CHAPTER


DOI :10.26650/B/LS34CH11CH22/2024.011.002   IUP :10.26650/B/LS34CH11CH22/2024.011.002    Full Text (PDF)

Virobiota and Virome

Gülşah Tunçer

The microbiota can be defined as all microorganisms living in the human body, including approximately 90 trillion bacteria, archaea, eukaryotic microorganisms, and viruses. While the term “virobiota” refers to the community of viruses within a host, and “virom” refers to the entire set of genes from this virobiota, these definitions are sometimes used interchangeably. The human virome consists of endogenous viral elements, eukaryotic viruses that infect eukaryotic cells such as bacteria, fungi, and archaea, prokaryotic viruses, and primarily plant-derived viruses obtained from the environment and diet. Bacteriophages, which are viruses specific to bacteria, are the primary components of the virome. Eukaryotic viruses constitute a small fraction of the gut virome. Particularly, regions of the human body, especially where the gut is present, carry the highest viral load. The gut virome plays a role in the metabolism of toxins and nutrients, metabolic pathways, maintenance of the gut barrier, and immune regulation. The relationship between the gut virome and diseases can be explained by the prevalence of specific virotypes in the environment and changes in diversity. Numerous studies have been published demonstrating the connection between changes in the gut virome and inflammatory bowel disease, type 1 and 2 diabetes mellitus, obesity, HIV infection, liver diseases, malignancy, and COVID-19. In recent years, with the implementation of next-generation sequencing and metagenomic sequencing methods, the “dark matter” of the gut virome has started to be uncovered. These advancements have led to intensified research efforts to fully uncover the role of the human virome in diseases.


DOI :10.26650/B/LS34CH11CH22/2024.011.002   IUP :10.26650/B/LS34CH11CH22/2024.011.002    Full Text (PDF)

Virobiyota ve Virom

Gülşah Tunçer

Mikrobiyota, insan vücudunda yaşayan tüm mikroorganizmalar (yaklaşık 90 trilyon bakteri, arkea, ökaryotik mikroorganizma ve virus) olarak tanımlanabilir. Konakta yer alan virus topluluğu “virobiyota” ve virobiyotadaki tüm gen kümesi “virom” olarak tanımlanmasına karşın, bu tanımlamalar kimi zaman birbirlerinin yerine kullanılmaktadır. İnsan viromu, endojen viral elementler, bakteri, mantar ve arkea gibi ökaryotik hücreleri infekte eden ökaryotik viruslar, prokaryotik viruslar (bakteriyofaj) ve öncelikle çevre ve diyetten türetilen bitki viruslarından oluşur. Bakteriye spesifik viruslar olan bakteriyofajlar viromun asıl bileşenidir. Ökaryotik viruslar, barsak viromunun küçük bir kısmını oluşturur. İnsan vücudunda özellikle barsakların bulunduğu bölgeler en yüksek virus yüküne sahiptir. Bununla birlikte, ağız boşluğu, burun ya da vagina gibi mukozaların bulunduğu bölgelerde miktar daha düşük, ancak önemli bir grubu oluşturmaktadır. Barsak viromu; toksik maddelerin ve besinlerin metabolizması, metabolik yollar, barsak bariyerinin sağlanması, immün regülasyonda görev alır. Barsak viromuyla hastalıkların ilişkisi; ortamda belirli virotiplerin yoğun olması ve çeşitlilikte değişiklikle açıklanabilir. Barsak virom değişikliği ile inflamatuar barsak hastalığı, tip 1 ve 2 diyabetes mellitus, obezite, HIV infeksiyonu, karaciğer hastalıkları, malignite ve COVID-19 ilişkisini gösteren pek çok araştırma yayınlanmıştır. Son zamanlarda, yeni nesil dizileme, metagenomik dizileme yöntemlerinin uygulanması sayesinde, “karanlık alan” olarak adlandırılan barsak viromu açığa çıkmaya başlamıştır. Bu gelişmeler, insan viromunun hastalıklardaki rolünü tam anlamıyla ortaya çıkarmaya yönelik çalışmaların yoğunlaşmasını sağlamıştır.



References

  • Bajaj, J.S., Sikaroodi, M., Shamsaddini, A., Henseler, Z., Santiago-Rodriguez, T., Acharya, C...Gillevet, P.M. google scholar
  • (2021) . Interaction of bacterial metagenome and virome in patients with cirrhosis and hepatic encephalo-pathy. Gut. 70(6), 1162-1173. doi: 10.1136/gutjnl-2020-322470. google scholar
  • Barton, E.S., White, D.W., Cathelyn, J.S., Brett-McClellan, K.A., Engle, M., Diamond, M.S.Virgin, H.W. (2007). Herpesvirus latency confers symbiotic protection from bacterial infection. Nature. 447(7142), 326-9. doi: 10.1038/nature05762. PMID: 17507983. google scholar
  • Beller, L., & Matthijnssens, J. (2019). What is (not) known about the dynamics of the human gut virome in health and disease. Curr Opin Virol. 37, 52-7. https://doi.org/10.1016/j.coviro.2019.05.013. google scholar
  • Breitbart, M., Hewson, I., Felts, B., Mahaffy, J. M., Nulton, J., Salamon, P., & Rohwer, F. (2003). Metagenomic analyses of an uncultured viral community from human feces. Journal of bacteriology, 185(20), 6220-6223. https://doi.org/10.1128/JB.185.20.6220-6223.2003. google scholar
  • Cadwell, K., Patel, K.K., Maloney, N.S., Liu, T.C., Ng, A.C., Storer, C.E.Virgin, H.W. (2010). Virus-plus-sus-ceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 141(7), 1135-45. doi: 10.1016/j.cell.2010.05.009. google scholar
  • Carding, S.R., Davis, N., & Hoyles, L. (2017). Review article: the human intestinal virome in health and disease. Aliment Pharmacol Ther. 46(9):800-15. https://doi.org/10.1111/apt.14280. google scholar
  • Cepko, L. C. S., Garling, E. E., Dinsdale, M. J., Scott, W. P., Bandy, L., Nice, T.Mellies, J. L. (2020). Myovi-ridae phage PDX kills enteroaggregative Escherichia coli without human microbiome dysbiosis. Journal of medical microbiology, 69(2), 309-323. https://doi.org/10.1099/jmm.0.001162. google scholar
  • Chen, E.C., Miller, S.A., DeRisi, J.L., & Chiu, C.Y. (2011). Using a pan-viral microarray assay (Virochip) to screen clinical samples for viral pathogens. J Vis Exp. (50), 2536. doi: 10.3791/2536. google scholar
  • Chen, Q., Ma, X., Li, C., Shen, Y., Zhu, W., Zhang, Y.. .Liu, C. Enteric Phageome Alterations in Patients With Type 2 Diabetes. Front Cell Infect Microbiol. 10, 575084. doi: 10.3389/fcimb.2020.575084. google scholar
  • Clooney, A.G., Sutton, T.D.S., Shkoporov, A.N., Holohan, R.K., Daly, K.M., O’Regan, O.Hill, C. (2019). Who-le-Virome Analysis Sheds Light on Viral Dark Matter in Inflammatory Bowel Disease. Cell Host Microbe. 26(6), 764-778.e5. doi: 10.1016/j.chom.2019.10.009. google scholar
  • Delwart, E. (2016). Viruses of the Human Body: Some of our resident virusesmay be benefical. Scientist. 30 (11), e47291. google scholar
  • Draper, L. A., Ryan, F. J., Dalmasso, M., Casey, P. G., McCann, A., Velayudhan, V.Hill, C. (2020). Autochtho-nous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation. BMC biology. 18(1), 173. https://doi.org/10.1186/s12915-020-00906-0. google scholar
  • Duerkop, B.A., & Hooper, L.V. (2013). Resident viruses and their interactions with the immune system. Nat Immunol. 14(7), 654-9. doi: 10.1038/ni.2614. https://doi.org/10.1136/gutjnl-2018-318131. google scholar
  • Emlet, C., Ruffin, M., & Lamendella, R. (2020). Enteric virome and carcinogenesis in the gut. Dig Dis Sci. 65(3), 852- 64. https://doi.org/10.1007/s10620-020-06126-4. google scholar
  • Fernandes, M. A., Verstraete, S. G., Phan, T. G., Deng, X., Stekol, E., LaMere, B.Delwart, E. (2019). Ente-ric Virome and Bacterial Microbiota in Children With Ulcerative Colitis and Crohn Disease. Journal of pediatric gastroenterology and nutrition, 68(1), 30-36. https://doi.org/10.1097/MPG.0000000000002140. google scholar
  • Foulongne, V., Sauvage, V., Hebert, C., Dereure, O, Cheval J, Gouilh M.A... Eloit, M. (2012). Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS One. 7(6), e38499. doi: 10.1371/journal.pone.0038499. google scholar
  • Galtier, M., De Sordi, L., Sivignon, A., de Vallee, A., Maura, D., Neut, C.Debarbieux, L. (2017). Bacteriopha-ges Targeting Adherent Invasive Escherichia coli Strains as a Promising New Treatment for Crohn’s Disease. Journal of Crohn’s & colitis. 11(7), 840-847. https://doi.org/10.1093/ecco-jcc/jjw224. google scholar
  • Gao, R., Zhu, Y., Kong, C., Xia, K., Li, H., Zhu, Y.Qin, H. (2021). Alterations, Interactions, and Diagnostic Potential of Gut Bacteria and Viruses in Colorectal Cancer. Front Cell Infect Microbiol. 11, 657867. doi: 10.3389/fcimb.2021.657867. google scholar
  • Garmaeva, S., Sinha, T., Kurilshikov, A., Fu, J., Wijmenga, C., & Zhernakova, A. (2019). Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biol. 17(1), 84. https://doi.org/10.1186/ s12915-019-0704-y. google scholar
  • Ghose, C., Ly, M., Schwanemann, L. K., Shin, J. H., Atab, K., Barr, J. J.Pride, D. T. (2019). The Virome of Cerebrospinal Fluid: Viruses Where We Once Thought There Were None. Frontiers in microbiology, 10, 2061. https://doi.org/10.3389/fmicb.2019.02061. google scholar
  • Guerin, E., Shkoporov, A., Stockdale, S. R., Clooney, A. G., Ryan, F. J., Sutton, T. D. S.Hill, C. (2018). Bio-logy and Taxonomy of crAss-like Bacteriophages, the Most Abundant Virus in the Human Gut. Cell host & microbe, 24(5), 653-664.e6. https://doi.org/10.1016/j.chom.2018.10.002. google scholar
  • Gogokhia, L., Buhrke, K., Bell, R., Hoffman, B., Brown, D.G., Hanke-Gogokhia, C.Round, J.L. (2019). Ex-pansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. Cell Host Microbe. 25(2), 285-299.e8. doi: 10.1016/j.chom.2019.01.008. google scholar
  • Gonzalez-Cao, M., Iduma, P., Karachaliou, N., Santarpia, M., Blanco, J., & Rosell, R. (2016). Human en-dogenous retroviruses and cancer. Cancer Biol Med. 13(4), 483-8. https://doi.org/10.20892/j.issn.2095-3941.2016.0080. google scholar
  • Handley, S.A., Thackray, L.B., Zhao, G., Presti, R., Miller, A.D., Droit, L.Virgin, H.W. (2012). Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell. 51(2), 253-66. doi: 10.1016/j.cell.2012.09.024. google scholar
  • Handley, S.A., Desai, C., Zhao, G., Droit, L., Monaco, C.L., Schroeder, A.C. Virgin H.W. (2016). SIV Infecti-on-Mediated Changes in Gastrointestinal Bacterial Microbiome and Virome Are Associated with Immunode-ficiency and Prevented by Vaccination. Cell Host Microbe. 19(3), 323-35. doi: 10.1016/j.chom.2016.02.010. google scholar
  • Hino, S., & Miyata, H. (2007). Torque teno virus (TTV): current status. Rev Med Virol. 17(1), 45-57. doi: 10.1002/rmv.524. PMID: 17146841. google scholar
  • Huh, H., Wong, S., St Jean, J., & Slavcev, R. (2019). Bacteriophage interactions with mammalian tissue: The-rapeutic applications. Adv Drug Deliv Rev. 145 (2019), 4-17. https://doi.org/10.1016/j.addr.2019.01.003. google scholar
  • Jakobsen, R. R., Haahr, T., Humaidan, P., Jensen, J. S., Kot, W. P., Castro-Mejia, J. L.Nielsen, D. S. (2020). Characterization of the Vaginal DNA Virome in Health and Dysbiosis. Viruses. 12(10), 1143. https://doi. org/10.3390/v12101143. google scholar
  • Jiang, L., Lang, S., Duan, Y., Zhang, X., Gao, B., Chopyk, J.Schnabl, B. (2020). Intestinal Virome in Patients With Alcoholic Hepatitis. Hepatology. 72(6), 2182-2196. doi: 10.1002/hep.31459. google scholar
  • Kim, M.S., & Bae, J.W. (2016). Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ Microbiol. 18(5), 1498-510. doi: 10.1111/1462-2920.13182. google scholar
  • Koonin, E.V., & Yutin, N. (2020). The crAss-like phage group: How metagenomics reshaped the human virome. Trends Microbiol. 28(5), 349-59. https://doi.org/10.1016/j.tim.2020.01.010. google scholar
  • Küry, P., Nath, A., Creange, A., Dolei, A., Marche, P., Gold, J.Perron, H. (2018). Human Endogenous Retro-viruses in Neurological Diseases. Trends in molecular medicine, 24(4), 379-394. https://doi.org/10.1016Zj. molmed.2018.02.007. google scholar
  • Lang, S., Demir, M., Martin, A., Jiang, L., Zhang, X., Duan, Y. Schnabl B. (2020). Intestinal Virome Signature Associated With Severity of Nonalcoholic Fatty Liver Disease. Gastroenterology. 159(5), 1839-1852. doi: 10.1053/j.gastro.2020.07.005. google scholar
  • Li, L., Deng, X., Linsuwanon, P., Bangsberg, D., Bwana, M. B., Hunt, P.Delwart, E. (2013). AIDS alters the commensal plasma virome. Journal of virology, 87(19), 10912-10915. https://doi.org/10.1128/JVI.01839-13. google scholar
  • Li, W., Lee, M.H., Henderson, L., Tyagi, R., Bachani, M., Steiner, J. Nath, A. (2015). Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med. 7(307), 307ra153. doi: 10.1126/scitrans-lmed.aac8201. google scholar
  • Liang, W., Feng, Z., Rao, S., Xiao, C., Xue, X., Lin, Z.Qi, W. (2020). Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut. 69(6), 1141-1143. https://doi.org/10.1136/gutjnl-2020-320832. google scholar
  • Liang, G., & Bushman, FD. (2021). The human virome: assembly, compositionand host interactions. Nat Rev Microbiol. 19(8), 514-527. https://doi.org/10.1038/s41579-021-00536-5. google scholar
  • Lopetuso, L.R., Ianiro, G., Scaldaferri, F., Cammarota, G., & Gasbarrini, A. (2016). Gut virome and inflamma-tory bowel disease. Inflamm Bowel Dis. 22(7), 1708-12. doi: 10.1097/MIB.0000000000000807. google scholar
  • Ma, Y., You, X., Mai, G., Tokuyasu, T., & Liu, C. A. (2018). Human gut phage catalog correlates the gut phage-ome with type 2 diabetes. Microbiome. 6(1), 24. https://doi.org/10.1186/s40168-018-0410-y. google scholar
  • Massimino, L., Lovisa, S., Antonio Lamparelli, L., Danese, S., & Ungaro, F. Gut eukaryotic virome in colorectal carcinogenesis: Is that a trigger? Comput Struct Biotechnol J. 19, 16-28. doi: 10.1016/j.csbj.2020.11.055. google scholar
  • Matijasic, M., Mestrovic, T., Paljetak, H.Ğ., Peric, M., Baresic, A., & Verbanac, D. (2020). Gut microbiota beyond bacteria- mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int J Mol Sci. 21(8), 2668. https://doi.org/10.3390/ijms21082668. google scholar
  • Maurice, C.F. (2019). Considering the other half of the gut microbiome: Bacteriophages. mSystems. 24(3), e00102-19. https://doi.org/10.1128/mSystems.00102-19. google scholar
  • Minot, S., Sinha, R., Chen, J., Li, H., Keilbaugh, S. A., Wu, G. D.Bushman, F. D. (2011). The human gut virome: inter-individual variation and dynamic response to diet. Genome research. 21(10), 1616-1625. https://doi.org/10.1101/gr.122705.111. google scholar
  • Mohandas, S., & Pannaraj, P.S. (2020). Beyond the bacterial microbiome: Virome of human milk and effects on the developing infant. Nestle Nutr Inst Workshop Ser. 94, 86-93. https://doi.org/10.1159/000504997. google scholar
  • Monaco, C.L., Gootenberg, D.B., Zhao, G., Handley, S.A., Ghebremichael, M.S., Lim, E.S... Virgin, H.W. (2016). Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. Cell Host Microbe. 19(3), 311-22. doi: 10.1016/j.chom.2016.02.011. google scholar
  • Nakatsu, G., Zhou, H., Wu, W.K.K., Wong, S.H., Coker, O.O., Dai, Z.Yu, J. (2018). Alterations in Enteric Virome Are Associated With Colorectal Cancer and Survival Outcomes. Gastroenterology.155(2), 529-541. e5. doi: 10.1053/j.gastro.2018.04.018. google scholar
  • Nayfach, S., Pâez-Espino, D., Call, L., Low, S. J., Sberro, H., Ivanova, N. N.Kyrpides, N. C. (2021). Metage-nomic compendium of 189,680 DNA viruses from the human gut microbiome. Nature microbiology, 6(7), 960-970. https://doi.org/10.1038/s41564-021-00928-6. google scholar
  • Neil, J.A., & Cadwell, K. (2018). The intestinal virome and immunity. J Immunol. 201(6), 1615-24. https://doi. org/10.4049/jimmunol.1800631. google scholar
  • Nex0, B. A., Villesen, P., Nissen, K. K., Lindegaard, H. M., Rossing, P., Petersen.Laska, M. J. (2016). Are human endogenous retroviruses triggers of autoimmune diseases? Unveiling associations of three diseases and viral loci. Immunologic research, 64(1), 55-63. https://doi.org/10.1007/s12026-015-8671-z. google scholar
  • Norman, J. M., Handley, S. A., Baldridge, M. T., Droit, L., Liu, C. Y., Keller, B. C.Virgin, H. W. (2015). Dise-ase-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 160(3), 447-460. https:// doi.org/10.1016/j.cell.2015.01.002. google scholar
  • Oikarinen, M., Tauriainen, S., Oikarinen, S., Honkanen, T., Collin, P., Rantala, I.Hyöty, H. (2012). Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes. 61(3), 687-91. doi: 10.2337/ db11-1157. google scholar
  • Ott, S. J., Waetzig, G. H., Rehman, A., Moltzau-Anderson, J., Bharti, R., Grasis, J. A.Schreiber, S. (2017). Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection. Gast-roenterology, 152(4), 799-811.e7. https://doi.org/10.1053/j.gastro.2016.11.010. google scholar
  • Pannaraj, P. S., Ly, M., Cerini, C., Saavedra, M., Aldrovandi, G. M., Saboory, A. A.Pride, D. T. (2018). Shared and Distinct Features of Human Milk and Infant Stool Viromes. Frontiers in microbiology. 9, 1162. https:// doi.org/10.3389/fmicb.2018.01162. google scholar
  • Rasmussen, T. S., Mentzel, C. M. J., Kot, W., Castro-Me^a, J. L., Zuffa, S., Swann, J. R.Nielsen, D. S. (2020). Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut. 69(12), 2122-2130. https://doi.org/10.1136/gutjnl-2019-320005. google scholar
  • Rogers, M.A.M., Basu, T., & Kim, C. (2019). Lower Incidence Rate of Type 1 Diabetes after Receipt of the Rotavirus Vaccine in the United States, 2001-2017. Sci Rep. 9(1), 7727. doi: 10.1038/s41598-019-44193-4. google scholar
  • Sadeharju, K., Hamalainen, A.M., Knip, M., Lönnrot, M., Koskela, P., Virtanen, S.M. Hyöty, H. (2003). Ente-rovirus infections as a risk factor for type I diabetes: virus analyses in a dietary intervention trial. Clin Exp Immunol. 132(2), 271-7. doi: 10.1046/j.1365-2249.2003.02147.x. google scholar
  • Santiago-Rodriguez, T.M., & Hollister, E.B. (2019). Human virome and disease: High throughput sequencing for virus discovery, identification of phage-bacteria dysbiosis and development of therapeutic approaches with emphasis on the human gut. Viruses. 11(7), 656. https://doi.org/10.3390/v11070656. google scholar
  • Schulfer, A., Santiago-Rodriguez, T.M., Ly, M., Borin, J.M., Chopyk, J., & Blaser, M.J., Pride, D.T. (2020). Fecal Viral Community Responses to High-Fat Diet in Mice. mSphere. 5(1), e00833-19. doi: 10.1128/ mSphere.00833-19. google scholar
  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 14(8), e1002533. doi: 10.1371/journal.pbio.1002533. google scholar
  • Shkoporov, A.N., & Hill, C. (2019). Bacteriophages of the human gut: the“Known Unknown” of the micro-biome.Cell Host Microbe. 25, 195-209. https://doi.org/10.1016/j.chom.2019.01.017. google scholar
  • Siljander, H., Honkanen, J., & Knip, M. (2019). Microbiome and type 1 diabetes. EBioMedicine. 46, 512-21. https://doi.org/doi.org/10.1016/j.ebiom.2019.06.031. google scholar
  • Sinha, A., Li, Y., Mirzaei, M.K., Shamash, M., Samadfam, R., King, I.L., & Maurice, C.F. (2022). Transplanta-tion of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. Microbiome. 10(1), 105. doi: 10.1186/s40168-022-01275-2. google scholar
  • Siqueira, J. D., Curty, G., Xutao, D., Hofer, C. B., Machado, E. S., Seuânez, H. N... Soares, E. A. (2019). Composite Analysis of the Virome and Bacteriome of HIV/HPV Co-Infected Women Reveals Proxies for Immunodeficiency. Viruses. 11(5), 422. https://doi.org/10.3390/v11050422 google scholar
  • Tetz, G., & Tetz, V. (2016). Bacteriophage infections of microbiota can lead to leaky gut in an experimental rodent model. Gut Pathog. 8, 33. doi: 10.1186/s13099-016-0109-1. google scholar
  • Ungaro, F., Massimino, L., D’Alessio, S., & Danese, S. (2019). The gut virome in inflammatory bowel disease pathogenesis: From metagenomics to novel therapeutic approaches. United European Gastroenterol J. 7(8), 999- 1007. https://doi.org/10.1177/2050640619876787. google scholar
  • Wang, D. (2020). 5 challenges in understanding the role of the virome in health and disease. PLOS Pathog. 16(3), e10008318. https://doi.org/10.1371/journal.ppat.1008318. google scholar
  • Woolhouse, M.E., Howey, R., Gaunt, E., Reilly, L., Chase-Topping, M., & Savill, N. (2008) Temporal trends in the discovery of human viruses. Proc Biol Sci. 275(1647), 2111-5. doi: 10.1098/rspb.2008.0294. google scholar
  • Wylie, K.M., Weinstock, G.M., & Storch, G.A. (2012). Emerging view of the human virome. Transl Res. 60(4), 283-90. doi: 10.1016/j.trsl.2012.03.006. google scholar
  • Wylie, K.M., Mihindukulasuriya, K.A., Sodergren, E., Weinstock, G.M., & Storch, G.A. (2012). Sequence analysis of the human virome in febrile and afebrile children. PLoS One. 7(6):e27735. doi: 10.1371/journal. pone.0027735. google scholar
  • Virgin, H.W., Wherry, E.J., & Ahmed, R. (2009). Redefining chronic viral infection. 138(1), 30-50. doi: 10.1016/j.cell.2009.06.036. google scholar
  • Y ang, J.Y., Kim, M.S., Kim, E., Cheon, J.H., Lee, Y.S., Kim, Y.Kweon, M.N. (2016). Enteric Viruses Amelio-rate Gut Inflammation via Toll-like Receptor 3 and Toll-like Receptor 7-Mediated Interferon-p Production. Immunity. 44(4), 889-900. doi: 10.1016/j.immuni.2016.03.009. google scholar
  • Y ang, K., Niu, J., Zuo, T., Sun, Y., Xu, Z., Tang, W.Ng SC. (2021). Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus. Gastroenterology. 161(4), 1257-1269.e13. doi: 10.1053/j.gastro.2021.06.056. google scholar
  • Y eoh, Y. K., Zuo, T., Lui, G. C., Zhang, F., Liu, Q., Li, A. Y.Ng, S. C. (2021). Gut microbiota composition ref-lects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 70(4), 698-706. https://doi.org/10.1136/gutjnl-2020-323020. google scholar
  • Zhao, G., Vatanen, T., Droit, L., Park, A., Kostic, A.D., Poon, T.W.Virgin, H.W. (2017). Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc Natl Acad Sci U S A. 114 (30), E6166-E6175. doi: 10.1073/pnas.1706359114. google scholar
  • Zuo, T., Wong, S. H., Lam, K., Lui, R., Cheung, K., Tang, W.Ng, S. C. (2018). Bacteriophage transfer du-ring faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outco-me. Gut. 67(4), 634-643. https://doi.org/10.1136/gutjnl-2017-313952. google scholar
  • Zou, S., Caler, L., Colombini-Hatch, S., Glynn, S., & Srinivas, P. (2016). Research on the human virome: where are we and what is next. Microbiome. 4(1), 32. doi: 10.1186/s40168-016-0177-y. google scholar
  • Zuo, T., Lu, X. J., Zhang, Y., Cheung, C. P., Lam, S., Zhang, F. Ng, S. C. (2019). Gut mucosal virome altera-tions in ulcerative colitis. Gut. 68(7), 1169-1179. https://doi.org/10.1136/gutjnl-2018-318131. google scholar
  • Zuo, T., Zhan, H., Zhang, F., Liu, Q., Tso, E. Y. K., Lui, G. C. Y.Ng, S. C. (2020). Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge. Gastroenterology, 159(4), 1302-1310.e5. https://doi.org/10.1053/j.gastro.2020.06.048. google scholar
  • Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A. Y. L., Zhan, H...Ng, S. C. (2020). Alterations in Gut Mic-robiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 159(3), 944-955. e8. https://doi.org/10.1053/j.gastro.2020.05.048. google scholar
  • Zuo, T., Liu, Q., Zhang, F., Lui, G.C., Tso, E.Y., Yeoh, Y.K. Ng, S.C. (2021). Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 70(2), 276284. doi: 10.1136/gutjnl-2020-322294. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.