CHAPTER


DOI :10.26650/B/LS34CH11CH22/2024.011.010   IUP :10.26650/B/LS34CH11CH22/2024.011.010    Full Text (PDF)

Microbiome Analysis

Uğur SezermanAli ArslanPınar OnatBerkay Yekta Ekren

Molecular biological research involves a series of delicate steps to achieve successful results. Specimen collection and transport to the laboratory conditions are critical to the correct collection and transport of specimens, as well as to avoid laboratory contamination. DNA isolation, together with the right kit selection, ensures the purification of the genetic material, which forms the basis of reliable data in the next steps. Pre- and post-PCR preparation steps must be performed with care to reduce the risk of contamination. Problems that may arise during library preparation may affect the reliability of the results. Potential problems in the pre- and post-sequencing preparation steps can affect the quality of the sequencing data. Sequencing-based problems can be encountered during data analysis. Managing and interpreting large amounts of data can be challenging. Advanced bioinformatics and statistical analysis help transform these data into meaningful results. Finally, microbiome analyzes form an important aspect of genetic research. Microbiome refers to the totality of microorganisms in the body and can be associated with health status. These analyzes contribute to the understanding of digestion, immunity, and many other processes so that disease recognition and treatment can be better targeted.


DOI :10.26650/B/LS34CH11CH22/2024.011.010   IUP :10.26650/B/LS34CH11CH22/2024.011.010    Full Text (PDF)

Mikrobiyom Analizi

Uğur SezermanAli ArslanPınar OnatBerkay Yekta Ekren

Moleküler biyolojik araştırmalar, başarılı sonuçlar elde etmek için bir dizi hassas adım içerir. Örnek alımı ve laboratuvara taşınma koşulları, numunelerin doğru toplanması ve taşınmasının yanı sıra laboratuvar kontaminasyonunu önlemek açısından kritiktir. DNA izolasyonu, doğru kit seçimi ile beraber genetik materyalin saflaştırılmasını sağlar, bu da sonraki adımlarda güvenilir verilerin temelini oluşturur. PCR öncesi ve sonrası hazırlık adımları, kontaminasyon riskini azaltmak için özenle yapılmalıdır. Kütüphane hazırlama aşamasında ortaya çıkabilecek problemler, sonuçların güvenilirliğini etkileyebilir. Dizileme öncesi ve sonrası hazırlık basamaklarındaki potansiyel sorunlar, dizileme verilerinin kalitesini etkileyebilir. Dizileme temelli problemler, veri analizi sırasında karşılaşılabilir. Büyük veri miktarının yönetimi ve yorumlanması zorlu olabilir. İleri biyoenformatik ve istatistik analizler, bu verilerin anlamlı sonuçlara dönüştürülmesine yardımcı olur. Son olarak, mikrobiyom analizleri de genetik araştırmaların önemli bir yönünü oluşturur. Mikrobiyom, vücuttaki mikroorganizmaların toplamını ifade eder ve sağlık durumuyla ilişkilendirilebilir. Bu analizler, sindirim, bağışıklık ve diğer birçok sürecin anlaşılmasına katkı sağlar, böylece hastalıkların tanınması ve tedavisi daha iyi hedeflenebilir.



References

  • Ackerman, A. L., & Underhill, D. M. (2017). The mycobiome of the human urinary tract: potential roles for fungi in urology. Annals of translational medicine, 5(2). google scholar
  • Açu, M., Yerlikaya, O., Kınık, Ö. (2014). Gıdalarda Isıl Olmayan Yeni Teknikler ve Mikroorganizmalar Üzerine Etkileri. Gıda ve Yem Bilimi-Teknolojisi Dergisi, 14, 23-35. google scholar
  • Amplicon, P. C. R., Clean-Up, P. C. R., & Index, P. C. R. (2013). 16S Metagenomic sequencing library prepa-ration. Illumina: San Diego, CA, USA. google scholar
  • Anderson, K. L., & Lebepe-Mazur, S. (2003). Comparison of rapid methods for the extraction of bacterial DNA from colonic and caecal lumen contents of the pig. Journal of applied microbiology, 94(6), 988-993. google scholar
  • Andersson, A. F., Lindberg, M., Jakobsson, H., Backhed, F., Nyren, P., & Engstrand, L. (2008). Comparative analysis of human gut microbiota by barcoded pyrosequencing. PloS one, 3(7), e2836. google scholar
  • Bach, B. H., Quigley, A. B., Gaynor, K. M., McInturff, A., Charles, K. L., Dorcy, J., & Brashares, J. S. (2022). Identifying individual ungulates from fecal DNA: a comparison of field collection methods to maximize efficiency, ease, and success. Mammalian Biology, 1-12. google scholar
  • Balvociüte, M., & Huson, D. H. (2017). SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare?. BMC genomics, 18(2), 1-8. google scholar
  • Biclot, A., Huys, G. R., Bacigalupe, R., D’hoe, K., Vandeputte, D., Falony, G., ... & Raes, J. (2022). Effect of cryopreservation medium conditions on growth and isolation of gut anaerobes from human faecal samples. Microbiome, 10(1), 1-12. google scholar
  • Cacho, A., Smirnova, E., Huzurbazar, S., & Cui, X. (2016). A comparison of base-calling algorithms for illumina sequencing technology. Briefings in bioinformatics, 17(5), 786-795. google scholar
  • Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2015). DADA2: High resolution sample inference from amplicon data. BioRxiv, 024034. google scholar
  • Ceccarani, C., & Severgnini, M. (2023). A comparison between Greengenes, SILVA, RDP, and NCBI reference databases in four published microbiota datasets. bioRxiv, 2023-04. google scholar
  • Chakravorty, S., Helb, D., Burday, M., Connell, N., & Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of microbiological methods, 69(2), 330-339. google scholar
  • Claassen, S., du Toit, E., Kaba, M., Moodley, C., Zar, H. J., & Nicol, M. P. (2013). A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. Journal of microbiological methods, 94(2), 103-110. google scholar
  • Cline, J., Braman, J. C., & Hogrefe, H. H. (1996). PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic acids research, 24(18), 3546-3551. google scholar
  • Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A., ... & Tiedje, J. M. (2003). The Ribo-somal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic acids research, 31(1), 442-443. google scholar
  • de Lipthay, J. R., Enzinger, C., Johnsen, K., Aamand, J., & S0rensen, S. J. (2004). Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biology and Biochemistry, 36(10), 1607-1614. google scholar
  • Dethlefsen, L., Huse, S., Sogin, M. L., & Relman, D. A. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS biology, 6(11), e280. google scholar
  • Dridi, B., Henry, M., El Khechine, A., Raoult, D., Drancourt, M., 2009. High prevalence of Methanobrevibac-ter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS ONE. 4, e7063. google scholar
  • Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., ... & Relman, D. A. (2005). Diversity of the human intestinal microbial flora. science, 308(5728), 1635-1638. google scholar
  • Federhen, S. (2012). The NCBI taxonomy database. Nucleic acids research, 40(D1), D136-D143. google scholar
  • Gevers, D., Knight, R., Petrosino, J. F., Huang, K., McGuire, A. L., Birren, B. W., ... & Huttenhower, C. (2012). The Human Microbiome Project: a community resource for the healthy human microbiome. google scholar
  • Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., ... & Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. science, 312(5778), 1355-1359. google scholar
  • Heather, J. M., & Chain, B. (2016). The sequence of sequencers: The history of sequencing DNA. Genomics, 107(1), 1-8. google scholar
  • Heikema, A. P., Horst-Kreft, D., Boers, S. A., Jansen, R., Hiltemann, S. D., de Koning, W., ... & Hays, J. P. (2020). Comparison of illumina versus nanopore 16S rRNA gene sequencing of the human nasal microbiota. Genes, 11(9), 1105. google scholar
  • Himel Mallick, Eric A. Franzosa, Lauren J. McIver, Soumya Banerjee, Alexandra Sirota-Madi, Aleksandar D. Kostic, Clary B. Clish, Hera Vlamakis, Ramnik Xavier, Curtis Huttenhower (2019). google scholar
  • Human Microbiome Project Consortium. (2012). Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207-14. google scholar
  • J.M., Ram, J.L., Basson, M.D., Namprachan, P., Niec, S.R., Badsha, K.Z., Matherly, L.H., Majumdar, A.P., Kato, I., 2008. Fecal collection, ambient preservation, and DNA extraction for PCR amplification of bacterial and human markers from human feces. J. Microbiol. Methods. 72, 124-132. google scholar
  • Joyce, C. M., & Benkovic, S. J. (2004). DNA polymerase fidelity: kinetics, structure, and checkpoints. Bioche-mistry, 43(45), 14317-14324. google scholar
  • Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1), 27-30. google scholar
  • Karstens, L., Asquith, M., Caruso, V., Rosenbaum, J. T., Fair, D. A., Braun, J., ... & McWeeney, S. K. (2018). Community profiling of the urinary microbiota: considerations for low-biomass samples. Nature Reviews Urology, 15(12), 735-749. google scholar
  • Karstens, L., Asquith, M., Davin, S., Fair, D., Gregory, W. T., Wolfe, A. J., ... & McWeeney, S. (2019). Control-ling for contaminants in low-biomass 16S rRNA gene sequencing experiments. MSystems, 4(4), e00290-19. google scholar
  • Karstens, L., Siddiqui, N. Y., Zaza, T., Barstad, A., Amundsen, C. L., & Sysoeva, T. A. (2021). Benchmarking DNA isolation kits used in analyses of the urinary microbiome. Scientific Reports, 11(1), 1-9. google scholar
  • Khachatryan, Z. A., Ktsoyan, Z. A., Manukyan, G. P., Kelly, D., Ghazaryan, K. A., & Aminov, R. I. (2008). Predominant role of host genetics in controlling the composition of gut microbiota. PloS one, 3(8), e3064. google scholar
  • Köroğlu, M. (2017). Mikrobiyota çalışmalarında örnek alımı ve DNA izolasyonu. Journal of Biotechnology and Strategic Health Research, 1, 50-55. google scholar
  • Lagier, J. C., Armougom, F., Million, M., Hugon, P., Pagnier, I., Robert, C., ... & Raoult, D. (2012). Microbi-al culturomics: paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection, 18(12), 1185-1193. google scholar
  • Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., ... & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature biotechnology, 31(9), 814-821. google scholar
  • Lederberg, J., & McCray, A. T. (2001). Ome SweetOmics--A genealogical treasury of words. The scientist, 15(7), 8-8. google scholar
  • Li, F., Hullar, M. A., & Lampe, J. W. (2007). Optimization of terminal restriction fragment polymorphism (TRF-LP) analysis of human gut microbiota. Journal of microbiological methods, 68(2), 303-311. google scholar
  • Lin, B., Hui, J., & Mao, H. (2021). Nanopore technology and its applications in gene sequencing. Biosensors, 11(7), 214. google scholar
  • Mallick, H., Franzosa, E. A., Mclver, L. J., Banerjee, S., Sirota-Madi, A., Kostic, A. D., ... & Huttenhower, C. (2019). Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequ-ences. Nature communications, 10(1), 3136. google scholar
  • Marchesi, J. R., & Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome, 3, 1-3. google scholar
  • Matlock, B. (2015). Assessment of nucleic acid purity. Technical Note, 52646, 1-2. google scholar
  • Matsuo, Y., Komiya, S., Yasumizu, Y., Yasuoka, Y., Mizushima, K., Takagi, T., ... & Hirota, K. (2021). Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution. BMC microbiology, 21(1), 1-13. google scholar
  • McOrist, A. L., Jackson, M., & Bird, A. R. (2002). A comparison of five methods for extraction of bacterial DNA from human faecal samples. Journal of microbiological methods, 50(2), 131-139. google scholar
  • Morita, H., Kuwahara, T., Ohshima, K., Sasamoto, H., Itoh, K., Hattori, M., Hayashi, T., Takami, H., 2007. An improved DNA isolation method for metagenomic analysis of the microbial flora of the human intestine. Microbes Environ. 22, 214-222. google scholar
  • Moustafa, A., Li, W., Singh, H., Moncera, K. J., Torralba, M. G., Yu, Y., ... & Telenti, A. (2018). Microbial metagenome of urinary tract infection. Scientific reports, 8(1), 4333. google scholar
  • Nagata, N., Tohya, M., Takeuchi, F., Suda, W., Nishijima, S., Ohsugi, M., ... & Hattori, M. (2019). Effects of storage temperature, storage time, and Cary-Blair transport medium on the stability of the gut microbiota. Drug discoveries & therapeutics. google scholar
  • Nagpal, S., Haque, M. M., Singh, R., & Mande, S. S. (2019). iVikodak—A platform and standard workflow for inferring, analyzing, comparing, and visualizing the functional potential of microbial communities. Frontiers in Microbiology, 9, 3336. google scholar
  • Nearing, J. T., Douglas, G. M., Comeau, A. M., & Langille, M. G. (2018). Denoising the Denoisers: an indepen-dent evaluation of microbiome sequence error-correction approaches. PeerJ, 6, e5364. google scholar
  • Neuberger-Castillo, L., Hamot, G., Marchese, M., Sanchez, I., Ammerlaan, W., & Betsou, F. (2020). Method validation for extraction of DNA from human stool samples for downstream microbiome analysis. Biopre-servation and Biobanking, 18(2), 102-116. google scholar
  • Oxford Nanopore Technologies. Nanopore sequencing 101 Q&A. https://nanoporetech.com/events/nanopore-sequencing-101-online-event-qa. Accessed 01.02.2023. google scholar
  • Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the human infant intestinal microbiota. PLoS biology, 5(7), e177. google scholar
  • Pan, A. Y. (2021). Statistical analysis of microbiome data: the challenge of sparsity. Current Opinion in Endoc-rine and Metabolic Research, 19, 35-40. google scholar
  • PCR Fidelity Calculator. Thermo Fisher. www.thermofisher.com/us/en/home/brands/thermo-scientific/molecu-lar-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-we-b-tools/pcr-fidelity-calculator.html google scholar
  • Pratt, M. (2022). The effect of sample processing methodology on observed metagenomic and metatranscripto-mic microbiome profiles from healthy human stool. google scholar
  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., ... & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids rese-arch, 41(D1), D590-D596. google scholar
  • Rajilic-Stojanovic, M., Smidt, H., & De Vos, W. M. (2007). Diversity of the human gastrointestinal tract micro-biota revisited. Environmental microbiology, 9(9), 2125-2136. google scholar
  • Reha-Krantz, L. J. (2010). DNA polymerase proofreading: Multiple roles maintain genome stability. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(5), 1049-1063. google scholar
  • Remolar, M. (2019). Highly accurate variant detection for identification of tumor mutations and mosaic variants (Doctoral dissertation, Universitat Pompeu Fabra). google scholar
  • Salonen, A., Nikkila, J., Jalanka-Tuovinen, J., Immonen, O., Rajilic-Stojanovic, M., Kekkonen, R. A., ... & de Vos, W. M. (2010). Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. Journal of microbiological methods, 81(2), 127-134. google scholar
  • Sezerman U, Arslan A, Onat P, Ekren, B (2023). Mikrobiyota, Probiyotikler ve Akılcı Beslenme. Mikrobiyom Analizi (s. 527-535). İstanbul: Nobel Yayınları google scholar
  • Scanlan, P. D., Shanahan, F., & Marchesi, J. R. (2008). Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC microbiology, 8(1), 1-8. google scholar
  • Schwiertz, A., Taras, D., Schafer, K., Beijer, S., Bos, N. A., Donus, C., & Hardt, P. D. (2009). Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010; 18 (1): 190-5. google scholar
  • Scientific, T. (2012). Interpretation of nucleic acid 260/280 ratios. T123 Technical Bulletin. Wilmington, DE, USA: Thermo Scientific. google scholar
  • Scupham, A. J., Jones, J. A., & Wesley, I. V. (2007). Comparison of DNA extraction methods for analysis of turkey cecal microbiota. Journal of applied microbiology, 102(2), 401-409. google scholar
  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Meta-genomic biomarker discovery and explanation. Genome biology, 12, 1-18. google scholar
  • Silverman, J. D., Bloom, R. J., Jiang, S., Durand, H. K., Mukherjee, S., & David, L. A. (2019). Measuring and mitigating PCR bias in microbiome data. BioRxiv, 604025. google scholar
  • Song, S. J., Amir, A., Metcalf, J. L., Amato, K. R., Xu, Z. Z., Humphrey, G., & Knight, R. (2016). Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. MSystems, 1(3), e00021-16. google scholar
  • Swidsinski, A., Loening-Baucke, V., Verstraelen, H., Osowska, S., & Doerffel, Y (2008). Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology, 135(2), 568-579. google scholar
  • Szostak, N., Szymanek, A., Havranek, J., Tomela, K., Rakoczy, M., Samelak-Czajka, A., ... & Philips, A. (2022). The standardisation of the approach to metagenomic human gut analysis: from sample collection to micro-biome profiling. Scientific Reports, 12(1), 1-21. google scholar
  • Tappenden, K. A., & Deutsch, A. S. (2007). The physiological relevance of the intestinal microbiota-contributi-ons to human health. Journal of the American College of Nutrition, 26(6), 679S-683S. google scholar
  • Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., ... & Natale, D. A. (2003). The COG database: an updated version includes eukaryotes. BMC bioinformatics, 4(1), 1-14. google scholar
  • Tatusov, R. L., Koonin, E. V., & Lipman, D. J. (1997). A genomic perspective on protein families. Science, 278(5338), 631-637. google scholar
  • Thomas, V., Clark, J., & Dore, J. (2015). Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future microbiology, 10(9), 1485-1504. google scholar
  • Wang, Y., Yang, Q., & Wang, Z. (2015). The evolution of nanopore sequencing. Frontiers in genetics, 5, 449. google scholar
  • Wick, R. R., Judd, L. M., & Holt, K. E. (2019). Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome biology, 20, 1-10. google scholar
  • Wojciuk, B., Salabura, A., Grygorcewicz, B., Kçdzierska, K., Ciechanowski, K., & Dolçgowska, B. (2019). Urobiome: in sickness and in health. Microorganisms, 7(11), 548. google scholar
  • Xue, M., Wu, L., He, Y., Liang, H., & Wen, C. (2018). Biases during DNA extraction affect characterization of the microbiota associated with larvae of the Pacific white shrimp, Litopenaeus vannamei. PeerJ, 6, e5257. google scholar
  • Yu, Z., & Morrison, M. (2004). Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques, 36(5), 808-812. google scholar
  • Zeng, Y., Li, J., Wei, C., Zhao, H., & Tao, W. (2022). mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis. Genome Biology, 23(1), 1-29. google scholar
  • Zhang, B., Brock, M., Arana, C., Dende, C., van Oers, N. S., Hooper, L. V., & Raj, P. (2021). Impact of be-ad-beating intensity on the genus and species level characterization of gut microbiome using amplicon and complete 16S rRNA gene sequencing. Frontiers in cellular and infection microbiology, 11, 585. google scholar
  • Zhang, H., Dibaise, J.K., Zuccolo, A., Kudrna, D., Braidotti, M., Yu, Y., Parameswaran, P., Crowell, M.D., Wing, R., Rittmann, B.E., Krajmalnik-Brown, R., 2009. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. U.S.A. 106, 2365-2370. google scholar
  • Zoetendal, E.G., Rajilic-Stojanovic, M., de Vos,W.M., 2008. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut. 57, 1605-1615. google scholar
  • Zymo (2023). https://zymoresearch.eu/blogs/blog/microbiome-informatics-otu-vs-asv Erişim Tarihi: 12/07/2023. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.