CHAPTER


DOI :10.26650/B/LS32LS24.2024.005.007   IUP :10.26650/B/LS32LS24.2024.005.007    Full Text (PDF)

Alternative Protein Sources in Aquafeeds

Kenan EnginMustafa YıldızMurat ArslanSamuel Ofori-mensahÖmer Metin

Global aquaculture production has reached almost 122 million tons that 57.5 tons of which is classified as total farmed finfish production level in 2021 according to FAO Fishery statistics (FAO, 2022). Farmed fish and crustacean species totally rely on the properly manufactured nutritionally balanced protein rich aqua feeds in order to reach market size rapidly and feed cost comprises of almost 60 to 70% of all the farm expenditures globally. Although fishmeal produced by wild catch is considered as the best possible protein source in aqua feeds because of its excellent amino acid composition and high amount of vitamins and minerals, its availability is not expected to increase in the future due to the status of finiteness of wild fish stocks and their strict management to prevent overfishing (Tacon and Metian, 2008; FAO, 2022). Therefore, sustainable farming of aquatic animal species necessitates the production of aqua feeds using economically viable sustainable feed ingredients specifically the protein sources alternative to fishmeal.



References

  • Azizi, M.N., Loh, T.C., Foo, H.L., & Teik Chung, E.L. (2021). Is Palm Kernel Cake a Suitable Alternative Feed Ingredient for Poultry?. Animals 11, 338. https://doi.org/10.3390/ ani11020338 google scholar
  • Balakrishnan, K., & Pandey, A. (1996). Production of biologically active secondary metabolites in solid-state fermentation. Journal of Scientefic and Industirial Research 55, 365-372. google scholar
  • Ba rroso, F. G., De Haro, C., Sânchez-Muros, M. J., Venegas, E. M., Martmez-Sânchez, A., & Rojo, S. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422-423, 193-201. https://doi. org/10.1016/j.aquaculture.2013.12.024 google scholar
  • Bh at, S., Aditya, K. S, Kumari, B., Kamlesh, K. A., & Sendhil, R. (2022). Pulses production, trade and policy imperatives: A global perspective. In: Meena, R.S., & Kumar, S. (Eds.), Advances in Legumes for Sus-tainable Intensification, Academic Press, Pages 639-656, ISBN 9780323857970. https://doi.org/10.1016/ B978-0-323-85797-0.00018-5 google scholar
  • Bro wn, P. B. (2008).Utilization of Soy Products in Diets of Freshwater Fish. In: Lim, C., Webster, C. D., Lee, & Cheng-Sheng (Eds.), Alternative Protein Sources in Aquaculture Diets, The Haworth Press, Taylor and Francis group, New York, USA, pp 225-260. google scholar
  • Bru ni, L., Pastorelli, R., Viti, C., Gasco, L., & Parisi, G. (2018). Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture. 487, 56-63. https://doi.org/10.1016/j. aquaculture.2018.01.006. google scholar
  • Bue navista, R. M., Siliveru, K., & Zheng, Y. (2021). Utilization of Distiller’s dried grains with solubles: A review. Journal of Agriculture and Food Research, 5, 100195. https://doi.org/10.1016/j.jafr.2021.100195 google scholar
  • Bul lerwell, C. N., Collins, S. A., Lall, S. P., & Anderson, D. M. (2016). Growth performance, proximate and histological analysis of rainbow trout fed diets containing Camelina sativa seeds, meal (high-oil and sol-vent-extracted) and oil. Aquaculture 452, 342-350. http://dx.doi.org/10.1016/j.aquaculture.2015.11.008. google scholar
  • Burel, C., Boujard, T., Kaushik, S., Boeuf, G., Mol, K., Van Der Geyten, S., Darras, V., Kühn, E., Pradet-Balade, B., Querat, B., Quinsac, A., Krouti, M., & Ribaillier, D. (2001). Effects of rapeseed meal-glucosinolates on thyroid metabolism and feed utilization in rainbow trout. General and Comparative Endocrinology, 124(3), 343-358. https://doi.org/10.1006/gcen.2001.7723 google scholar
  • Bureau, D. P., Harris, A. L., & Cho, C. H. (1999). Apparent digestibility of rendered animal protein ingredients for rainbow trout (Oncorhynchus mykiss). Aquaculture, 180(3-4), 345-358. https://doi.org/10.1016/s0044-8486(99)00210-0 google scholar
  • Collins, S., Xie, S., Hall, J. L., White, M. B., Rise, M. L., & Anderson, D. T. (2018). Evaluation of enzyme- and Rhizopus oligosporus -treated high oil residue camelina meal on rainbow trout growth performance and distal intestine histology and inflammatory biomarker gene expression. Aquaculture, 483, 27-37. https:// doi.org/10.1016/j.aquaculture.2017.09.017 google scholar
  • Campos, I., Matos, E., Marques, A. P., & Valente, L. M. (2017). Hydrolyzed feather meal as a partial fishmeal replacement in diets for European seabass (Dicentrarchus labrax) juveniles. Aquaculture, 476, 152-159. https://doi.org/10.1016/j.aquaculture.2017.04.024 google scholar
  • Davies, S. G., El-Haroun, E. R., Hassaan, M. A., & Bowyer, P. (2021). A Solid-State Fermentation (SSF) supp-lement improved performance, digestive function and gut ultrastructure of rainbow trout (Oncorhynchus mykiss) fed plant protein diets containing yellow lupin meal. Aquaculture, 545, 737177. https://doi.or-g/10.1016/j.aquaculture.2021.737177 google scholar
  • Dawood, M. A., & Koshio, S. (2019). Application of fermentation strategy in aquafeed for sustainable aquacul-ture. Reviews in Aquaculture, 12(2), 987-1002. https://doi.org/10.1111/raq.12368 google scholar
  • De Macedo, E. S., Urbich, A. V., Nakamura, J. S. T., Da Cruz, T. P., Panaczevicz, P. a. P., Wernick, B., Furuya, V. R. B., Pezzato, L. E., Gatlin, D. M., & Furuya, W. M. (2023). Effect of xylanase and p-glucanase on growth performance, activity of digestive enzymes, digestibility, and microbiome diversity of juvenile Nile tilapia fed soybean meal and/or sorghum distillers dried grains with solubles-based diets. Aquaculture, 565, 739134. https://doi.org/10.1016/j.aquaculture.2022.739134 google scholar
  • Demir, O., & Yılayaz, A. (2020). Effects of the use of feeds containing phytase enzyme from different protein sources on nitrogen and phosphorus discharge of rainbow trout (Oncorhynchus mykiss) juveniles. Iranian Journal of Fisheries Sciences. 19 (4): 2089-2105. google scholar
  • Denstadli, V., Hillestad, M., Verlhac, V., Klausen, M., & 0verland, M. (2011). Enzyme pretreatment of fibrous ingredients for carnivorous fish: Effects on nutrient utilisation and technical feed quality in rainbow trout (Oncurhynchus mykiss). Aquaculture, 319(3-4), 391-397. https://doi.org/10.1016/j.aquaculture.2011.07.012 google scholar
  • Drew, M. D., Ogunkoya, A. E., Janz, D. M., & Van Kessel, A.G. (2007). Dietary influence of replacing fish meal and oil with canola protein concentrate and vegetable oils on growth performance, fatty acid composition and organochlorine residues in rainbow trout (Oncorhynchus mykiss). Aquaculture, 267, 260-268. google scholar
  • Emre, N., Güroy, D., Yalim, F. B., Emre, Y., Güroy, B., Mantoğlu, S., & Karadal, O. (2018). Growth Performan-ce, Body Composition, Haematological and Serum Parameters to Fish Meal Replacement by Soybean Meal and Cottonseed Meal in Russian Sturgeon (Acipenser gueldenstaedtii). Journal of Limnology and Freshwater Fisheries Research, 4(3), 169-176. https://doi.org/10.17216/limnofish.460773 google scholar
  • Engin, K., & Carter, G. C. (2005). Fish meal replacement by plant and animal byproducts in diets for the Austra-lian short-finned eel, Anguilla australis australis (Richardson). Aquaculture Research, 36, 445-454. http:// doi:10.1111/j.1365-2109.2005.01224.x google scholar
  • Engin, K. & Koyuncu, C. (2023). The Recent Advances to Increase Nutrient Utilization of Dietary Plant Prote-ins by Enzyme Supplementation and Fermentation in Rainbow Trout (Oncorhynchus mykiss): A Review. Journal of Agricultural Sciences: (Early View), 22-22 . DOI: 10.15832/ankutbd.1192888 google scholar
  • Eroldoğan, O.T., Elsabagh, M., Sevgili, H., Glencross, B., Paolucci, M., Kumlu, M., Kınay, E., Evliyaoğlu, E., Yılmaz, H.A., & Sarıipek, M. (2022). Use of Poultry By-product and Plant Protein Sources in Diets of Redclaw Crayfish (Cherax quadricarinatus) Turkish Journal of Fisheries and Aquatic Sciences, 22(8), TRJFAS21188. http://doi.org/10.4194/TRJFAS21188 google scholar
  • Espe, M., Haaland, H., & Njaa, L. R. (1992). Autolysed fish silage as a feed ingredient for Atlantic salmon (Salmo salar). Comperative Biochemistry and Physiology, 103A (2), 369-372. google scholar
  • Eusebio, P. (1991). Effect of dehulling on the nutritive value of some leguminous seeds as protein sources for tiger prawn (Penaeus monodon) juveniles. Aquaculture, 99, 297-308. google scholar
  • FAO (2022). Fishery and Aquaculture Statistics. Global aquaculture production 1950-2020 (FishStatJ). In: FAO Fisheries and Aquaculture Division [online]. Rome. Updated 2022. www.fao.org/fishery/statistics/software/ fishstatj/en google scholar
  • Fountoulaki, E., Vasilaki, A., Nikolopoulou, D., Schrama, J. W., Kaushik, S., & Prabhu, P. a. J. (2022). Faecal waste production, characteristics and recovery in European seabass (Dicentrarchus labrax) is affected by die-tary ingredient composition. Aquaculture, 548, 737582. https://doi.org/10.1016/j.aquaculture.2021.737582 google scholar
  • Forster, I. (2008). Use of Fisheries Coproducts in Feeds for Aquatic Animals. In: Lim, C., Webster, C. D., Lee, & Cheng-Sheng (Eds.), Alternative Protein Sources in Aquaculture Diets, The Haworth Press, Taylor and Francis group, New York, USA, pp 117-131. google scholar
  • Glencross, B. D., Boujard, T., & Kaushik, S. (2003). Influence of oligosaccharides on the digestibility of lu-pin meals when fed to rainbow trout, Oncorhynchus mykiss. Aquaculture, 219(1-4), 703-713. https://doi. org/10.1016/s0044-8486(02)00664-6 google scholar
  • Glencross, B. D., Hawkins, W., Evans, D. M., Rutherford, N., McCafferty, P., Dods, K., Karopoulos, M., Veitch, C., Sipsas, S., & Buirchell, B. (2008). Variability in the composition of lupin (Lupinus angustifolius) meals influences their digestible nutrient and energy value when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture, 277(3-4), 220-230. https://doi.org/10.1016/j.aquaculture.2008.02.038 google scholar
  • Glencross, B. D., Rutherford, N., & Bourne, N. (2012). The influence of various starch and non-starch polysac-charides on the digestibility of diets fed to rainbow trout (Oncorhynchus mykiss). Aquaculture, 356-357, 141-146. https://doi.org/10.1016/j.aquaculture.2012.05.023 google scholar
  • Glencross, B. D., Glencross, B. D., & Schrama, J. W. (2020). The application of single-cell ingredients in aqu-aculture feeds—a review. Fishes, 5(3), 22. https://doi.org/10.3390/fishes5030022 google scholar
  • Grazziotin, A., Pimentel, F. A., De Jong, E., & Brandelli, A. (2006). Nutritional improvement of feather protein by treatment with microbial keratinase. Animal Feed Science and Technology, 126(1-2), 135-144. https:// doi.org/10.1016/j.anifeedsci.2005.06.002 google scholar
  • Greiling, A. M., Tschesche, C., Baardsen, G., Kröckel, S., Koppe, W., & Rodehutscord, M. (2019). Effects of phosphate and phytase supplementation on phytate degradation in rainbow trout (Oncorhynchus mykiss W.) and Atlantic salmon (Salmo salar L.). Aquaculture, 503, 467-474. https://doi.org/10.1016/j.aquacul-ture.2019.01.035 google scholar
  • Güroy, B., Şahin, I., Kayalı, S., Mantoğlu, S., Canan, B., Merrifield, D. L., Davies, S. G., & Güroy, D. (2012). Evaluation of feed utilization and growth performance of juvenile striped catfish Pangasianodon hypopht-halmusfed diets with varying inclusion levels of corn gluten meal. Aquaculture Nutrition, 19(3), 258-266. https://doi.org/10.1111/j.1365-2095.2012.00953.x google scholar
  • Hardy, R. W., Sealey, W. M., & Gatlin, D. M. (2007). Fisheries By-Catch and By-Product Meals as Protein Sour-ces For Rainbow Trout Oncorhynchus mykiss. Journal of the World Aquaculture Society, 36(3), 393-400. https://doi.org/10.1111/j.1749-7345.2005.tb00343.x google scholar
  • Hassaan, M. S., El-Sayed, A. A., Soltan, M. A., Iraqi, M. M., Goda, A. M. a. S., Davies, S. G., El-Haroun, E. R., & Ramadan, H. A. (2019). Partial dietary fish meal replacement with cotton seed meal and supplementa-tion with exogenous protease alters growth, feed performance, hematological indices and associated gene expression markers (GH, IGF-I) for Nile tilapia, Oreochromis niloticus. Aquaculture, 503, 282-292. https:// doi.org/10.1016/j.aquaculture.2019.01.009 google scholar
  • Henry, M. O., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203, 1-22. https://doi.org/10.1016/j. anifeedsci.2015.03.001 google scholar
  • Herath, S. S., & Yakupitiyage, A. (2022). Assessing the feasibility of particle size reduction and fermentation as pre-processing techniques to utilize enzyme-treated feather meal in zero fish meal diets for Nile tilapia (Oreochromis niloticus). Animal Feed Science and Technology, 291, 115382. https://doi.org/10.1016/j.ani-feedsci.2022.115382 google scholar
  • Hersi, M. A., Genc, E., Pipilos, A., & Keskin, E. (2023). Effects of dietary synbiotics and biofloc meal on the growth, tissue histomorphology, whole-body composition and intestinal microbiota profile of Nile tilapia (Oreochromis niloticus) cultured at different salinities. Aquaculture, 570, 739391. https://doi.org/10.1016/j. aquaculture.2023.739391 google scholar
  • Hertrampf, J. W., & Piedad-Pascual, F. (2000). Handbook on Ingredients for Aquaculture Feeds. In Springer eBooks. https://doi.org/10.1007/978-94-011-4018-8 google scholar
  • Heuze V, Tran G., Hassoun P., Lessire M., Lebas F., 2019. Sunflower meal. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/732 Last updated on September 25, 2019, 14:17 google scholar
  • Hixson, S. M., Parrish, C. C., Wells, J. R., Winkowski, E. M., Anderson, D. Z., & Bullerwell, C. (2015). Inclusion of camelina meal as a protein source in diets for farmed salmonids. Aquaculture Nutrition, 22(3), 615-630. https://doi.org/10.1111/anu.12276 google scholar
  • Hua, K., & Bureau, D. (2010). Quantification of differences in digestibility of phosphorus among cyprinids, cichlids, and salmonids through a mathematical modelling approach. Aquaculture, 308(3-4), 152-158. https://doi.org/10.1016/j.aquaculture.2010.07.040 google scholar
  • Hulefeld, R., Habte-Tsion, H., Lalgudi, R. S., Mcgraw, B. L., Cain, R., Allen, K. B., Thompson, K. W., Tidwell, J. H., & Kumar, V. (2018). Nutritional evaluation of an improved soybean meal as a fishmeal replacer in the diet of Pacific white shrimp,Litopenaeus vannamei. Aquaculture Research, 49(4), 1414-1422. https:// doi.org/10.1111/are.13593 google scholar
  • Hunt, A., Yılmaz F., Engin, K., Berköz, M., Gündüz, S., Yalın, S., & Şahin, N. (2014). The Effects of Fish Meal Replacement by Yeast Based Nucleotides on Growth, Body Composition and Digestive Enzyme Activity in Rainbow Trout Juveniles (Onchorchyncus mykiss). Israeli Journal of aquaculture-Bamidgeh, 66. https:// doi.org/10.46989/001c.20745 google scholar
  • Jackson, A., Capper, B. S., & Matty, A. (1982). Evaluation of some plant proteins in complete diets for the tilapia Sarotherodon mossambicus. Aquaculture, 27(2), 97-109. https://doi.org/10.1016/0044-8486(82)90129-6 google scholar
  • Kader, M. A., Bulbul, M., Koshio, S., Ishikawa, M., Yokoyama, S., Nguyen, B. P., & Komilus, C. F. (2012). Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplemen-tation in diets for red sea bream, Pagrus major. Aquaculture, 350-353, 109-116. https://doi.org/10.1016/j. aquaculture.2012.04.009. google scholar
  • Kumar, V., Lee, S., Cleveland, B. M., Romano, N., Lalgudi, R. S., Benito, M., Mcgraw, B. L., & Hardy, R. W. (2020). Comparative evaluation of processed soybean meal (EnzoMealTM) vs. regular soybean meal as a fishmeal replacement in diets of rainbow trout (Oncorhynchus mykiss): Effects on growth performance and growth-related genes. Aquaculture, 516, 734652. https://doi.org/10.1016/j.aquaculture.2019.734652 google scholar
  • Lee, S., Chowdhury, M. K., Hardy, R. W., & Small, B. C. (2020). Apparent digestibility of protein, amino acids and gross energy in rainbow trout fed various feed ingredients with or without protease. Aquaculture, 524, 735270. https://doi.org/10.1016/j.aquaculture.2020.735270 google scholar
  • Lee, M. J., Kim, J., Baek, S. I., & Cho, S. H. (2023). Substitution effect of fish meal with meat meal in diet on growth performance, feed consumption, feed utilization, chemical composition, hematology, and innate immune responses of rockfish (Sebastes schlegeli). Aquaculture, 571, 739467. https://doi.org/10.1016/j. aquaculture.2023.739467. google scholar
  • Li, M. H., Robinson, E. H., & Lim, C. E. (2008). Use of Meat Packaging By-Products in Fish Diets. In: Lim, C., Webster, C. D., Lee, Cheng-Sheng (Eds.), Alternative Protein Sources in Aquaculture Diets, The Haworth Press, Taylor and Francis group, New York, USA, pp 95-116. google scholar
  • Lim, C., & Yildirim-Aksoy, M. (2008). Distillers dried grain with solubles as an alternative protein source in fish feeds. In: H. Elghobashy, K. Fitzsimmons, A.S. Dinah (Eds.), Proceedings of the 8th International Symposium on Tilapia in Aquaculture, Agriculture Press Unit, Agriculture Research Center, Cairo, Egypt, pp. 67-92. google scholar
  • Lindsay, G. J., Walton, M. J., Adron, J. W., Fletcher, T. C., Cho, C. H., & Cowey, C. B. (1984). The growth of rainbow trout (Salmo gairdneri) given diets containing chitin and its relationship to chitinolytic enzymes and chitin digestibility. Aquaculture, 37(4), 315-334. https://doi.org/10.1016/0044-8486(84)90297-7 google scholar
  • Lozano, N. B. S., Vidal, A., Martmez-Llorens, S., Merida, S. N., Blanco, J. M., Lopez, A., Torres, M. P., & Cerda, M. J. (2007). Growth and economic profit of gilthead sea bream (Sparus aurata, L.) fed sunflower meal. Aquaculture, 272(1-4), 528-534. https://doi.org/10.1016/j.aquaculture.2007.07.221. google scholar
  • Lu, J., Tibbetts, S. M., Lall, S. P., & Anderson, D. T. (2020). Use of dietary oil, solvent-extracted meal and protein concentrate from Camelina sativa for rainbow trout, Oncorhynchus mykiss, at the early fry stage. Aquaculture, 524, 735252. https://doi.org/10.1016/j.aquaculture.2020.735252. google scholar
  • Martmez-Palacios, C. A., Cruz, R. P. M., Novoa, M. A., & Chavez-Martinez, C. (1988). The use of jack bean (Canavalia ensiformis Leguminosae) meal as a partial substitute for fish meal in diets for tilapia (Oreochro-mis mossambicus Cichlidae). Aquaculture, 68(2), 165-175. https://doi.org/10.1016/0044-8486(88)90239-6 google scholar
  • Merida, S. N., Tomas-Vidal, A., Martmez-Llorens, S., & Cerda, M. J. (2010). Sunflower meal as a partial substitute in juvenile sharpsnout sea bream (Diplodus puntazzo) diets: Amino acid retention, gut and liver histology. Aquaculture, 298(3-4), 275-281. https://doi.org/10.1016/j.aquaculture.2009.10.025 google scholar
  • Mishra P., Hussain, N., Khatib, A. M. G. A., Lal, P., Anwar, A., Nganvongpanit, K., Abotaleb, M., Ray, S., & Punyapornwithaya, V. (2023). An Overview of Pulses Production in India: Retrospect and Prospects of the Future Food with an Application of Hybrid Models. National Academy Science Letters-india. https://doi. org/10.1007/s40009-023-01267-2 google scholar
  • Mohammadi, M. R., Imani, A., Farhangi, M., Gharaei, A., & Hafezieh, M. (2020). Replacement of fishmeal with processed canola meal in diets for juvenile Nile tilapia (Oreochromis niloticus): Growth performance, mucosal innate immunity, hepatic oxidative status, liver and intestine histology. Aquaculture, 518, 734824. https://doi.org/10.1016/j.aquaculture.2019.734824. google scholar
  • Moon, S. K., & Lee, J. (2015). Current views on insect feed and its future. Entomological Research, 45(6), 283-285. https://doi.org/10.1111/1748-5967.12138. google scholar
  • Moutinho, S., Martmez-Llorens, S., Tomas-Vidal, A., Jover-Cerda, M., Oliva-Teles, A., & Peres, H. (2017). Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream ( Sparus aurata ) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency. Aquaculture, 468, 271-277. https:// doi.org/10.1016/j.aquaculture.2016.10.024 google scholar
  • Mudalkar, S., Golla, R., Ghatty, S., & Reddy, A. R. (2013). De novo transcriptome analysis of an imminent bio-fuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Molecular Biology, 84(1-2), 159-171. https://doi.org/10.1007/s11103-013-0125-1. google scholar
  • Nazeer, S., Nguyen, K., Tabbara, M., Tilton, S., & Davis, D. A. (2023). Evaluation of growth, nutrient digestibi-lity, and hematological parameters of tilapia, Oreochromis niloticus, fed diets containing different levels of high protein distiller’s dried grain with yeast in it as replacement for corn protein concentrate. Aquaculture, 572, 739526. https://doi.org/10.1016/j.aquaculture.2023.739526. google scholar
  • Ngo, D. T., Wade, N., Pirozzi, I., & Glencross, B. D. (2016). Effects of canola meal on growth, feed utilisation, plasma biochemistry, histology of digestive organs and hepatic gene expression of barramundi (Asian sea-bass; Lates calcarifer). Aquaculture, 464, 95-105. https://doi.org/10.1016/j.aquaculture.2016.06.020 google scholar
  • National Research Council (NRC). (2011). Nutrient Requirements of Fish and Shrimp. The National Academies Press, Washington, D. C. google scholar
  • Ogunji, J. O., Kloas, W., Wirth, M. P., Schulz, C., & Rennert, B. (2008). Housefly Maggot Meal (Magmeal) as a Protein Source for Oreochromis niloticus (Linn.). Asian Fisheries Science, 21(3). https://doi.org/10.33997/j. afs.2008.21.3.006. google scholar
  • Olli, J. J., Hjelmeland, K., & Krogdahl, Â. (1994). Soybean trypsin inhibitors in diets for Atlantic salmon (Salmo salar, L): effects on nutrient digestibilities and trypsin in pyloric caeca homogenate and intesti- google scholar
  • nal content. Comparative Biochemistry andPhysiology Part A: Physiology, 109(4), 923-928. https://doi. org/10.1016/0300-9629(94)90240-2. google scholar
  • 0verland, M., Krogdahl, A., Shurson, G. C., Skrede, A., & Denstadli, V. (2013). Evaluation of distiller’s dried grains with solubles (DDGS) and high protein distiller’s dried grains (HPDDG) in diets for rain-bow trout (Oncorhynchus mykiss). Aquaculture, 416-417, 201-208. https://doi.org/10.1016/j.aquacultu-re.2013.09.016. google scholar
  • ÖziL, Ö., DiLer, Ö., Kayhan, M. H., Taş, T. K., SeydiM, Z., & DiDiNen, B. I. (2023). Effects of Dietary Sage, Myrtle and/or Probiotic Mixture on Growth, Intestinal Health, Antioxidant Capacity, and Diseases Re-sistance of Oncorhynchus mykiss. Journal of Agricultural Sciences, 721-733. https://doi.org/10.15832/ ankutbd.1120481 google scholar
  • Sipas, S, Mackintosh, J B, and Petterson, D S. (1997), The chemical composition and nutritive value of Austra-lian pulses. Grains Research and development Corporation, Kingston, A.C.T.. Book. google scholar
  • Picoli, F., De Oliveira Marques, S., De Oliveira, A. C. G., Nunes, C., Serafini, S., Klein, B., De Oliveira, N. S., Santos, N. a. D., Zampar, A., De Alcantara Lopes, D. L., & Fabregat, T. E. H. P. (2022). Mixed culture microorganisms fermented soybean meal improves productive performance and intestinal health of Nile tilapia ( Oreochromis niloticus ) juveniles fed plant-based diets in a biofloc system. Aquaculture Research, 53(12), 4233-4245. https://doi.org/10.1111/are.15859. google scholar
  • Picone, T.A. (1987). Taurine Update: Metabolism and Function. Nutrition Today, 22(4):p 16-20, July 1987. google scholar
  • Prabhu, P. a. J., Fountoulaki, E., R, M., Heinsbroek, L., Eding, E. H., Kaushik, S., & Schrama, J. W. (2019). Dietary ingredient composition alters faecal characteristics and waste production in common carp reared in recirculation system. Aquaculture, 512, 734357. https://doi.org/10.1016/j.aquaculture.2019.734357. google scholar
  • Psofakis, P., Karapanagiotidis, I. T., Malandrakis, E. E., Golomazou, E., Exadactylos, A., & Mente, E. (2020). Effect of fishmeal replacement by hydrolyzed feather meal on growth performance, proximate compositi-on, digestive enzyme activity, haematological parameters and growth-related gene expression of gilthead seabream (Sparus aurata). Aquaculture, 521, 735006. https://doi.org/10.1016/j.aquaculture.2020.735006. google scholar
  • Raa, J. (1994). Fish silage: Successes and limitations as feed ingredient in aquaculture. Proc. Fish Nutrition Workshop, Singapore 25-27 October 1994. google scholar
  • Refstie, S., Storebakken, T., & Roem, A. J. (1998). Feed consumption and conversion in Atlantic salmon (Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccha-rides, trypsin inhibitors, lectins and soya antigens. Aquaculture, 162(3-4), 301-312. https://doi.org/10.1016/ s0044-8486(98)00222-1. google scholar
  • Ren, X., Huang, D., Wu, Y., Jiang, D., Li, P. R., Chen, J. C., & Wang, Y. (2020). Gamma ray irradiation improves feather meal as a fish meal alternate in largemouth bass Micropterus salmoides diet. Animal Feed Science and Technology, 269, 114647. https://doi.org/10.1016/j.anifeedsci.2020.114647. google scholar
  • Robbins, K. R., Baker, D., & Finley, J. W. (1980). Studies on the utilization of lysinoalamine and lanthionine. Journal of Nutrition, 110(5), 907-915. https://doi.org/10.1093/jn/110.5.907. google scholar
  • Robinson, E. A., & Liu, L. (1999). Effect of Dietary Protein Concentration and Feeding Rate on Weight Gain, Feed Efficiency, and Body Composition of Pond-Raised Channel Catfish Ictalurus punctatus. Journal of the World Aquaculture Society, 30(3), 311-318. https://doi.org/10.1111/j.1749-7345.1999.tb00681.x. google scholar
  • Sabbagh, M., Schiavone, R., Brizzi, G., Sicuro, B., Zilli, L., & Vilella, S. (2019). Poultry by-product meal as an alternative to fish meal in the juvenile gilthead seabream (Sparus aurata) diet. Aquaculture, 511, 734220. https://doi.org/10.1016/j.aquaculture.2019.734220. google scholar
  • Sajjadi, M. M., & Carter, C. B. (2004). Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in Atlantic salmon (Salmo salar, L.). Aquaculture Nutrition, 10(2), 135-142. https://doi. org/10.1111/j.1365-2095.2003.00290.x. google scholar
  • Sanchez-Muros, M., De Haro, C., Sanz, A., Trenzado, C. E., Villareces, S., & Barroso, F. G. (2015). Nutritional evaluation ofTenebrio molitormeal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquacul-ture Nutrition, 22(5), 943-955. https://doi.org/10.1111/anu.12313 google scholar
  • Sevgili, H., Kurtoğlu, A., Oikawa, M., Aksoy, A., Kocakaya, S., Ozturk, E., Uysal, R., & Oruç, H. G. (2015). A combination of corn gluten and soybean meal as a substitute for fishmeal in diets of turbot (Scophthalmus maximus Linnaeus, 1758) in brackish water. Journal of Applied Ichthyology, 31(2), 355-361. https://doi. org/10.1111/jai.12683 google scholar
  • Sevgili, H., Sezen, S., Yılayaz, A., Aktas, O. Y., Pak, F., Aasen, I. M., Reitan, K. I., Sandmann, M., Rohn, S., Turan, G., & Kanyılmaz, M. (2019). Apparent nutrient and fatty acid digestibilities of microbial raw materials for rainbow trout (Oncorhynchus mykiss) with comparison to conventional ingredients. Algal Research-Bi-omass Biofuels and Bioproducts, 42, 101592. https://doi.org/10.1016/j.algal.2019.101592. google scholar
  • Sharma, S., Imran, Z., Mitra, A., Verma, M., & Joshi, S. (2021). A brief review on the utilization of waste products from the meat industry. International Journal of Research and Analytical Reviews. 8, 856-863. google scholar
  • Shi, Y., Cao, X., Zhong, L., Xu, S., Zhang, J., Xie, S., & Hu, Y. (2023). Application of sunflower meal in diets of on-growing grass carp (Ctenopharyngodon idellus) and evaluation of enzymatic hydrolysis. Aquaculture, 563, 738908. https://doi.org/10.1016/j.aquaculture.2022.738908. google scholar
  • Shiau, S., & Yu, Y. (1999). Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochro-mis niloticus^O. aureus. Aquaculture, 179(1-4), 439-446. https://doi.org/10.1016/s0044-8486(99)00177-5. google scholar
  • Stone, D., Allan, G. L., & Anderson, A. R. A. (2003). Carbohydrate utilization by juvenile silver perch, Bidya-nus bidyanus (Mitchell). IV. Can dietary enzymes increase digestible energy from wheat starch, wheat and dehulled lupin? Aquaculture Research, 34(2), 135-147. https://doi.org/10.1046/j.1365-2109.2003.00777.x google scholar
  • Tacon, A. G. J. (1994). Feed ingredients for carnivores fish species: Alternative to fish meal and other fishery resources. FAO Fisheries Circular No:881. Rome, FAO, 35 pp. google scholar
  • Tacon, A. G. J., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially com-pounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158. https://doi.org/10.1016/j. aquaculture.2008.08.015. google scholar
  • Tanemura, N., Y, A., Okano, K., & Sugiura, S. (2016). Effects of culturing rapeseed meal, soybean meal, macrop-hyte meal, and algal meal with three species of white-rot fungi on their in vitro and in vivo digestibilities eva-luated using rainbow trout. Aquaculture, 453, 130-134. https://doi.org/10.1016/j.aquaculture.2015.12.001 google scholar
  • Uysal, A., & Engin, K. (2018). The Effects of Combined Use of Soybean Extract and Mixture of Several Plant Oils on the Growth Prameters and Whole Body and Tissue Amino Acid and Fatty Acid Compositions in Juvenile Nile Tilapia (Oreochromis niloticus Linnaeus 1758). Journal of Aquaculture Engineering and Fisheries Research, 4, 106-119. google scholar
  • Van Huis, A., vanItterbeeck, J.,Klunder, H.,Mertens, E.,Halloran, A.,Muir, & G.,Vantomme, P. (2013) Edible Insects-Future Prospects for Food and Feed Security. FAO, pp. 171, Forestry Paper. google scholar
  • Venero,J. A., Davis, D. A., Lim, C. (2008). Use of Plant Protein Sources in Crustacean Diets. In: Lim, C., Webster, C. D., Lee, Cheng-Sheng (Eds.), Alternative Protein Sources in Aquaculture Diets, The Haworth Press, Taylor and Francis group, New York, USA, pp 163-203. google scholar
  • Viola, S., Mokady, S., Rappaport, U., & Arieli, Y. (1982). Partial and complete replacement of fishmeal by soybe-an meal in feeds for intensive culture of carp. Aquaculture, 26(3-4), 223-236. https://doi.org/10.1016/0044-8486(82)90158-2. google scholar
  • Wood, J. N., Capper, B. S., & Nicolaides, L. (1985). Preparation and evaluation of diets containing fish silage, cooked fish preserved with formic acid and low-temperature-dried fish meal as protein sources for mirror carp (Cyprinus carpio). Aquaculture. https://doi.org/10.1016/0044-8486(85)90039-0. google scholar
  • Wu, Y., Tudor, K. W., Brown, P. D., & Rosati, R. R. (1999). Substitution of plant proteins or meat and bone meal for fish meal in diets of Nile tilapia. North American Journal of Aquaculture. https://doi.org/10.1577/1548-8454(1999)061. google scholar
  • Xu, J., Sheng, Z., Chen, N., Xie, R., Zhang, H., & Li, S. (2022). Effect of dietary fish meal replacement with spray dried chicken plasma on growth, feed utilization and antioxidant capacity of largemouth bass (Mic-ropterus salmoides). Aquaculture Reports, 24, 101112. https://doi.org/10.1016/j.aqrep.2022.101112. google scholar
  • Yamamoto, T., Iwashita, Y., Matsunari, H., Sugita, T., Furuita, H., Akimoto, A., Okamatsu, K., & Suzuki, N. (2010). Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth per-formance and physiological condition of rainbow trout Oncorhynchus mykiss. Aquaculture, 309(1-4), 173-180. https://doi.org/10.1016Zj.aquaculture.2010.09.021 google scholar
  • Y ildirim, Ö., Türker, A., Ergün, S., Yigit, M., & Gülşahin, A. (2009). Growth performance and feed utilization of Tilapia zillii (Gervais, 1848) fed partial or total replacement of fish meal with poultry by-product meal. African Journal of Biotechnology, 8(13), 3092-3096. https://doi.org/10.4314/ajb.v8i13.60995. google scholar
  • Y igit, M., Ergün, S., Türker, A., Harmantepe, B., & Erteken, A. (2010). Evaluation Of Soybean Meal As A Protein Source And Its Effect On Growth And Nitrogen Utilization Of Black Sea Turbot (Psetta Maeotica) Juveniles. Journal of Marine Science and Technology, 18(5). https://doi.org/10.51400/2709-6998.1913 google scholar
  • Y igit, N., & Olmez, M. (2010). Effects of cellulase addition to canola meal in tilapia (Oreochromis niloticus L.) diets. Aquaculture Nutrition, 17(2), e494-e500. https://doi.org/10.1111/j.1365-2095.2010.00789.x google scholar
  • Z heng, J., Chen, W., Dan, Z., Cao, X., Cui, K., Zhu, S., Zhuang, Y., Mai, K., & Ai, Q. (2023). Effects of fish meal replaced by methanotroph bacteria meal (Methylococcus capsulatus) on growth, body composition, antioxidant capacity, amino acids transporters and protein metabolism of turbot juveniles (Scophthalmus maximus L.). Aquaculture, 562, 738782. https://doi.org/10.1016/j.aquaculture.2022.738782 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.