da monoklonal gammopati oluşturabilir. Klinik belirtilerin büyük çoğunluğu, özellikle de böbrek tutulumu, monoklonal gammopatiyi oluşturan paraproteinlerin etkilerinin sonucudur (Tablo 1). Nadiren de hiperkalsemi, hiperviskozite, tümör lizis sendromu ve tedavi de kullanılan ilaçların toksitesi nedeniyle dolaylı olarak böbrek etkilenimi görülebilir. Plazma hücresi diskrazisi tanısı için genellikle immünfiksasyon ya da serbest hafif zincir (SHZ) düzeyinin ölçümü ile monoklonal gammopatinin varlığını göstermek yeterlidir. Diskrazinin miyelom ya da başka bir kanser tipi olup olamadığını saptamak için kemik iliği aspirasyonu/biyopsisi, akış sitometrisi, floresan immünokimya gibi çalışmalar gerekli olabilir. Böbrek tutulumu da idrar tahlili ve plazma kreatinin düzeyini veya glomerül süzme hızını ölçerek yine kolaylıkla gösterilebilir; bazı olgularda böbrek biyopsisi gerekebilir.1,3 Diskrazi tanısına bazen de sebebi bilinmeyen bir böbrek bozukluğu araştırılırken uygulanan biyopside monoklonal paraprotein görülmesi sonucu başlatılan incelemeler sayesinde ulaşılır. Birçok çalışmada ilk kez miyelom tanısı alan hastaların çoğunluğunun 65-70 yaş diliminde olduğu, hatta miyelom tanısıyla kliniğe gelen hastaların yaklaşık üçte birinin 75 yaş üstü grupta olduğu göz önüne alındığında, yaşlılarda böbrek tutulumunun daha sık olması şaşırtıcı değildir.4-6 Ayrıca, yaşlılarda hem komorbid durumların daha sık olması hem de önceden var olan böbrek hastalığı olasılığının daha yüksek olması nedenleriyle böbrek tutulumu daha kötü prognoz içerir. Kitabın bu bölümünde yaşlılarda plazma diskrazilerinde görülen böbrek tutulumunun klinik paternleri ve bu yaş gruplarında tedavi yaklaşımları tartışılacaktır.



References

  • 1. Hogan JJ, Alexander MP, and Leung N. Dysproteinemia and the Kidney: Core Curriculum 2019. Am J Kidney Dis. 2019;74(6):822-36. google scholar
  • 2. Wiernik PH. Plasma cell dyscrasias and leukemias. Cancer Chemother Biol Response Modif. 2005;22:343-89. google scholar
  • 3. Mehtat Unlu S, Ozsan H, and Sarioglu S. The Scope of Kidney Affection in Monoclonal Gammopathies at All Levels of Clinical Significance. Turk J Haematol. 2017;34(4):282-8. google scholar
  • 4. Li S, Gong T, Kou C, Fu A, Bolanos R, and Liu J. Clinical Outcomes Associated With Chronic Kidney Dise-ase in Elderly Medicare Patients With Multiple Myeloma. Clin Lymphoma Myeloma Leuk. 2021;21(6):401-12 e24. google scholar
  • 5. Jones A, Bowcock S, and Rachet B. Survival trends in elderly myeloma patients. Eur J Haematol. 2021;106(1):126-31. google scholar
  • 6. Zweegman S, Engelhardt M, Larocca A, ‘Aging ESo, and Hematology. Elderly patients with multiple myeloma: towards a frailty approach? Curr Opin Oncol. 2017;29(5):315-21. google scholar
  • 7. Nerlich AG, Rohrbach H, Bachmeier B, and Zink A. Malignant tumors in two ancient populations: An approach to historical tumor epidemiology. Oncol Rep. 2006;16(1):197-202. google scholar
  • 8. Zink A, Rohrbach H, Szeimies U, Hagedorn HG, Haas CJ, Weyss C, et al. Malignant tumors in an ancient Egyptian population. Anticancer Res. 1999;19(5B):4273-7. google scholar
  • 9. Kyle RA, and Rajkumar SV. Multiple myeloma. Blood. 2008;111(6):2962-72. google scholar
  • 10. Solly S. Remarks on the pathology of mollities ossium; with cases. Med Chir Trans. 1844;27:435-98 8. google scholar
  • 11. Leung N, Bridoux F, Batuman V, Chaidos A, Cockwell P, D’Agati VD, et al. The evaluation of monoclonal gammopathy of renal significance: a consensus report of the International Kidney and Monoclonal Gam-mopathy Research Group. Nat Rev Nephrol. 2019;15(1):45-59. google scholar
  • 12. Ying WZ, Allen CE, Curtis LM, Aaron KJ, and Sanders PW. Mechanism and prevention of acute kidney injury from cast nephropathy in a rodent model. J Clin Invest. 2012;122(5):1777-85. google scholar
  • 13. Ying WZ, and Sanders PW. Mapping the binding domain of immunoglobulin light chains for Tamm-Horsfall protein. Am J Pathol. 2001;158(5):1859-66. google scholar
  • 14. Ecotiere L, Thierry A, Debiais-Delpech C, Chevret S, Javaugue V, Desport E, et al. Prognostic value of kidney biopsy in myeloma cast nephropathy: a retrospective study of 70 patients. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2016;31(1):64-72. google scholar
  • 15. Herrera GA. Proximal tubulopathies associated with monoclonal light chains: the spectrum of clinico-pathologic manifestations and molecular pathogenesis. Archives of pathology & laboratory medicine. 2014;138(10):1365-80. google scholar
  • 16. Sirac C, Herrera GA, Sanders PW, Batuman V, Bender S, Ayala MV, et al. Animal models of monoclonal immunoglobulin-related renal diseases. Nat Rev Nephrol. 2018;14(4):246-64. google scholar
  • 17. Doshi M, Lahoti A, Danesh FR, Batuman V, Sanders PW, and American Society of Nephrology Onco-Neph-rology F. Paraprotein-Related Kidney Disease: Kidney Injury from Paraproteins-What Determines the Site of Injury? Clin J Am Soc Nephrol. 2016;11(12):2288-94. google scholar
  • 18. Batuman V. The pathogenesis of acute kidney impairment in patients with multiple myeloma. Adv Chronic Kidney Dis. 2012;19(5):282-6. google scholar
  • 19. Sengul S, Li M, and Batuman V. Myeloma kidney: toward its prevention--with new insights from in vitro and in vivo models of renal injury. J Nephrol. 2009;22(1):17-28. google scholar
  • 20. Upadhyay R, Ying WZ, Nasrin Z, Safah H, Jaimes EA, Feng W, et al. Free light chains injure proximal tubule cells through the STAT1/HMGB1/TLR axis. JCI Insight. 2020;5(14). google scholar
  • 21. Nakhoul N, and Batuman V. Role of proximal tubules in the pathogenesis of kidney disease. Contrib Neph-rol. 2011;169:37-50. google scholar
  • 22. Hutchison CA, Batuman V, Behrens J, Bridoux F, Sirac C, Dispenzieri A, et al. The pathogenesis and diag-nosis of acute kidney injury in multiple myeloma. Nat Rev Nephrol. 2011;8(1):43-51. google scholar
  • 23. Stokes MB, Valeri AM, Herlitz L, Khan AM, Siegel DS, Markowitz GS, et al. Light Chain Proximal Tubulopathy: Clinical and Pathologic Characteristics in the Modern Treatment Era. J Am Soc Nephrol. 2016;27(5):1555-65. google scholar
  • 24. Sengul S, Zwizinski C, Simon EE, Kapasi A, Singhal PC, and Batuman V. Endocytosis of light chains indu-ces cytokines through activation of NF-kappaB in human proximal tubule cells. Kidney Int. 2002;62(6):1977-88. google scholar
  • 25. Chen J, Liu H, Li L, Liu Z, Song J, Wang G, et al. Clinical features and treatment outcome of elderly multiple myeloma patients with impaired renal function. J Clin Lab Anal. 2019;33(5):e22888. google scholar
  • 26. Ling W, Yu W, Sun H, and Lv M. Analysis of related risk factors and reversal value of renal injury in elderly patients with multiple myeloma. J BUON. 2017;22(3):735-40. google scholar
  • 27. Umeda M, Okuda S, Izumi H, Nagase D, Fujimoto Y, Sugasawa Y, et al. Prognostic significance of the serum phosphorus level and its relationship with other prognostic factors in multiple myeloma. Ann Hematol. 2006;85(7):469-73. google scholar
  • 28. Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78(1):21-33. google scholar
  • 29. Jones SG, Dolan G, Lengyel K, and Myers B. Severe increase in creatinine with hypocalcaemia in thalido-mide-treated myeloma patients receiving zoledronic acid infusions. Br J Haematol. 2002;119(2):576-7. google scholar
  • 30. Rodon P, Linassier C, Gauvain JB, Benboubker L, Goupille P, Maigre M, et al. Multiple myeloma in elderly patients: presenting features and outcome. Eur J Haematol. 2001;66(1):11-7. google scholar
  • 31. Sethi S, Fervenza FC, and Rajkumar SV. Spectrum of manifestations of monoclonal gammopathy-associated renal lesions. Current opinion in nephrology and hypertension. 2016. google scholar
  • 32. Martins M, Bridoux F, Goujon JM, Meuleman MS, Ribes D, Rondeau E, et al. Complement Activation and Thrombotic Microangiopathy Associated With Monoclonal Gammopathy: A National French Case Series. Am J Kidney Dis. 2022;80(3):341-52. google scholar
  • 33. Ravindran A, Go RS, Fervenza FC, and Sethi S. Thrombotic microangiopathy associated with monoclonal gammopathy. Kidney Int. 2017;91(3):691-8. google scholar
  • 34. Sethi S, Fervenza FC, and Rajkumar SV. Spectrum of manifestations of monoclonal gammopathy-associated renal lesions. Curr Opin Nephrol Hypertens. 2016;25(2):127-37. google scholar
  • 35. Li M, Hering-Smith KS, Simon EE, and Batuman V. Myeloma light chains induce epithelial-mesenchymal transition in human renal proximal tubule epithelial cells. Nephrol Dial Transplant. 2008;23(3):860-70. google scholar
  • 36. Batuman V. Proximal tubular injury in myeloma. Contrib Nephrol. 2007;153:87-104. google scholar
  • 37. Pote A, Zwizinski C, Simon EE, Meleg-Smith S, and Batuman V. Cytotoxicity of myeloma light chains in cultured human kidney proximal tubule cells. Am J Kidney Dis. 2000;36(4):735-44. google scholar
  • 38. Guan S, el-Dahr S, Dipp S, and Batuman V. Inhibition of Na-K-ATPase activity and gene expression by a myeloma light chain in proximal tubule cells. J Investig Med. 1999;47(9):496-501. google scholar
  • 39. Batuman V, Guan S, O’Donovan R, and Puschett JB. Effect of myeloma light chains on phosphate and glucose transport in renal proximal tubule cells. Ren Physiol Biochem. 1994;17(6):294-300. google scholar
  • 40. Rocca A, Khamlichi AA, Touchard G, Mougenot B, Ronco P, Denoroy L, et al. Sequences of V kappa L subgroup light chains in Fanconi’s syndrome. Light chain V region gene usage restriction and peculiarities in myeloma-associated Fanconi’s syndrome. J Immunol. 1995;155(6):3245-52. google scholar
  • 41. Larsen CP, Bell JM, Harris AA, Messias NC, Wang YH, and Walker PD. The morphologic spectrum and cli-nical significance of light chain proximal tubulopathy with and without crystal formation. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2011;24(11):1462-9. google scholar
  • 42. Sirac C, Batuman V, and Sanders PW. The Proximal Tubule Toxicity of Immunoglobulin Light Chains. Kidney Int Rep. 2021;6(5):1225-31. google scholar
  • 43. Balamuthusamy S, Hamrahian M, Zhang R, and Batuman V. Myeloma kidney with isolated tubulointerstitial light chain deposition in a renal allograft. Clin Transplant. 2009;23(6):848-52. google scholar
  • 44. Sengul S, Zwizinski C, and Batuman V. Role of MAPK pathways in light chain-induced cytokine production in human proximal tubule cells. Am J Physiol Renal Physiol. 2003;284(6):F1245-54. google scholar
  • 45. Cai H, Puschett DB, Guan S, Batuman V, and Puschett JB. Phosphate transport inhibition by KW-3902, an adenosine A1 receptor antagonist, is mediated by cyclic adenosine monophosphate. Am J Kidney Dis. 1995;26(5):825-30. google scholar
  • 46. Stokes MB, Valeri AM, Herlitz L, Khan AM, Siegel DS, Markowitz GS, et al. Light Chain Proximal Tu-bulopathy: Clinical and Pathologic Characteristics in the Modern Treatment Era. Journal of the American Society of Nephrology : JASN. 2015. google scholar
  • 47. Sanders PW. Mechanisms of light chain injury along the tubular nephron. Journal of the American Society of Nephrology : JASN. 2012;23(11):1777-81. google scholar
  • 48. Herlitz LC, Roglieri J, Resta R, Bhagat G, and Markowitz GS. Light chain proximal tubulopathy. Kidney international. 2009;76(7):792-7. google scholar
  • 49. Tu H, Mou L, Zhu L, Jiang Q, Gao DS, and Hu Y. Acquired Fanconi syndrome secondary to light chain deposition disease associated with monoclonal gammopathy of renal significance: A case report. Medicine (Baltimore). 2018;97(36):e12027. google scholar
  • 50. Bridoux F, Sirac C, Hugue V, Decourt C, Thierry A, Quellard N, et al. Fanconi’s syndrome induced by a monoclonal Vkappa3 light chain in Waldenstrom’s macroglobulinemia. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2005;45(4):749-57. google scholar
  • 51. Decourt C, Bridoux F, Touchard G, and Cogne M. A monoclonal V kappa l light chain responsible for incomplete proximal tubulopathy. Am J Kidney Dis. 2003;41(2):497-504. google scholar
  • 52. Sirac C, Bridoux F, Carrion C, Devuyst O, Fernandez B, Goujon JM, et al. Role of the monoclonal kappa chain V domain and reversibility of renal damage in a transgenic model of acquired Fanconi syndrome. Blood. 2006;108(2):536-43. google scholar
  • 53. Salomo M, Gimsing P, and Nielsen LB. Simple method for quantification of Bence Jones proteins. Clin Chem. 2002;48(12):2202-7. google scholar
  • 54. Teng J, Turbat-Herrera EA, and Herrera GA. An animal model of glomerular light-chain-associated amylo-idogenesis depicts the crucial role of lysosomes. Kidney international. 2014;86(4):738-46. google scholar
  • 55. Tagouri YM, Sanders PW, Picken MM, Siegal GP, Kerby JD, and Herrera GA. In vitro AL-amyloid forma-tion by rat and human mesangial cells. Lab Invest. 1996;74(1):290-302. google scholar
  • 56. Sidiqi MH, Dasari S, McPhail ED, Buadi FK, Warsame R, Lacy MQ, et al. Monoclonal gammopathy plus positive amyloid biopsy does not always equal AL amyloidosis. Am J Hematol. 2019;94(5):E141-E3. google scholar
  • 57. Novak L, Cook WJ, Herrera GA, and Sanders PW. AL-amyloidosis is underdiagnosed in renal biopsies. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Asso-ciation - European Renal Association. 2004;19(12):3050-3. google scholar
  • 58. Muchtar E, Jevremovic D, Dispenzieri A, Dingli D, Buadi FK, Lacy MQ, et al. The prognostic value of multiparametric flow cytometry in AL amyloidosis at diagnosis and at the end of first-line treatment. Blood. 2017;129(1):82-7. google scholar
  • 59. Kyle RA, Larson DR, Therneau TM, Dispenzieri A, Melton LJ, 3rd, Benson JT, et al. Clinical course of light-chain smouldering multiple myeloma (idiopathic Bence Jones proteinuria): a retrospective cohort study. The Lancet Haematology. 2014;1(1):e28-e36. google scholar
  • 60. Merlini G, and Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349(6):583-96. google scholar
  • 61. Sethi S, Vrana JA, Theis JD, Leung N, Sethi A, Nasr SH, et al. Laser microdissection and mass spe-ctrometry-based proteomics aids the diagnosis and typing of renal amyloidosis. Kidney international. 2012;82(2):226-34. google scholar
  • 62. Sethi S, Theis JD, Vrana JA, Fervenza FC, Sethi A, Qian Q, et al. Laser microdissection and proteomic analysis of amyloidosis, cryoglobulinemic GN, fibrillary GN, and immunotactoid glomerulopathy. Clin J Am Soc Nephrol. 2013;8(6):915-21. google scholar
  • 63. Gilbertson JA, Theis JD, Vrana JA, Lachmann H, Wechalekar A, Whelan C, et al. A comparison of immuno-histochemistry and mass spectrometry for determining the amyloid fibril protein from formalin-fixed biopsy tissue. J Clin Pathol. 2015;68(4):314-7. google scholar
  • 64. Gertz MA, Lacy MQ, and Dispenzieri A. Immunoglobulin light chain amyloidosis and the kidney. Kidney Int. 2002;61(1):1-9. google scholar
  • 65. Gozzetti A, Guarnieri A, Zamagni E, Zakharova E, Coriu D, Bittrich M, et al. Monoclonal gammopat-hy of renal significance (MGRS): Real-world data on outcomes and prognostic factors. Am J Hematol. 2022;97(7):877-84. google scholar
  • 66. Preud’homme JL, Aucouturier P, Touchard G, Striker L, Khamlichi AA, Rocca A, et al. Monoclonal immu-noglobulin deposition disease (Randall type). Relationship with structural abnormalities of immunoglobulin chains. Kidney international. 1994;46(4):965-72. google scholar
  • 67. Denoroy L. Detection of neurotensin in tissues by capillary zone electrophoresis. Electrophoresis. 1994;15(1):46-50. google scholar
  • 68. James LC, Jones PC, McCoy A, Tennent GA, Pepys MB, Famm K, et al. Beta-edge interactions in a penta-decameric human antibody V kappa domain. J Mol Biol. 2007;367(3):603-8. google scholar
  • 69. Cogne M, Preud’homme JL, Bauwens M, Touchard G, and Aucouturier P. Structure of a monoclonal kappa chain of the V kappa IV subgroup in the kidney and plasma cells in light chain deposition disease. J Clin Invest. 1991;87(6):2186-90. google scholar
  • 70. Vidal R, Goni F, Stevens F, Aucouturier P, Kumar A, Frangione B, et al. Somatic mutations of the L12a gene in V-kappa(1) light chain deposition disease: potential effects on aberrant protein conformation and deposition. Am J Pathol. 1999;155(6):2009-17. google scholar
  • 71. Bridoux F, Javaugue V, Bender S, Leroy F, Aucouturier P, Debiais-Delpech C, et al. Unravelling the immu-nopathological mechanisms of heavy chain deposition disease with implications for clinical management. Kidney international. 2017;91(2):423-34. google scholar
  • 72. Herrera GA, Shultz JJ, Soong SJ, and Sanders PW. Growth factors in monoclonal light-chain--related renal diseases. Hum Pathol. 1994;25(9):883-92. google scholar
  • 73. Ronco P, Plaisier E, Mougenot B, and Aucouturier P. Immunoglobulin light (heavy)-chain deposition disea-se: from molecular medicine to pathophysiology-driven therapy. Clin J Am Soc Nephrol. 2006;1(6):1342-50. google scholar
  • 74. Bhutani G, Nasr SH, Said SM, Sethi S, Fervenza FC, Morice WG, et al. Hematologic characteristics of proliferative glomerulonephritides with nonorganized monoclonal immunoglobulin deposits. Mayo Clin Proc. 2015;90(5):587-96. google scholar
  • 75. Nasr SH, Sethi S, Cornell LD, Fidler ME, Boelkins M, Fervenza FC, et al. Proliferative glomerulonephritis with monoclonal IgG deposits recurs in the allograft. Clin J Am Soc Nephrol. 2011;6(1):122-32. google scholar
  • 76. Motwani SS, Herlitz L, Monga D, Jhaveri KD, Lam AQ, and American Society of Nephrology Onco-Neph-rology F. Paraprotein-Related Kidney Disease: Glomerular Diseases Associated with Paraproteinemias. Clin J Am Soc Nephrol. 2016;11(12):2260-72. google scholar
  • 77. Kousios A, Duncan N, Tam FWK, Chaidos A, Cook HT, Roufosse C, et al. Proliferative glomerulonephritis with monoclonal Ig deposits (PGNMID): diagnostic and treatment challenges for the nephrologist! Kidney international. 2019;95(2):467-8. google scholar
  • 78. Larsen CP, Ambuzs JM, Bonsib SM, Boils CL, Cossey LN, Messias NC, et al. Membranous-like glomeru-lopathy with masked IgG kappa deposits. Kidney international. 2014;86(1):154-61. google scholar
  • 79. Zickerman AM, Allen AC, Talwar V, Olczak SA, Brownlee A, Holland M, et al. IgA myeloma presenting as Henoch-Schonlein purpura with nephritis. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2000;36(3):E19. google scholar
  • 80. Birchmore D, Sweeney C, Choudhury D, Konwinski MF, Carnevale K, and D’Agati V. IgA multiple mye-loma presenting as Henoch-Schonlein purpura/polyarteritis nodosa overlap syndrome. Arthritis Rheum. 1996;39(4):698-703. google scholar
  • 81. Vignon M, Cohen C, Faguer S, Noel LH, Guilbeau C, Rabant M, et al. The clinicopathologic characteristics of kidney diseases related to monotypic IgA deposits. Kidney international. 2017;91(3):720-8. google scholar
  • 82. Bridoux F, Desport E, Fremeaux-Bacchi V, Chong CF, Gombert JM, Lacombe C, et al. Glomerulonephritis with isolated C3 deposits and monoclonal gammopathy: a fortuitous association? Clin J Am Soc Nephrol. 2011;6(9):2165-74. google scholar
  • 83. Touchard G, and Bridoux F. C3 glomerulopathy in adults: monoclonal gammopathy should be con-sidered. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2013;61(4):644. google scholar
  • 84. Meri S, Koistinen V, Miettinen A, Tornroth T, and Seppala IJ. Activation of the alternative pathway of complement by monoclonal lambda light chains in membranoproliferative glomerulonephritis. J Exp Med. 1992;175(4):939-50. google scholar
  • 85. Smith RJH, Appel GB, Blom AM, Cook HT, D’Agati VD, Fakhouri F, et al. C3 glomerulopathy - unders-tanding a rare complement-driven renal disease. Nat Rev Nephrol. 2019;15(3):129-43. google scholar
  • 86. Herrera GA, Ojemakinde KO, Turbat-Herrera EA, Gu X, Zeng X, and Iskandar SS. Immunotactoid Glome-rulopathy and Cryoglobulinemic Nephropathy: Two Entities with Many Similarities. A Unified Conceptual Approach. Ultrastructural pathology. 2015;39(4):270-80. google scholar
  • 87. Alpers CE, and Hudkins KL. Mouse models of diabetic nephropathy. Current opinion in nephrology and hypertension. 2011;20(3):278-84. google scholar
  • 88. Dasari S, Alexander MP, Vrana JA, Theis JD, Mills JR, Negron V, et al. DnaJ Heat Shock Protein Family B Member 9 Is a Novel Biomarker for Fibrillary GN. Journal of the American Society of Nephrology : JASN. 2018;29(1):51-6. google scholar
  • 89. Nasr SH, Dasari S, Lieske JC, Benson LM, Vanderboom PM, Holtz-Heppelmann CJ, et al. Serum levels of DNAJB9 are elevated in fibrillary glomerulonephritis patients. Kidney international. 2019;95(5):1269-72. google scholar
  • 90. Nasr SH, Vrana JA, Dasari S, Bridoux F, Fidler ME, Kaaki S, et al. DNAJB9 Is a Specific Immunohistoc-hemical Marker for Fibrillary Glomerulonephritis. Kidney Int Rep. 2018;3(1):56-64. google scholar
  • 91. Ciftciler R, Goker H, Demiroglu H, Haznedaroglu IC, Sayinalp N, Aksu S, et al. Evaluation of Prognostic Significance of the International Staging System According to Glomerular Filtration Rate in Newly Diag-nosed Multiple Myeloma Patients Eligible for Autologous Stem Cell Transplantation. Turk J Haematol. 2021;38(1):33-40. google scholar
  • 92. Bila J, Jelicic J, Djurasinovic V, Vukovic V, Sretenovic A, Andjelic B, et al. Prognostic effect of comorbidity indices in elderly patients with multiple myeloma. Clin Lymphoma Myeloma Leuk. 2015;15(7):416-9. google scholar
  • 93. Belotti A, Ribolla R, Cancelli V, Crippa C, Bianchetti N, Ferrari S, et al. Transplant eligibility in elderly multiple myeloma patients: Prospective external validation of the international myeloma working group frailty score and comparison with clinical judgment and other comorbidity scores in unselected patients aged 65-75 years. Am J Hematol. 2020;95(7):759-65. google scholar
  • 94. Liwing J, Uttervall K, Lund J, Aldrin A, Blimark C, Carlson K, et al. Improved survival in myeloma patients: starting to close in on the gap between elderly patients and a matched normal population. Br J Haematol. 2014;164(5):684-93. google scholar
  • 95. Anagnostopoulos A, Gika D, Symeonidis A, Zervas K, Pouli A, Repoussis P, et al. Multiple myeloma in elderly patients: prognostic factors and outcome. Eur J Haematol. 2005;75(5):370-5. google scholar
  • 96. Antonioli E, Nozzoli C, Buda G, Staderini M, Boncompagni R, Martini F, et al. Autologous stem cell transplantation is safe in selected elderly multiple myeloma patients. Eur J Haematol. 2020;104(2):138-44. google scholar
  • 97. Blommestein HM, Verelst SG, de Groot S, Huijgens PC, Sonneveld P, and Uyl-de Groot CA. A cost-effe-ctiveness analysis of real-world treatment for elderly patients with multiple myeloma using a full disease model. Eur J Haematol. 2016;96(2):198-208. google scholar
  • 98. Afram G, Chaireti R, Uttervall K, Luong V, Lund J, Kashif M, et al. Conditioning with melphalan 200 mg/m(2) and subsequent ASCT improves progression free and overall survival in elderly myeloma patients compared to standard of care. Eur J Haematol. 2022. google scholar
  • 99. Carlson K. Melphalan 200 mg/m2 with blood stem cell support as first-line myeloma therapy: impact of glomerular filtration rate on engraftment, transplantation-related toxicity and survival. Bone Marrow Transplant. 2005;35(10):985-90. google scholar
  • 100. Tamaki M, Nakasone H, Gomyo A, Hayakawa J, Akahoshi Y, Harada N, et al. Lower glomerular filtration rate predicts increased hepatic and mucosal toxicity in myeloma patients treated with high-dose melphalan. Int J Hematol. 2018;108(4):423-31. google scholar
  • 101. Shah GL, Winn AN, Lin PJ, Klein A, Sprague KA, Smith HP, et al. Cost-Effectiveness of Autologous He-matopoietic Stem Cell Transplantation for Elderly Patients with Multiple Myeloma using the Surveillance, Epidemiology, and End Results-Medicare Database. Biol Blood Marrow Transplant. 2015;21(10):1823-9. google scholar
  • 102. Buda G, Del Giudice ML, Antonioli E, Ghio F, Orciuolo E, Morganti R, et al. Real-Life Experience With First-Line Therapy Bortezomib Plus Melphalan and Prednisone in Elderly Patients With Newly Diagnosed Multiple Myeloma Ineligible for High Dose Chemotherapy With Autologous Stem-Cell Transplantation. Front Med (Lausanne). 2021;8:712070. google scholar
  • 103. Falco P, Cavallo F, Larocca A, Rossi D, Guglielmelli T, Rocci A, et al. Lenalidomide-prednisone induction followed by lenalidomide-melphalan-prednisone consolidation and lenalidomide-prednisone maintenance in newly diagnosed elderly unfit myeloma patients. Leukemia. 2013;27(3):695-701. google scholar
  • 104. Badros A, Barlogie B, Siegel E, Roberts J, Langmaid C, Zangari M, et al. Results of autologous stem cell transplant in multiple myeloma patients with renal failure. Br J Haematol. 2001;114(4):822-9. google scholar
  • 105. Bhowmik D, Yadav S, Kumar L, Agarwal S, Agarwal SK, and Gupta S. Sequential, Autologous Hema-topoietic Stem Cell Transplant Followed by Renal Transplant in Multiple Myeloma. Indian J Nephrol. 2017;27(4):324-6. google scholar
  • 106. Matsuzaki K, Ohsawa I, Nishitani T, Takeda Y, Inoshita H, Ishii M, et al. Marked improvement by high-dose chemotherapy and autologous stem cell transplantation in a case of light chain deposition disease. J Nephrol. 2011;24(2):246-9. google scholar
  • 107. Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am J Hematol. 2022;97(8):1086-107. google scholar
  • 108. Gertz MA. Immunoglobulin light chain amyloidosis: 2022 update on diagnosis, prognosis, and treatment. Am J Hematol. 2022;97(6):818-29. google scholar
  • 109. Gustine JN, Staron A, Szalat RE, Mendelson LM, Joshi T, Ruberg FL, et al. Predictors of hematologic response and survival with stem cell transplantation in AL amyloidosis: A 25-year longitudinal study. Am J Hematol. 2022;97(9):1189-99. google scholar
  • 110. Vaxman I, and Dispenzieri A. The Role of Autologous Stem Cell Transplantation in Amyloidosis. Oncology (Williston Park). 2021;35(8):471-8. google scholar
  • 111. Nuvolone M, Milani P, Palladini G, and Merlini G. Management of the elderly patient with AL amyloidosis. Eur J Intern Med. 2018;58:48-56. google scholar
  • 112. Dhakal B, Miller S, Rein L, Pathak LK, Gloria L, Szabo A, et al. Trends in the use of therapeutic plasma exchange in multiple myeloma. J Clin Apher. 2020;35(4):307-15. google scholar
  • 113. Premuzic V, Batinic J, Roncevic P, Basic-Jukic N, Nemet D, and Jelakovic B. Role of Plasmapheresis in the Management of Acute Kidney Injury in Patients With Multiple Myeloma: Should We Abandon It? Ther Apher Dial. 2018;22(1):79-86. google scholar
  • 114. Drew MJ. Plasmapheresis in the dysproteinemias. Ther Apher. 2002;6(1):45-52. google scholar
  • 115. Bridoux F, Chevret S, and Fermand JP. High cutoff haemodialysis in myeloma cast nephropathy: further investigation is needed. Lancet Haematol. 2019;6(7):e347. google scholar
  • 116. Hutchison CA, Cockwell P, Moroz V, Bradwell AR, Fifer L, Gillmore JD, et al. High cutoff versus high-flux haemodialysis for myeloma cast nephropathy in patients receiving bortezomib-based chemotherapy (EuLI-TE): a phase 2 randomised controlled trial. Lancet Haematol. 2019;6(4):e217-e28. google scholar
  • 117. Sanders PW. Light chain-mediated tubulopathies. Contrib Nephrol. 2011;169:262-9. google scholar
  • 118. Bridoux F, Leung N, Hutchison CA, Touchard G, Sethi S, Fermand JP, et al. Diagnosis of monoclonal gammopathy of renal significance. Kidney international. 2015;87(4):698-711. google scholar
  • 119. Hutchison CA, Batuman V, Behrens J, Bridoux F, Sirac C, Dispenzieri A, et al. The pathogenesis and diag-nosis of acute kidney injury in multiple myeloma. Nat Rev Nephrol. 2012;8(1):43-51. google scholar
  • 120. Alonso-Titos J, Perea-Ortega L, Sola E, Torres-Rueda A, Leon M, Toledo R, et al. C3 glomerulonephritis associated with monoclonal gammopathy of renal significance: case report. BMC Nephrol. 2018;19(1):129. google scholar
  • 121. Alpers CE, and Kowalewska J. Fibrillary glomerulonephritis and immunotactoid glomerulopathy. Journal of the American Society of Nephrology : JASN. 2008;19(1):34-7. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.